
Thesis for The Degree of Doctor of Philosophy

Visual GUI Testing:
Automating High-Level Software Testing in

Industrial Practice

Emil Alégroth

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Göteborg University
Göteborg, Sweden, 2013

Visual GUI Testing:
Automating High-Level Software Testing in
Industrial Practice

Emil Alégroth

Copyright © 2015 Emil Alégroth
except where otherwise stated.
All rights reserved.

Technical Report No 117D
ISSN XXXX-YYY
ISBN XXXXXX
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Göteborg University
Göteborg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Göteborg, Sweden 2015.

ii

To Therese, Alexandra and my supporting family

iv

Abstract

Software Engineering is at the verge of a new era where continuous releases are
becoming more common than planned long-term projects. In this context, test
automation will become essential on all levels of system abstraction to meet
the market’s demands of speedy delivery and high software quality. Hence,
automated tests are required from low-level software components, tested with
unit tests, up to the pictorial graphical user interface (GUI), tested with user
emulated system and acceptance tests. Thus far, research has provided indus-
try with a plethora of automation solutions for lower level testing but GUI level
testing is still primarily a manual, and therefore costly and tedious, activity
in practice.

We have identified three generations of GUI-based automated testing. The
first (1st) generation relied on recorded, exact, GUI coordinates but was soon
discarded due to unfeasible maintenance costs caused by fragility to GUI
change. Second (2nd) generation tools, also referred to as component-, widget-
or tag-based tools instead operate against some model of the GUI by hooking
into the system’s GUI architecture, libraries or application programming in-
terfaces (APIs). Whilst tools of this approach are extensively used in practice,
and are suitable to test system behavior, they are inflexible by being restricted
to specific GUI technologies, programming languages and platforms.

The third (3rd) generation, referred to as Visual GUI Testing (VGT), is
an emerging technique in industrial practice with properties that mitigate
the challenges experienced with previous generations of GUI testing. VGT
is defined as a tool-driven automated test technique where image recognition
is used to interact with, and assert, a system’s behavior through its pictorial
GUI as it is shown to the user in user-emulated system or acceptance tests.
VGT thereby provides test results of quality on par with a human tester and is
therefore an effective complement to reduce also the aforementioned challenges
of manual testing in practice. However, despite these benefits, the technique is
only sparsely used in industrial practice and the academic body of knowledge
holds only limited empirical support for the technique’s industrial viability.

This thesis presents a holistic evaluation of VGT’s capabilities in indus-
trial practice, obtained through a series of case studies and experiments per-
formed in academia and Swedish industry. The research follows an incremental
methodology that began with academic experimentation with VGT tools, fol-
lowed by studies in industrial practice that was concluded with a case study in
a company that had used VGT for several years. Results of the research show
that VGT is a viable technique for use in industrial practice with better defect-
finding ability than manual tests, ability to test any GUI based system, high
learnability, feasible maintenance costs and both short and long-term com-
pany benefits. However, there are still challenges, problems and limitations
that must be considered for the successful adoption, use and long-term use
of VGT in a company, the most crucial being that suitable development and
maintenance practices are used. This thesis thereby concludes that VGT can
be used in industrial practice and also provides guidance to practitioners that
seek to do so. Additionally, this work provides a stepping stone for academia
to explore new test solutions that build on image recognition technology.

vi

Keywords

Software Engineering, Automated Testing, Visual GUI Testing, Industrial Re-
search, Empirical Research, Applicability and Feasibility

Acknowledgments

First and foremost, my deepest thanks go to my main supervisor, friend and
mentor Professor Robert Feldt whose belief in me and unwavering support
made this thesis possible. We have had an amazing journey together and you
have not just taught me how to be a researcher but a better person as well,
something that I will cherish forever.

Second, my thanks go to my second supervisor, Associate professor Helena
Holmström-Olsson, whose positive attitude, support and advice have been a
great source of inspiration and help, both in times of joy and despair.

Next I want to thank my examiner Professor Gerardo Scheider and all my
past and present colleagues at the Software Engineering division at Chalmers
University of Technology whose guidance and support has been invaluable for
the completion of my thesis work. In particular I would like to thank Dr.
Ana Magazinius, Dr. Ali Shahrokni, Dr. Joakim Pernst̊al, Pariya Kashfi, An-
tonio Martini, Per Lenberg, Associate professor Richard Berntsson Svensson,
Professor Richard Torkar and Professor Jan Bosch for many great experiences
but also for always being there to listen to and support my sometimes crazy
ideas. Additionally, I want to thank Bogdan Marculescu and Professor Tony
Gorschek who, together with Robert, convinced me, in their own way, to pro-
ceed a PhD. Further, I want to thank my international research collaborators,
in particular Professor Atif Memon, Rafael Oliveira and Zebao Gao who made
a research visit in the US a wonderful experience.

However, this thesis had not been completed without the support of my
loving wife, and mother of my wonderful Alexandra, Therese Alégroth. You
have been my rock and the person I could always rely on when times were
tough. Thanks also go to my mother Anette, father Tomas and sister Mathilda
for believing in me and for their sacrifices to ensure that I could pursue this
dream. Further, I want to thank my friends for always being there and I hope
that one day, perhaps after reading my thesis, that you will understand what
I do for a living.

I also want to thank my industrial collaborators, in particular the staff
at Saab AB, Michel Nass, the staff at Inceptive, Geoffrey Bache, the Soft-
ware Center and everyone else that has helped, supported and believed in my
research.

This research has been conducted in a joint research project financed by
the Swedish Governmental Agency of Innovation Systems (Vinnova), Chalmers
University of Technology and Saab AB. My studies were also supported by the
Swedish National Research School for Verification and Validation (SWELL),
funded by Vinnova.

vii

List of Publications

Appended papers

This thesis is primarily supported by the following papers:

1. E. Börjesson, R. Feldt, “Automated System Testing using Visual GUI
Testing Tools: A Comparative Study in Industry”
Proceedings of the 5th International Conference on Software Testing
Verification and Validation (ICST’2012), Montreal, Canada, April 17-
21, 2013 pp. 350-359.

2. E. Alégroth, R. Feldt, H. H. Olsson, “Transitioning Manual System Test
Suites to Automated Testing: An Industrial Case Study”
Proceedings of the 6th International Conference on Software Testing
Verification and Validation (ICST’2013), Luxenbourg, March 18-22, 2013.

3. E. Alégroth, R. Feldt, L. Ryrholm, “Visual GUI Testing in Practice:
Challenges, Problems and Limitations”
Published in the Empirical Software Engineering Journal, 2014.

4. E. Alégroth, R. Feldt, P. Kolström, “Maintenance of Automated Test
Suites in Industry: An Empirical study on Visual GUI Testing”
In submission.

5. E. Alégroth, R. Feldt, “On the Long-term Use of Visual GUI Testing
in Industrial Practice: A Case Study”
In submission.

6. E. Alégroth, G. Zebao, R. Oliviera, A. Memon, “Conceptualization and
Evaluation of Component-based Testing Unified with Visual GUI Test-
ing: An Empirical Study”
Proceedings of the 8th International Conference on Software Testing
Verification and Validation (ICST’2015), Graz, Austria, April 13-17,
2015

7. E. Alégroth, J. Gustafsson, H. Ivarsson, R. Feldt, “Replicating Rare
Software Failures with Visual GUI Testing: An Industrial Success Story”
In submission.

ix

x

Other papers

The following papers are published but not appended to this thesis, either due
to overlapping contents to the appended papers, contents not related to the
thesis or because the contents are of less priority for the thesis main conclu-
sions.

1. E. Börjesson, R. Feldt, “Structuring Software Engineering Case Studies
to Cover Multiple Perspectives”
Proceedings of the 21st International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE’2011), Miami Beach, Florida,
USA, July 1-3, 2011.

2. E. Alégroth, M. Nass, H. H. Olsson, “JAutomate: a Tool for System-
and Acceptance-test Automation”
Proceedings of the 6th International Conference on Software Testing,
Verification and Validation (ICST’2013), Luxenbourg, March 18-22, 2013.

3. E. Alégroth, “Random Visual GUI Testing: Proof of Concept”
Proceedings of the 23rd International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE’2013), Boston, Massachusetts,
USAs, June 27-29, 2013.

4. G. Liebel, E. Algroth and R.Feldt, “State-of-Practice in GUI-based Sys-
tem and Acceptance Testing: An Industrial Multiple-Case Study”
Proceedings of the 39th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), 2013.

5. E. Algroth and R.Feldt, “Industrial Application of Visual GUI Testing:
Lessons Learned”
Chapter of the book Continuous Software Engineering published by Springer,
2014.

6. E. Alégroth, G. Bache, E. Bache, “On the Industrial Applicability of
TextTest: An Empirical Case Study”
Proceedings of the 8th International Conference on Software Testing
Verification and Validation (ICST’2015), Graz, April 13-17, 2015

7. R. Oliviera, E. Alégroth, G. Zebao, A. Memon, “Definition and Evalu-
ation of Mutation Operators for GUI-level Mutation Analysis”
Proceedings of the 10th Mutation Workshop (Mutation’2015), Graz, Aus-
tria, April 13, 2015

Statement of contribution

In all listed papers, the first author was the primary contributor to the research
idea, design, data collection, analysis and/or reporting of the research work.

Contents

Abstract v

Acknowledgments vii

List of Publications ix

1 Introduction 1
1.1 Introduction . 1
1.2 Software engineering and the need for testing 3

1.2.1 Software Testing . 3
1.2.2 Automated Software Testing 5
1.2.3 Automated GUI-based Software Testing 7

1.2.3.1 1st generation: Coordinate-based 7
1.2.3.2 2nd generation: Component/Widget-based . . 7
1.2.3.3 3rd generation: Visual GUI Testing 9
1.2.3.4 Comparison . 11

1.3 Research problem and methodology 11
1.3.1 Problem background and motivation for research 13
1.3.2 Thesis research process 16
1.3.3 Research methodology 17
1.3.4 Case studies . 18

1.3.4.1 Interviews . 20
1.3.4.2 Workshops . 21
1.3.4.3 Other . 22

1.3.5 Experiments . 24
1.3.6 Data analysis . 24

1.4 Overview of publications . 27
1.4.1 Paper A: Static evaluation 27
1.4.2 Paper B: Dynamic evaluation 28
1.4.3 Paper C: Challenges, problems and limitations 30
1.4.4 Paper D: Maintenance and return on investment 31
1.4.5 Paper E: Long-term use 33
1.4.6 Paper F: VGT-GUITAR 35
1.4.7 Paper G: Failure replication 37

1.5 Contributions, implications and limitations 38
1.5.1 Applicability of Visual GUI Testing in practice 39
1.5.2 Feasibility of Visual GUI Testing in practice 42

xi

xii CONTENTS

1.5.3 Challenges, problems and limitations with Visual GUI
Testing in practice . 47

1.5.4 Solutions to advance Visual GUI Testing 47
1.5.5 Implications . 48

1.5.5.1 Implications for practice 48
1.5.5.2 Future research 49

1.5.6 Threats and limitations of this research 51
1.5.6.1 Internal validity 51
1.5.6.2 External validity 52
1.5.6.3 Construct validity 52
1.5.6.4 Reliability/conclusion validity 53

1.6 Thesis summary . 53

2 Paper A: Static evaluation 55
2.1 Introduction . 56
2.2 Related Work . 57
2.3 Case Study Description . 59

2.3.1 Pre-study . 60
2.3.2 Industrial Study . 62

2.4 Results . 64
2.4.1 Results of the Pre-study 64
2.4.2 Results of the industrial study 68

2.5 Discussion . 71
2.6 Conclusion . 73

3 Paper B: Dynamic evaluation 75
3.1 Introduction . 76
3.2 Related Work . 77
3.3 Research methodology . 78

3.3.1 Research site . 79
3.3.2 Research process . 80

3.4 Results and Analysis . 81
3.4.1 Pre-transition . 81
3.4.2 During transition . 83

3.4.2.1 VGT test suite maintenance for improvement . 85
3.4.2.2 VGT test suite maintenance required due to

SUT change 86
3.4.3 Post-transition . 88

3.5 Discussion . 91
3.5.1 Threats to validity . 94

3.6 Conclusion . 94

4 Paper C: Challenges, problems and limitations 97
4.1 Introduction . 98
4.2 Background and Related work 100
4.3 Industrial case study . 102

4.3.1 The industrial projects 103
4.3.2 Detailed data collection in Case 1 105
4.3.3 Detailed data collection in Case 2 107

CONTENTS xiii

4.3.4 The VGT suite . 108
4.4 Results and Analysis . 110

4.4.1 Test system related CPLs 111
4.4.1.1 Test system version 112
4.4.1.2 Test system (General) 115
4.4.1.3 Test system (Defects) 117
4.4.1.4 Test company specific CPLs 118
4.4.1.5 Test system (Environment) 119

4.4.2 Test tool related CPLs 119
4.4.2.1 Test tool (Sikuli) related CPLs 119
4.4.2.2 Test application 124

4.4.3 Support software related CPLs 125
4.4.4 CPL Summary . 127
4.4.5 Potential CPL solutions 129
4.4.6 Defect finding ability, development cost and return on

investment (ROI) . 131
4.5 Discussion . 138

4.5.1 Challenges, Problems, Limitations and Solutions 138
4.5.2 Defects and performance 140
4.5.3 Threats to validity . 142

4.6 Conclusions . 143

5 Paper D: Maintenance and return on investment 145
5.1 Introduction . 146
5.2 Related work . 147
5.3 Methodology . 148

5.3.1 Phase 1: Interview study 149
5.3.2 Phase 2: Case study Setting 150
5.3.3 Phase 2: Case study Procedure 153

5.4 Results and Analysis . 155
5.4.1 Quantitative results . 156

5.4.1.1 Modeling the cost 159
5.4.2 Qualitative results . 161

5.4.2.1 Phase 1: Interview results 161
5.4.2.2 Phase 2: Observations 163
5.4.2.3 Phase 2: Factors that affect the maintenance

of VGT scripts 164
5.5 Discussion . 168

5.5.1 Threats to validity . 170
5.6 Conclusions . 171

6 Paper E: Long-term use 173
6.1 Introduction . 174
6.2 Related work . 176
6.3 Methodology . 177

6.3.1 Case company: CompanyX 177
6.3.2 Research design . 179

6.4 Results and Analysis . 184
6.4.1 Results for RQ1: VGT adoption 184

xiv CONTENTS

6.4.2 Results for RQ2: VGT benefits 185
6.4.3 Results for RQ3: VGT challenges 187
6.4.4 Results for RQ4: VGT alternatives 189
6.4.5 Quantification of the Qualitative Results 192

6.5 Guidelines for adoption and use of VGT in industrial practice . 194
6.5.1 Adoption of VGT in practice 196
6.5.2 Use of VGT in practice 197
6.5.3 Long-term use of VGT in practice 198

6.6 Discussion . 199
6.6.1 Threats to Validity . 201

6.7 Conclusions . 202
6.8 Appendix A: Interview Questions 203

7 Paper F: VGT-GUITAR 205
7.1 Introduction . 206
7.2 Background and Motivation . 207
7.3 Methodology . 209

7.3.1 Experiment: Fault detection and False results 209
7.3.2 Case study: Applicability in practice 213

7.4 Results and Analysis . 214
7.4.1 Experiment . 214
7.4.2 Case study . 216

7.5 Discussion . 220
7.5.1 Threats to Validity . 221

7.6 Related Work . 222
7.7 Conclusions . 223

8 Paper G: Failure replication 225
8.1 Failure replication . 226
8.2 Success story acquisition . 226
8.3 Success story at Saab . 227
8.4 Discussion . 230
8.5 Lessons learnt . 232

Bibliography 233

Chapter 1

Introduction

1.1 Introduction

Today, software is ubiquitous in all types of user products, from software ap-
plications to cars, mobile applications, medical systems, etc. Software allows
development organizations to broaden the number of features in their prod-
ucts, improve the quality of these features and provide customers with post-
deployment updates and improvements. In addition, software has shortened
the time-to-market in many product domains, a trend driven by the market
need for new products, features and higher quality software.

However, these trends place new time constraints on software develop-
ment organizations that limit the amount of requirements engineering, devel-
opment and testing that can be performed on new software [1]. For testing,
these time constraints imply that developers can no longer verify and vali-
date the software’s quality with manual test practices since manual testing is
associated with properties such as high cost, tediousness and therefore error-
proneness [2–7]. These properties are a particular challenge in the context
of changing requirements where the tests continuously need to be rerun for
regression testing [8, 9].

Automated testing has been suggested as the solution to this challenge since
automation allows tests to be run more frequently and at lower cost [4, 7, 10].
However, most automated test techniques have prerequisites that prohibit their
use on software written in certain programming languages, for certain oper-
ating systems, platforms, etc. [4, 11–13]. Additionally, most automated test
techniques operate on a lower level of system abstraction, i.e. against the
backend of the system. One such, commonly used, low-level test technique is
automated unit testing [14]. Whilst unit tests are applicable to find defects
in individual software components, its use for system and acceptance testing
is still a subject of ongoing debate [15, 16]. Test techniques exist for auto-
mated system and acceptance testing that interact with the system under test
(SUT) through hooks into the SUT or its GUI. However, these techniques do
not verify that the pictorial GUI, as shown to the user, behaves or appears
correctly. These techniques therefore have limited ability to fully automate
manual, scenario-based, regression test cases, in the continuation of this the-
sis referred to as manual test cases. Consequently, industry is in need of a

1

2 CHAPTER 1. INTRODUCTION

flexible and GUI-based test automation technique that can emulate human
tester behavior to mitigate the challenges associated with current manual and
automated test techniques.

In this thesis we introduce and evaluate Visual GUI Testing (VGT). VGT
is a term we have defined that encapsulates all tools that use image recog-
nition to interact with a SUT’s functionality through the bitmaps shown on
the SUT’s pictorial GUI. These interactions are performed with user emu-
lated keyboard and mouse events that make VGT applicable on almost any
GUI-driven application and to automate test cases that previously had to be
performed manually. Consequently, VGT has the properties that software in-
dustry is looking for in a flexible, GUI-based, automated test technique since
the technique’s only prerequisite is that a SUT has a GUI. A prerequisite that
only limits the technique’s applicability and usefulness for, for instance, server
or other backend software.

However, at the start of this thesis work, the body of knowledge on VGT
was limited to analytical research results [17] regarding VGT tools, i.e. Trig-
gers [18], VisMap [19] and Sikuli [20]. Hence, no empirical evidence existed
regarding the technique’s applicability or feasibility of use in industrial prac-
tice. Applicability that, in this thesis, refers to factors such as a test tech-
nique’s defect-finding ability, usability for regression, system and acceptance
testing, learnability and flexibility of use for different types of GUI-based soft-
ware. Feasibility, in turn, refers to the long-term applicability of a technique,
including feasible development and maintenance costs, usability under strict
time constraints and suitable time until the technique provides positive return
on investment (ROI). Empirical evidence on these factors are key to under-
stand the real life complexities of using the technique, to build best practices
and to advance its use in industrial practice [17, 21]. However, such evidence
can only be acquired through an incremental process that evaluates the tech-
nique from several perspectives and different industrial contexts. This the-
sis work was therefore performed in Swedish software industry, with different
projects, VGT tools and research techniques to fulfill the thesis research objec-
tive. Hence, to acquire evidence for, or against, the applicability and feasibility
of adoption, use and viability of VGT in industrial practice, including what
challenges, problems and limitations that are associated with these activities.
Work that consequently resulted in an overall understanding of the current
state-of-practice of VGT, what impedes its continued adoption and a final, yet
positive, conclusion regarding the long-term viability of VGT in industrial use.

The results presented in this introductory chapter (Chapter 1) are struc-
tured as follows. First, an introduction is given in Section 1.1 followed by
a background to this research, including; manual, automated and automated
GUI-based testing. Section 1.3 then presents the research problem, questions
and the methodology. This section also details the different research methods
that were used and how the included papers contribute to answer the thesis
research questions. An overview, and summaries, of the included papers are
then given in Section 1.4. Section 1.5 then presents the syntheses of included
papers and finally the thesis introduction is concluded in a summary in Section
1.6.

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 3

1.2 Software engineering and the need for test-
ing

Software engineering is the application of engineering best practices in a struc-
tured process to design, develop and maintain software of high quality [22].
Several software development processes have been defined such as plan-driven,
incremental and agile development processes [23, 24]. These processes can be
divided into three fundamental activities: requirements engineering, develop-
ment (design and implementation) and verification and validation.

Requirements engineering refers to the activity of elicitation, specifica-
tion and modeling of the software’s requirements, i.e. the needs of the cus-
tomer/user. Hence, features, functions and qualities that the developed soft-
ware must include [25, 26]. In turn, development is the activity of designing
and realizing the requirements in software that fulfills the user’s needs. Finally,
verification and validation, traditionally, is the activity of evaluating that the
developed software conforms to the requirements [1], most commonly achieved
through testing.

Tests for verification and validation are therefore a tightly coupled coun-
terpart to requirements [27]. Hence, whilst the quality of a software system is
determined by how well each process activity is performed, it is through test-
ing that this quality is measured. Measurements that can be taken throughout
the development process, i.e. early with reviews of documents or code or late
with customer acceptance tests. Testing is therefore an essential activity in all
software engineering, regardless of process or development objective.

1.2.1 Software Testing

Software testing for verification and validation is a core, but also costly, activity
that can make up for 20-50 percent of the cost of a software development
project [1, 28, 29]. Verification is defined as the practice of assuring that the
SUT conforms to its requirements, whilst validation is defined as the practice
of assuring that the SUT conforms to the requirements and fulfills the user’s
needs [25,26].

Pictorial GUI

GUI model

Bitmaps
Hooks into:

GUI API/Toolkit
(GUI) Source code/

architecture

System
core

SW architecture
Technical interfaces

SW components

Regression
system and
acceptance

testing
Front-end

Back-end

Visual GUI Testing

Component/Widget/
Tag-based GUI-

testing

Unit-testing and
integration testing

System
view

System
layers

System
components

Manual
testing

Automated
testing

Reviews,
unit testing

and
integration

testing
Classes

Functions/methods

Exploratory testing

Figure 1.1: Theoretical, layered, model of a System and the manual/automated
techniques generally used to test the different layers.

4 CHAPTER 1. INTRODUCTION

Testing for the purpose of verification can be split into three types; unit,
integration and system testing [30], which are performed on different levels
of system abstraction [16, 26, 31] as shown in Figure 1.1. A unit test verifies
that the behavior of a single software component conforms to its low-level
functional requirement(s) and is performed either through code reviews or
more commonly through automated unit tests [9, 11, 14, 15, 32–34]. In turn,
integration tests verify the conformance of several components’ interoperability
between each other and across layers of the SUT’s implementation [16, 30].
Components can in this context be single methods or classes but also hardware
components in embedded systems. Finally, system tests are, usually, scenario-
based manual or automated tests that are performed either against the SUT’s
technical interfaces or the SUT’s GUI to verify that the SUT, as a whole [30],
conforms to its feature requirements [35–37]. However, scenario-based tests
are also used to validate the conformance of a SUT in acceptance tests that
are performed either by, or with, the SUT’s user or customer [35–38]. The
key difference between system and acceptance test scenarios is therefore how
representative they are of the SUT’s real-world use, i.e. the amount of domain
knowledge that is embedded in the test scenario.

Testing is also used to verify that a SUT’s behavior still conforms to the re-
quirements after changes to the SUT, i.e. regression tests. Regression tests can
be performed with unit, integration, system or acceptance test cases that have
predefined inputs for which there are known, expected, outputs [9]. Inputs and
outputs that are used to stimulate and assert various states of the SUT. As
such, the efficiency of a regression test suite is determined by the tests’ cover-
age of the SUT’s components, features, functions, etc [34,39], i.e. the amount
of a SUT’s states that are stimulated during test execution. This also limits
regression tests to finding defects in states that are explicitly asserted, which
implies that the test coverage should be as high as possible. However, for
manual regression tests, high coverage is costly, tedious and error-prone [2–7],
which is the primary motivation why automated testing is needed and should
be used on as many different levels of system abstraction as possible [16, 40].
Especially in the current market where the time available for testing is shrink-
ing due to the demands for faster software delivery [1]. Demands that have
transformed automated testing from “want” to a “must” in most domains.

However, whilst lower levels of system abstraction are well supported by
automated regression test techniques, tools and frameworks, there is a lack of
automated techniques for testing through the pictorial GUI, i.e. the highest
level of system abstraction. Thus, a lack of support that presents the key
motivator for the research presented in this thesis.

To cover any lack of regression test coverage, exploratory testing, defined
as simultaneous learning, test design and test execution, is commonly used
in industrial practice [41, 42]. The output of exploratory testing is a defect
but also the scenario(s) that caused the defect to manifest, i.e. scenarios that
can be turned into new regression tests. This technique has been found to be
effective [43] but has also been criticized for not being systematic enough for
fault replication. Further, the practice requires decision making to guide the
testing and is therefore primarily performed manually, despite the existence
of a few automated exploratory testing tools, e.g. CrawlMan [44]. However,
automated exploratory testing is still an unexplored research area that war-

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 5

rants more research, including automated GUI-based exploratory testing since
it could help mitigate the challenges associated with manual verification and
validation, e.g. cost.

In summary, testing is used in industrial practice on different levels of
system abstraction for verification and validation of a SUT’s conformance to its
requirements. However, much of this testing is manual, which is costly, tedious
and error prone, especially for manual regression testing, which is suggested as
solvable with automated testing. More research is therefore warranted into new
automated test techniques and in particular techniques that operate against
the SUT’s highest level of system abstraction, i.e. the pictorial GUI.

1.2.2 Automated Software Testing

There are two key motivators for the use of automated testing in industrial
practice; (1) to improve software quality and (2) to lower test related costs [40].

Software quality : Automated tests help raise software quality through
higher execution speed than manual tests that allow them to be executed
more frequently [16, 40]. Higher test frequency provides faster feedback to
the developers regarding the quality of the software and enables defects to
be caught and resolved earlier. In turn, quick defect resolution lowers the
project’s development time and mitigates the chance of defect propagation
into customer deliveries. Early defect detection also mitigates synergy effects
to occur between defects, for instance that two or more defects cause a joint
failure which root-cause therefore becomes more difficult and costly to find.

However, a prerequisite for any automated test technique to be used fre-
quently is that the tests have reasonable test execution time. This prerequisite
is particularly important in contexts where the tests are used for continuous
integration, development and deployment [45]. Hence, contexts where the
test suites should be executed each time new code is integrated to the SUT,
e.g. on commit, which cause the tests to set the pace for the highest possi-
ble frequency of integration. This pacing is one reason why automated unit
tests [9, 11, 14, 15, 32–34] are popular in industrial practice since several hun-
dred unit tests can be executed in a matter of minutes. In addition, unit tests
are popular in agile software development companies, where they are used
to counteract regression defects [46] caused by change or refactoring that is
promoted by the process [47,48].

Lower cost : Automated testing is also used to lower the costs of testing
by automating tests, or parts of tests, that are otherwise performed manually.
However, there are still several costs associated with automated tests that need
to be considered.

First , all automated test techniques require some type of tool that either
needs to be acquired, bought and/or developed. Next, the intended users of the
tool need be given training or time to acquire knowledge and experience with
the tool and its technique before it can be used. Knowledge and experience
that might be more or less cumbersome to acquire dependent on the technique’s
complexity [40]. This complexity implies that techniques with high learnability
are more favorable from a cost perspective since they require less training.

Furthermore, adoption of test automation is associated with organizational
changes, e.g. new or changed roles, which adds additional costs, especially if

6 CHAPTER 1. INTRODUCTION

the organizational changes affect the company’s processes, e.g. due to changes
of the intended users’ responsibilities. Additionally, many automated test
techniques have prerequisites that prohibit their use to certain systems written
in specific programming languages, operating systems and platforms [4,11–13].
Therefore it is necessary to perform a pilot project to (1) evaluate if the new
technique is at all applicable for the intended SUT and (2) for what types of
tests the technique can be used. Thus a pilot project is an important activity
but also associated with a, sometimes substantial, cost. However, several of
these costs are often overlooked in practice and are thereby “hidden” costs
associated with any change to a software process.

Second , for established systems, and particularly legacy systems, a consid-
erable cost of adopting a new test technique is associated with the development
of a suitably large test suite that provides test coverage of the SUT. Hence,
since automated testing is primarily used for regression testing, test coverage,
as stated in Section 1.2.1, is required for the testing to be efficient and valuable
in finding defects.

However, this brings us to the third cost associated with automated test-
ing which is maintenance of test scripts. Maintenance constitutes a continuous
cost for all automated testing that grows with the size of the test suite. This
maintenance is required to keep the test scripts aligned with the SUT’s re-
quirements [49], or at least its behavior, to ensure that test failures are caused
by defects in the SUT rather than intended changes to the SUT itself, i.e.
failures referred to as false positives. However, larger changes to the SUT can
occur and the resulting maintenance costs can, in a worst case, become unrea-
sonable [12]. These costs can however be mitigated through engineering best
practices, e.g. modular test design [16, 40, 50]. However, best practices takes
time to acquire, for any technique, and are therefore often missing, also for
VGT.

Hence, these three costs must be compared together to the value provided
by the automated tests, for instance value in terms of defects found or to
the costs compared to alternative test techniques, e.g. manual testing. The
reason for the comparison is to identify the point in time when the costs of
automation break even with the alternatives, i.e. when return on investment
(ROI) is achieved. Hence, for any automated test technique to be feasible,
the adoption, development and maintenance costs must provide ROI and it
should do so as quickly as possible. Consequently, an overall view of costs,
value and other factors, e.g. learnability, adoptability and usability, is required
to provide an answer if a test automation technique is applicable and feasible
in practice. These factors were therefore evaluated during the thesis work to
provide industrial practitioners with decision support of when, how and why
to adopt and use VGT.

In summary, automated testing helps improve SUT quality and lower
project costs [40]. However, the costs of automated testing can still be sub-
stantial and must therefore be evaluated against other alternative techniques
to identify when and if the adoption of a new technique provides positive ROI.

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 7

1.2.3 Automated GUI-based Software Testing

Automated software testing has several benefits over manual testing, e.g. im-
proved test frequency, but there are also challenges, for instance, that most
techniques operate on a lower level of system abstraction. However, there is a
set of automated test techniques that operate against, or through, the SUT’s
GUI that can be used for higher level testing. To clarify the differences be-
tween these types of GUI-based testing techniques we have divided them into
three chronologically defined generations [51]. The difference between each
generation is how they interact with the SUT, i.e. with exact coordinates,
through hooks into the SUT’s GUI or image recognition. The following sec-
tion presents key properties of the three generations to provide the reader with
contextual information for the continuation of the thesis.

1.2.3.1 1st generation: Coordinate-based

1st generation GUI-based test automation uses exact coordinates on the screen
to interact with the SUT [3]. These coordinates are acquired by recording man-
ual interaction with the SUT and are then saved to scripts that can be replayed
for automated regression testing, which improves test frequency. However, the
technique is fragile, even minor changes to a GUI’s layout can cause an entire
test suite to fail, resulting in frequent and costly maintenance [3,52,53]. There-
fore, the technique has mostly been abandoned in practice but is commonly
integrated as one basic component into other test automation frameworks and
tools, e.g. JUnit [53] and Sikuli [54]. However, because of the technique’s
limited stand-alone use in practice it will not be discussed to any extent in
this thesis.

1.2.3.2 2nd generation: Component/Widget-based

2nd generation GUI-based testing tools stimulate and assert the SUT through
direct access to the SUT’s GUI components or widgets by hooks into the SUT,
e.g. into its GUI libraries or toolkits [12]. Synonyms for this technique are
Component-, Widget- or Tag-based GUI testing and is performed in industrial
practice with tools such as Selenium [55], QTP [56], etc.

These tools can achieve robust test case execution, e.g. few false test
results, due to the tools’ access and tight coupling to the SUT’s internal work-
ings, e.g. GUI events and components’ ID numbers, labels, etc. These GUI
events can also be monitored in a few tools to automatically synchronize the
test script with the SUT, which would otherwise require the user to manu-
ally specify synchronization points in the scripts, e.g. static delays or delays
based on GUI state transitions. Synchronization is a common challenge for all
GUI-based test techniques because the test scripts run asynchronously to the
SUT.

Another advantage of SUT access is that some of these tools can improve
test script execution time by forcing GUI state transitions and bypass cosmetic,
timed, events such as load screens, etc.

Further, most 2nd generation tools support record and replay, which lowers
test development costs. In addition, most tools support the user by managing
GUI components’ property data, e.g. ID numbers, labels, component types,

8 CHAPTER 1. INTRODUCTION

OK

Hello World

Var= Ok
[type = button,

ID = 2,
Label = "OK

X = 10,
Y = 5"]

Var = outField
[type = textfield,

ID = 4,
Label = "Hello World",

X = 10,
Y = 70]

Example GUI 2 Generation
pseudo code
nd GUI component data

click Ok
AssertLabel outField, "Hello World"

Figure 1.2: Pseudocode example of a 2nd generation test script for a simple ap-
plication where GUI components are identified through their properties (Tags),
in this case, associated with a user defined variable.

etc [57]. This functionality is required since these properties are unintuitive
without technical or domain knowledge, e.g. an ID number or component
type is not enough for a human to intuitively identify a component. How-
ever, combined, groups of properties allow the tester to distinguish between
components, exemplified with pseudocode in Figure 1.2.

Some 2nd generation tools, e.g. GUITAR [58], also support GUI ripping
that allow the tools to automatically extract GUI components, and their prop-
erties, from the SUT’s GUI and create a model over possible interactions with
the SUT. These models can then be traversed to generate scenarios of inter-
actions that can be replayed as test cases, a technique typically referred to
as model-based testing [59–63]. As such, provided that the interaction model
contains all GUI components, it becomes theoretically possible to automati-
cally achieve full feature coverage of the SUT since all possible scenarios of
interactions can be generated. However, in practice this is not possible since
the number of test cases grow exponentially with the number of GUI com-
ponents and length of test cases that makes it unreasonable to execute all of
them. This problem is referred to as the state-space explosion problem and is
common to most model-based testing tools [59]. One way to mitigate the prob-
lem is to limit the number of interactions per generated test scenario but this
practice also limits the tests’ representativeness of real world use and stifles
their ability to reach faulty SUT states.

Furthermore, because 2nd generation GUI-based tools’ interact with the
SUT through hooks into the GUI, these tests do not verify that the picto-
rial GUI conforms to the SUT’s requirements, i.e. neither that its appear-
ance is correct or that human interactions with it is possible. In addition,
the tools require these hooks into the SUT to operate, which restricts their
use to SUT’s written in specific programming languages and for certain GUI
libraries/toolkits. This requirement also limits the tools’ use for testing of
systems distributed over several physical computers, cloud based applications,
etc., where the SUT’s hooks are not accessible.

Another challenge is that the tools need to know what properties a GUI
component has to stimulate and assert its behavior. Standard components,
included in commonly used GUI libraries, e.g. JAVA Swing or AWT, are
generally supported by most tools. However, for custom built components, e.g.
user defined buttons, the user has to create custom interpreters or hooks for
the tools to operate. However, these interpreters need to be maintained if the
components are changed, which adds to the overall maintenance costs. Overall

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 9

maintenance costs that have been reported to, in some cases, be substantial
in practice [10,12,16,52].

However, there are also some types of GUI components that are difficult or
can not be tested with this technique, e.g. components generated at runtime,
since their properties are not known prior to execution of the system. As such,
there are several challenges associated with 2nd generation GUI-based testing
that limit the technique’s flexibility of use in industrial practice.

In summary, 2nd generation GUI-based testing is associated with quick and
often robust test execution due to their access to the SUT’s inner workings.
However, this access is a prerequisite for the technique’s use that also limits its
tools to test applications written is certain programming languages, with cer-
tain types of components, etc. As a consequence, the technique lacks flexibility
in industrial use. Further, the technique does not operate on the same level of
system abstraction as a human user and does therefore not verify that the SUT
is correct from a pictorial GUI point of view, neither in terms of appearance
or behavior. Additionally, the technique is associated with script maintenance
costs that can be extensive and in worst cases infeasible [10,12,16,52]. Conse-
quently, 2nd generation GUI-based testing does not fully fulfill the industry’s
needs for a flexible and feasible test automation technique.

1.2.3.3 3rd generation: Visual GUI Testing

3rd generation GUI-based testing is also referred to as Visual GUI Testing
(VGT) [64], and is defined as a tool driven automated test technique where im-
age recognition is used to interact with, and assert, a system’s behavior through
its pictorial GUI as it is shown to the user in user emulated system or accep-
tance tests. The foundation for VGT was established in the early 90s by a tool
called Triggers [18], later in the 90s accompanied by a tool called VisMap [19],
which both supported image recognition based automation. However, at the
time, lacking hardware support for the performance heavy image recognition
algorithms made these tools unusable in practice [65]. Advances in hardware
and image recognition algorithm technology have now mitigated this chal-
lenge [66] but it is still unknown if VGT, as a technique, is mature enough
for industrial use. Thus providing one motivation the work presented in this
thesis.

Several VGT tools are available in practice, both open source; Sikuli [20],
and commercial; JAutomate [67], EggPlant [68] and Unified Functional Test-
ing (UFT) [56], each with different benefits and drawbacks due to the tools’
individual features [67]. However, common to all tools is that they use image
recognition to drive scripts that allow them to be used on almost any GUI-
driven application, regardless of implementation, operating system or even
platform. As a consequence, VGT is associated with a high degree of flexi-
bility. The technique does however only have limited usefulness for non-GUI
systems, e.g. server-applications.

VGT scripts are written, or recorded, as scenarios that contain methods
which are usually synonyms for human interactions with the SUT, e.g. mouse
and keyboard events, and bitmap images. These images are used by the tools’
image recognition algorithms to stimulate and assert the behavior of SUT
through its pictorial GUI, i.e. in the same way as a human user. Consequently,

10 CHAPTER 1. INTRODUCTION

OK

Hello World

Example GUI 3 Generation
(VGT) pseudo code

rd

click

AssertExists

OK

Hello World

Figure 1.3: Pseudocode example of 3rd generation (VGT) test case for a sim-
ple application. GUI components are associated with the application’s GUI
component images (bitmaps).

VGT scripts are generally intuitive to understand, also for non-technical stake-
holders, since the scripts’ syntax is relatable to how the stakeholders would
themselves interact with the SUT [20], e.g. click on a target represented by
a bitmap and type a text represented by a string. This intuitiveness also
provides VGT with high learnability also by technically awkward users [65].

A pseudo-code VGT script example is shown in Figure 1.3 that performs
the same interactions as the example presented for 2nd generation GUI-based
testing, presented in Figure 1.2, for comparison.

Conceptually, image recognition is performed in two steps during VGT
script playback. First, the SUT’s current GUI state is captured as a bitmap,
e.g. in a screenshot of the computers desktop, which is sent together with
the sought bitmap from the VGT script to the image recognition algorithm.
Second, the image recognition algorithm searches for the sought bitmap in the
screenshot and if it finds a match it returns the coordinates for the match that
are then used to perform an interaction with the SUT’s GUI. Alternatively,
if the image recognition fails, a false boolean is returned or an exception is
raised.

Different VGT tools use different algorithms but most algorithms rely on
similarity-based matching which means that a match, i.e. sought bitmap, is
found if it is within a percentile margin between the identified and sought
bitmap image [20]. This margin is typically set to 70 to 80 percent of the
original image to counteract failures due to small changes to a GUI’s appear-
ance, e.g. change of a GUI bitmap’s color tint. However, similarity-based
matching does not prevent image recognition failure when bitmaps are resized
or changed completely.

Additionally, VGT scripts, similar to 1st and 2nd generation scripts, need
to be synchronized with the SUT’s execution. Synchronization in VGT is
performed with built in functionality or methods that wait for a bitmap(s) to
appear on the screen before the script can proceed. However, these methods
also make VGT scripts slow since they cannot execute quicker than the state
transitions of the GUI, which is a particular challenge for web-systems since
waits also need to take network latency into account.

In summary, VGT is a flexible automated GUI-based test technique that
uses tools with image recognition to interact and assert a SUT’s behavior
through its pictorial GUI. However, the technique’s maturity is unknown and
this thesis therefore aims to evaluate if VGT is applicable and feasible in
industrial practice.

1.3. RESEARCH PROBLEM AND METHODOLOGY 11

1.2.3.4 Comparison

To provide a general background and overview of the three generations of
automated GUI-based testing, some of their key properties have been presented
in Table 1.1. The table shows which properties that each technique has (“Y”)
or not (“N”) or if a property is support by some, but not all, of the technique’s
tools (“S”). These properties were acquired during the thesis work as empirical
results or through analysis of related work. However, they are not considered
to be part of the thesis main contributions even though they support said
contributions.

Several properties are shared by all techniques. For instance, they can
all be used to automate manual test cases but only VGT tools also support
bitmap assertions and user emulation and it is therefore the only technique that
provides results of equal quality to manual tests. Further, all three techniques
are perceived to support daily continuous integration and all techniques require
the scripts to be synchronized with the SUT’s execution. Finally, none of the
techniques are perceived as replacements to manual testing since all of the
techniques are designed for regression testing and therefore only find defects
in system states that are explicitly asserted. In contrast, a human can use
cognitive reasoning to determine if new, previously unexplored, states of the
SUT are correct. Consequently, a human oracle [69] is required to judge if a
script’s outcome is correct or not.

Other properties of interest regard the technique’s robustness to change.
For instance, both 2nd and 3rd generation tools are robust to GUI layout
change, assuming, for the 3rd generation, that the components are still shown
on the screen after change. In contrast, 1st generation tools are fragile to this
type of change since they are dependent on the GUI components’ location
being constant.

However, 1st generation tools, and also 3rd generation tools, are robust to
changes to the SUT’s GUI code whilst 2nd generation tools are not, especially
if these changes are made to custom GUI components, the GUI libraries or
GUI toolkits [12].

Finally, 1st and 2nd generation tools are robust to changes to the GUI
components’ bitmaps since none of the techniques care about the GUI’s ap-
pearance. In contrast, 3rd generation tools fail if either the appearance or the
behavior of the SUT is incorrect.

Consequently, the different techniques have different benefits and draw-
backs that are perceived to make the techniques more or less applicable in
different contexts.

1.3 Research problem and methodology

In this section, a summary of the background and the motivation for the
research performed in this thesis work are presented. These are based on
the challenges and gaps in knowledge and tooling presented in Sections 1.1 to
1.2.3.4. Additionally, the research objective is presented and broken down into
four specific research questions that the thesis work aimed to answer through
an incremental research process that is also presented. Finally, the research
methodology and research methods used during the thesis work are discussed.

12 CHAPTER 1. INTRODUCTION

Property 1st

Gen.
2nd

Gen.
3rd

Gen.
Independent of SUT platform N N Y
Independent of SUT programming language Y S Y
Non-intrusive test execution N S Y
Emulates human user behavior Y N Y
Open-source tool alternatives Y Y Y
Supports manual test case automation Y Y Y
Supports testing of custom GUI components Y S Y
Supports bitmap-based assertions N S Y
Supports testing of distributed systems Y S Y
Supports daily continuous integration Y Y Y
Robust to GUI layout change N Y Y
Robust to system code change Y N Y
Robust to bitmap GUI component change Y Y N
Support script recording (as opposed to manual
scripting)

Y Y S

Script execution time independent of SUT perfor-
mance

N N N

Replacement of other manual/automatic test
practices

N N N

Table 1.1: The positive and negative properties of different GUI-based test
techniques. All properties have been formulated such that a “Y” indicates that
the property is supported by the technique. “N” indicates that the property is
not supported by the technique. “S” indicates that some of the technique’s tools
supports the property, but most don’t.

1.3. RESEARCH PROBLEM AND METHODOLOGY 13

1.3.1 Problem background and motivation for research

Background: Testing is the primary means by which companies verify and
validate (V&V) their software. However, the costs of V&V ranges between 20-
50 percent of the total costs associated with a software development project [1,
28,29], which is a challenge that can be contributed to the extensive industrial
use of manual, tedious, time consuming, and therefore error prone V&V prac-
tices [2–7]. Automated testing is generally proposed as the solution to this
challenge, since automated test scripts execute systematically each time and
with reduced human effort and cost [40]. However, this proposition presents
new challenges for software development companies, such as what automated
testing do they need, how is it performed and how does it provide value?

The most common type of automated testing in practice is automated
unit testing [14, 33], which has been shown to be effective to find software
defects. However, unit tests operate on a low level of system abstraction
and they have therefore been debated to be ill suited for V&V of high level
requirements [15,16]. Automated unit testing therefore has a place in software
development practice but should be complemented with test techniques also
on higher levels of system abstraction to provide full automated coverage of
the SUT [16]. For GUI-driven software this also includes automated testing of
the pictorial GUI as shown to the user.

To acquire GUI automation coverage, many companies use 2nd generation
GUI-based testing for automated system testing, for instance with the tool
Selenium [55]. However, these tools interact with the SUT by hooking into
its GUI libraries, toolkits or similar and therefore do not verify that human
interaction with the SUT’s pictorial GUI can be performed as expected [51].
Such verification requires an automated test technique that can operate on the
same level of abstraction and with the same confidence and results as a human
user.

In addition, most automated test techniques’ are restricted to be used on
SUTs that fulfill the tools’ prerequisites, such as use of specific programming
languages, platforms, interfaces for testing etc [4, 11–13]. These prerequisites
are a particular challenge for legacy, or distributed, systems that are either
not designed to support automated testing or lack the necessary interfaces
for test automation. As a consequence, industry is in need of a flexible test
automation technique with less, or easily fulfilled, prerequisites.

Further, the view that automated testing lowers test related cost is only
partially true because test automation is still associated “hidden” costs and,
in particular, maintenance costs [10, 12, 16, 40, 52]. Therefore, adoption of
automated testing can lower the total development cost of a project by enabling
faster feedback to developers that leads to faster defect resolution, but test
related costs still remain or can even increase. As such, to fulfill industry’s
need for a flexible GUI-based test automation technique, a technique must be
identified that is feasible long-term and which preferably provides quick ROI
compared to manual testing. Such a technique must also provide value in
terms of, at least, equal defect finding ability as manual testing and with low
test execution time to facilitate frequent test execution.

Motivation: In theory, Visual GUI Testing (VGT) fulfills the industrial
need for a flexible, GUI-based, automated test technique due to its unprece-

14 CHAPTER 1. INTRODUCTION

Paper Objective RQ1 RQ2 RQ3 RQ4
A Static evaluation of VGT in

practice
X X X

B Dynamic evaluation of VGT in
practice

X X X

C Challenges, problems and limita-
tions with VGT in practice

X X X

D Maintenance and return on in-
vestment of VGT

X X

E Long-term use of VGT in prac-
tice

X X X

F Model-based VGT combined
with 2nd generation GUI-based
testing

X X

G Failure replication X X

Table 1.2: Mapping of research questions to the individual publications pre-
sented in this thesis.

dented ability to emulate human interaction and assertions through a SUT’s
pictorial GUI, an ability provided by the technique’s use of tools with image
recognition. However, the technique’s body of knowledge is limited, in partic-
ular in regards to empirical evidence for its applicability and feasibility of use
in industrial practice. This lack of knowledge is the main motivator for the
research presented in this thesis since such knowledge is required as decision
support for industrial practitioners to evaluate if they should adopt and use
the technique. Consequently, this research is motivated by an industrial need
for a flexible and cost-effective GUI-based test automation technique that can
emulate end user behavior with at least equal defect-finding ability as manual
testing but with lower test execution time. From an academic point of view,
the research is also motivated since it provides additional empirical evidence
from industry regarding the adoption, use and challenges related to automated
testing.

Research Objective: The objective of this thesis is to identify empirical
evidence for, or against, the applicability and feasibility of VGT in industrial
practice. Additionally, to identify what challenges, problems and limitations
that impede the technique’s short and long-term use. Hence, an overall view
of the current state-of-practice of VGT, including alternative and future ap-
plication areas for the technique. Consequently, knowledge that can be used
for decision support by practitioners and input for future academic research.

Research questions: The research objective was broken down into four
research questions presented below together with brief descriptions of how they
were answered. Further, Table 1.2 presents a mapping between each research
question and the papers included, and presented later, in this thesis.

RQ1: What key types of contexts and types of testing is Visual GUI Test-
ing generally applicable for in industrial practice?

This question addresses the rudimentary capabilities of VGT, i.e. can the tech-

1.3. RESEARCH PROBLEM AND METHODOLOGY 15

nique at all find failures and defects on industrial grade systems? Additionally,
it aims to identify support for what types of testing VGT is used for, e.g. only
regression testing of system and acceptance tests or exploratory testing as
well? This question also addresses if VGT can be used in different contexts
and domains, such as agile software development companies, for safety-critical
software, etc. Support for this question was acquired throughout the thesis
work but in particular in the studies presented in Chapters 2, 3, 4, 6 and 8,
i.e. Papers A, B, C, E and G.

RQ2: To what extent is Visual GUI Testing feasible for long-term use in
industrial practice?

Feasibility refers to the maintenance costs and return on investment (ROI)
of adoption and use of the technique in practice. This makes this question
key to determine the value and long-term industrial usability of VGT. Hence,
if maintenance is too expensive, the time to positive ROI may outweigh the
technique’s benefits compared to other test techniques and render the tech-
nique undesirable or even impractical in practice. This question also concerns
the execution time of VGT scripts to determine in what contexts the tech-
nique can feasibly be applied, e.g. for continuous integration? Support for
this research question was, in particular, acquired in three case studies at four
different companies, presented in Chapters 3, 5, and 6, i.e. Papers B, D and
E.

RQ3: What are the challenges, problems and limitations of adopting, us-
ing and maintaining Visual GUI Testing in industrial practice?

This question addresses if there are challenges, problems and limitations (CPLs)
associated with VGT, the severity of these CPLs and if any of them prohibit
the technique’s adoption or use in practice. Furthermore, these CPLs represent
pitfalls that practitioners must avoid and therefore take into consideration to
make an informed decision about the benefits and drawbacks of the technique,
i.e. how the CPLs might affect the applicability and feasibility of the tech-
nique in the practitioner’s context. To guide practitioners, this question also
includes finding guidelines for the adoption, use and long-term use of VGT in
practice.

Results to answer this question were acquired primarily from three case
studies that, fully or in part, focused on CPLs associated with VGT, presented
in Chapters 3, 4 and 6, i.e. Papers B, C and E.

RQ4: What technical, process, or other solutions exist to advance Visual
GUI Testing’s applicability and feasibility in industrial practice?

This question refers to technical or process oriented solutions that improve
the usefulness of VGT in practice. Additionally, this question aims to identify
future research directions to improve, or build upon, the work presented in
this thesis.

Explicit work to answer the question was performed in an academic study,
presented in Chapter 7, i.e. Paper F, where VGT was combined with 2nd gen-
eration technology to create a fully automated VGT tool. Additional support
was acquired from an experience report presented in Chapter 8 (Paper G)
where a novel VGT-based process was reported from industrial practice.

16 CHAPTER 1. INTRODUCTION

Paper A:
Static

evaluation

Paper B:
Dynamic

evaluation
Paper C: Challenges,

problems and
limitations

Paper D: Maintenance
costs

Paper E: Long-term use of VGT

Paper F: VGT-
GUITAR

Paper G: Fault
replication with

VGT

RQ1:
Applicability

RQ2:
Feasibility

RQ3:
CPLs

RQ4:
Advances

Paper G: Fault
replication with

VGT

Figure 1.4: A visualization of how the studies included in this thesis are con-
nected to provide support for the thesis four research questions.

1.3.2 Thesis research process

Figure 1.4 presents an overview of the incremental research process that was
used during the thesis work and how included research papers are connected.
These connections consist of research results or new research questions that
were acquired in a study that required, or warranted, additional research in
later studies.

The thesis work began with a static evaluation of VGT (Paper A) that pro-
vided initial support for the applicability and costs associated with VGT. Next,
VGT was evaluated dynamically in an industrial project (Paper B) where VGT
was adopted and used by practitioners. This study provided additional infor-
mation about the applicability and initial results about the feasibility of VGT.
In addition, challenges, problems and limitations (CPLs) were identified that
warranted future research that was performed in Paper C. Paper C concluded
that there are many CPLs associated with VGT but none that prohibit its
industrial use. Therefore, the thesis work proceeded with an evaluation of the
feasibility of VGT in an embedded study where results regarding the long-term
maintenance costs and return on investment (ROI) of VGT were acquired (Pa-
per D). These results were acquired through empirical work with an industrial
system (Static analysis) and interviews with practitioners that had used VGT

1.3. RESEARCH PROBLEM AND METHODOLOGY 17

for several months (Dynamic analysis). However, results regarding the long-
term feasibility of the technique were still missing, a gap in knowledge that
was filled by an interview study at a company that had used VGT for several
years (Paper E). Consequently, these studies provided an overall view of the
current state-of-practice of VGT. In addition they provided support to draw
conclusions regarding the applicability (RQ1) and feasibility (RQ2) of VGT
in practice but also what CPLs that are associated with the technique (RQ3).

Further, to advance state-of-practice, a study was performed where VGT
was combined with 2nd generation technology that resulted in a building block
for future research into fully automated VGT (Paper F)(RQ4). Additional
support for RQ4 was acquired from an experience report from industry (Paper
G) where a novel semi-automated exploratory test process based on VGT was
reported.

Combined, these studies provide results to answer the thesis four research
questions and a significant contribution to the body of knowledge of VGT and
automated testing.

1.3.3 Research methodology

A research methodology is a structured process that serves to acquire data
to fulfill a study’s research objectives [70]. On a high level of abstraction,
a research process can be divided into three phases: preparation, collection
and analysis (PCA). In the preparation phase the study’s research objectives,
research questions and hypotheses are defined, including research materials,
sampling of subjects, research methods are chosen for data collection, etc.
Next, data collection is performed that shall preferably be conducted with sev-
eral methods and/or sources of evidence to enable triangulation of the study’s
results and improve the research validity, i.e. the level of trust in the research
results and conclusions [70–72]. Finally, in the analysis phase, the acquired re-
search results are scrutinized, synthesized and/or equated to draw the study’s
conclusions that can be both positive or negative answers to a study’s research
question(s).

Some research methodologies deviate from the PCA pattern and are instead
said to have a flexible design. Flexible design implies that changes can be
made to the design during the study to, for instance, accommodate additional,
unplanned, data collection opportunities [17].

A researcher can create an ad hoc research methodology if required, but
several common methodologies exist that are used in software engineering re-
search, e.g. case studies [17], experiments [73] and action research [74].

Two research methodologies were used extensively during this thesis work:
case studies and experiments. This choice was motivated by the thesis re-
search questions and the studies’ available resources. Action research was,
for instance, not used because it requires a longitudinal study of incremen-
tal change to the studied phenomenon which makes it resource intensive and
places a larger requirement on the collaborating company’s commitment to
the study. Hence, a commitment that many companies are reluctant to give
to an immature research area such as VGT.

Research methodologies have different characteristics and thus, inherently,
provide different levels of research validity [72]. Validity is categorized in differ-

18 CHAPTER 1. INTRODUCTION

ent ways in different research fields but in this thesis it is categorized according
to the guidelines by Runeson and Höst [17], into the following categories:

� Construct validity - The suitability of the studied context to provide
valid answers to the study’s research questions,

� Internal validity - The strength of cohesion and consistency of collected
results.

� External validity - The ability to generalize the study’s results to other
contexts and domains, and

� Reliability/Conclusion validity - The degree of replicability of the
study’s results.

Case studies provide a deeper understanding of a phenomenon in its actual
context [17] and therefore have inherently high construct validity. In addition,
given that a case study is performed in a well chosen context with an ap-
propriate sample of subjects, it also provides results of high external validity.
However, case studies in software engineering are often performed in industry
and are therefore governed by the resources provided by the case company,
which limits researcher control and can negatively affect the results internal
validity.

In contrast, experiments [73] are associated with a high degree of researcher
control. This control is used to manipulate the studied phenomenon and ran-
domize the experimental sample to mitigate factors that could adversely affect
the study’s results. As such, experiments have inherent high internal validity
but it comes at the expense of construct validity since the studied phenomenon
is, by definition, no longer studied in its actual context. In addition, similar
to case studies, the external validity of experimental results depend on the
research sample.

Furthermore, research methodologies can be classified based on if they are
qualitative or quantitative [70], where case studies are associated with quali-
tative data [17], e.g. data from interviews, observations, etc., and experiments
are associated with quantitative data [73], e.g. measurements, calculations,
etc. These associations are however only a rule of thumb since many case stud-
ies include quantitative data to support the study’s conclusions [73] and exper-
iments often support their conclusions with qualitative observations. During
the thesis work, both types of data were extensively used to strengthen the
papers’, and the thesis, conclusions and contributions. This strength is pro-
vided by quantitative results’ ability to be compared between studies, whilst
qualitative data provides a deeper understanding of the results.

1.3.4 Case studies

A case study is defined as a study of a phenomenon in its contemporary con-
text [17, 71]. The phenomenon in its context is also referred to as the study’s
unit of analysis, which can be a practice, a process, a tool, etc., used in an
organization, company or similar context. Case studies are thereby a versa-
tile tool in software engineering research since they can be tailored to certain

1.3. RESEARCH PROBLEM AND METHODOLOGY 19

In
te

rv
ie

w
s

Do
cu

m
en

t
an

d
work

sh
op

san
aly

sis

Exploratory

Explanatory De
sc

rip
tiv

e

A

B

C

D

E

Experiment

F

Experience
report

G

X

TypeX

Legend

- Case study presented in Paper X

- Study of other type presented in Paper X

Y - Research method(s) used in Papers Xs

Figure 1.5: Visualization of the categorization of each of the included papers.

contexts or research questions and also support flexible design [17]. Addition-
ally, case studies can be performed with many different research methods, e.g.
interviews, observations, surveys, etc [17].

Further, case studies can be classified as single or multiple and holistic or
embedded case studies, where single/embedded refer to the number of contexts
in which the unit (holistic) or units (embedded) of analysis are studied [71].

Case study results are often anecdotal evidence, e.g. interviewees’ per-
ceptions of the research phenomenon, which makes triangulation an essential
practice to ensure result validity [17,71]. Further, case studies should be repli-
cable, which implies that all data collection and analysis procedures must be
systematic and thoroughly documented, for instance in the form of a case
study protocol [71], to establish a clear chain of evidence. A more detailed
discussion about analysis of qualitative data is presented in Section 1.3.6.

Case studies were the primary means of data collection for this thesis and
were conducted with, or at, software development companies in Sweden. These
companies include several companies in the Saab corporation, Siemens Medical
and CompanyX1. The first case studies, reported in Papers A, B, C, were
exploratory, continued with Paper D that was explanatory and concluded with
Paper E that was descriptive, depicted in Figure 1.5. Hence, the thesis work

1For confidentiality reasons the name of this company can not be disclosed.

20 CHAPTER 1. INTRODUCTION

transitioned from exploration to explanation of the capabilities and properties
of VGT to description of its use in practice. This transition was driven by the
incrementally acquired results from each study, where later studies thereby
aimed to verify the results of earlier studies. Figure 1.5 also includes studies
that were not case studies, i.e. Papers F and G which were an experiment and
an experience report respectively, depicted to show how they were classified in
relation to the other papers included in the thesis.

Furthermore, the performed case studies were all inherently different, i.e.
conducted with different companies, in different domains, with different sub-
jects and VGT tools, which has strengthened both the construct and external
validity of the thesis conclusions. Further, interviews were used for the ma-
jority of the data collection to acquire in depth knowledge about the adoption
and use of VGT. However, quantitative, or quantifiable, data was also acquired
since it was required to compare VGT to other test techniques in the studies,
and the thesis. For instance, quantitative data was acquired to compare the
performance and cost of VGT to both manual test techniques and 2nd genera-
tion GUI-based testing. However, comparisons were also made with qualitative
data, such as practitioners’ perceptions about benefits and drawbacks of dif-
ferent techniques, to get a broad view of the techniques’ commonalities and
differences in different contexts. Thus ensuring that the included studies’ in-
dividual contributions were triangulated with data from different sources and
methods to improve the results internal validity.

1.3.4.1 Interviews

Interviews are commonly used for data collection in case study research and
can be divided into three different types: structured-, semi-structured and
unstructured interviews [71, 75]. Each type is performed with an interview
guide that contains step-by-step instructions for an interview, including the
interview questions, research objectives, etc. In addition, interview guides
shall include a statement regarding the purpose of the study and insurance
of the interviewee’s anonymity, which helps to mitigate biased or untruthful
answers. Further, these types of interviews vary in strictness, which relates to
the makeup of the interview guide as well as the interviewer’s freedoms during
an interview.

Structured interviews: Structured interviews are the most strict [71] and
restrict the interviewer from asking follow up questions or ask the interviewee
to clarify their answers. Therefore, considerable effort should be spent on
the interview guide to test it and to ensure that the interview questions are
unambiguous and valid to answer the study’s research questions. Structured
interview questions can be of different type but multiple-choice or forced-choice
are the most common. Forced choice questions, e.g. Likert-scale questions,
can be analyzed with statistics [76] but require a larger interview sample,
which makes the method costly in terms of resources. Therefore, structured
interviews were not used during the thesis work.

Semi-structured interviews: The second most strict type of interview
is called semi-structured interviews [71], which allow the interviewer to elicit
more in depth or better quality information by asking follow up questions or
by clarifying questions to the interviewee. These interviews are therefore suit-

1.3. RESEARCH PROBLEM AND METHODOLOGY 21

able in descriptive studies, where the studied phenomenon is partly known, or
exploratory studies, where little or nothing is known about the phenomenon.
In both cases, several interviews should be performed where each interview
should add to the researcher’s understanding of the studied phenomenon and
allow the researcher to tailor each consecutive interview, i.e. change the inter-
view questions, to acquire more in depth knowledge. However, care should be
taken when changes are made to ensure that the interview results can still be
triangulated, i.e. the interview questions must not diverge too much between
interviews.

Semi-structured interviews were extensively used during the thesis work
both to explore and describe the use of VGT and its associated CPLs [17].
Further, interview guides were always used but they were seldom changed be-
tween interviews, instead more in depth information was acquired through ad
hoc follow-up questions in each interview. The baseline of common questions
was kept to make triangulation of interview results easier. These interviews
were all recorded, transcribed and analyzed with less rigorous qualitative anal-
ysis or Grounded Theory analysis [77], i.e. rigorous coding analysis [78].

Unstructured interviews: Finally, the least strict type of interviews are
unstructured interviews [71] where interview guides are optional, but recom-
mended, to guide the interview. This type of interview is therefore suitable
for exploratory studies [17] and were primarily used in the thesis work in
pre-studies to acquire contextual information about the research companies
through general questions regarding the companies processes, practices, orga-
nizations, etc. In addition to context information, they also provided baseline
information for additional interviews.

1.3.4.2 Workshops

Workshops are often performed with groups of participants, similar to focus
groups [79] and their purpose is to explore, describe or explain a phenomenon
under study [80] through discussions, brainstorming [81], activity participa-
tion, etc. As such, workshops can be a means to acquire both in depth and
broad information in a short amounts of time, as discussed by Young for the
purpose of requirements elicitation [82].

However, several prerequisites must be fulfilled for a workshop to be suc-
cessful, for instance, the workshop participants must be a well chosen sample,
i.e. with participants of varying experience, roles, age, gender, etc. This pre-
requisite can be challenging to fulfill in industrial studies since access to suit-
able participants is often restricted, for instance due to resource or scheduling
constraints, etc. In addition, some constellations of participants can add bias
to the results. For instance, employees can be reluctant to give their honest
opinions if their managers are present in the workshop which presents a threat
to the results. Additionally, if a sample is too uniform it may not provide
representative results for the whole company or other domains, which is a
threat to the results external validity. Another challenge with workshops is
to keep them in scope of the study, especially if lively, and perhaps interest-
ing, discussions occur, and they should therefore be moderated. Because of
these challenges, workshop results must also be triangulated with, for instance,
follow-up interviews, surveys, etc.

22 CHAPTER 1. INTRODUCTION

A workshop can be designed ad hoc to achieve a specific research objective,
or performed with a standard workshop format, e.g. KJ-Shiba [83]. Regard-
less, workshops must be thoroughly planned. This planning includes sampling
of suitable participants, creation of workshop materials, planning the analysis
procedure, etc.

Workshops were used in several studies included in the thesis, for two rea-
sons. First, to quickly acquire information about a research company’s con-
texts, practices and tools. Hence, exploratory workshops with one or several
participants where unstructured or semi-structured interviews and visual aids,
e.g. white-board drawings, were commonly used. Second, workshops were
used for result verification and triangulation where workshops began with a
presentation of the study’s acquired results followed by discussion and analysis
of key results with the workshop’s participants. These workshops, presented
in Papers B, C and E, were well planned, with predefined workshop materials
such as interview questions, presentation materials, etc., but participants were
mostly sampled with convenience sampling due to resource constraints.

1.3.4.3 Other

Interviews and workshops were the primary methods used in the case studies
included in this thesis. However, other methods were also used during the
thesis work2, some of which will be briefly discussed in this section.

Document analysis: Interviews and workshops acquire first degree data [71,
84], i.e. data directly from a source of information such as an interviewee. In
turn, second degree data is collected indirectly from a source, for instance,
through transcription of a recorded interview. However, document analysis
relies on third degree data [17], which is data that has already been tran-
scribed and potentially analyzed.

From a company perspective, document analysis can be a cost-effective
method of data transference but can be a time-consuming activity for the
researcher, especially in foreign or highly technical domains. Further, third
degree data is created by a third person and can therefore include biases which
means that document root-source analysis is required to identify who created
the document, for what purpose, the age of the information, etc. [17], i.e. to
evaluate the documented information’s validity.

Document analysis was used in the thesis work to acquire information
about the research companies’ processes and practices. In particular, test
specifications were analyzed to give input for empirical work with VGT at the
studied companies, e.g. in Paper A where manual test cases at Saab AB were
automated with two different VGT tools.

Further, this method can be used in a survey to conduct systematic map-
pings and systematic literature reviews [85] of published research papers. How-
ever, due to the limited body of knowledge on VGT, no such study was per-
formed during the thesis work.

Surveys: Surveys are performed on samples of people, documents, soft-
ware, or other group [86] for the purpose of acquiring general conclusions
regarding an aspect of the sample [71]. For instance, a survey with people can

2In this instance, thesis work refers also to studies performed by the author but not
included in the thesis.

1.3. RESEARCH PROBLEM AND METHODOLOGY 23

serve to acquire their perceptions of a phenomenon, document surveys instead
aim at document synthesis [85], etc.

In software engineering research, surveys are often performed with ques-
tionnaires as an alternative to structured interviews [71]. One benefit of ques-
tionnaires is that they can be distributed to a large sample at low cost but if
there is no incentive for the sample to answer the questionnaire, the partici-
pant response-rate can be low, i.e. less than the rule of thumb of 60 percent
that is suggested for the survey to be considered valid.

Questionnaire questions can be multiple-choice, forced-choice or open, i.e.
free text. Forced choice questions are often written as Likert scale ques-
tions [76], i.e. on an approximated ratio-scale between, for instance, totally
disagree and totally agree. In turn, multiple choice questions can ask par-
ticipants to rank concepts on ratio-scales, e.g. with the 100 dollar bill ap-
proach [87]. However, questions can have other scales such as nominal, ordinal
or interval scales [88]. These scales serve different purposes and it is therefore
important to choose the right type to be able to answer the study’s research
questions. Regardless, questionnaire creation is a challenge since the questions
must be unambiguous, complete, use context specific nomenclature, etc., to
be of high quality. Therefore, like interview guides, questionnaires must be
reviewed and tested prior to use.

Questionnaires were used during the thesis work to verify previously gath-
ered results and to acquire data in association with workshops. These results
were then analyzed qualitatively or with formal or descriptive statistics, dis-
cussed further in Section 1.3.6, to test the studies’ hypotheses or answer the
studies’ research questions.

Observation: Observations are fundamental in research and can be used
in different settings and performed in different ways, e.g. structured or un-
structured [89]. One way to perform an observation is the fly on the wall
technique, where the researcher is not allowed to influence the person, pro-
cess, etc., being observed. Another type is the talk-aloud protocol, where the
observed person is asked to continuously describe what (s)he is doing [17]. As
such, observations are a suitable practice to acquire information about a phe-
nomenon in its actual context and can also provide the researcher with deeper
understanding of domain-specific or technical aspects of the phenomenon.

However, observation studies are associated with several threats, for in-
stance the Hawthorne effect, which causes the observed person to change
his/her behavior because they know they are being observed [90]. There-
fore, the context of the observation must be taken into consideration as well
as ethical considerations, e.g. how, what and why something or someone is
being observed [17]. An example of unethical observation would be to observe
a person without their knowledge.

Planned observation, with an observation guide, etc., was only used once
during the thesis work to observe how manual testing was performed at a
company. However, observations were also used to help explain results from
the empirical studies with VGT, i.e. in Papers A and D.

24 CHAPTER 1. INTRODUCTION

1.3.5 Experiments

Experimentation is a research methodology [73] that focuses on answering what
factor(s) (or independent variable(s)) that affect a measured factor of the phe-
nomena (the dependent variable(s)). As such, experiments aim to compare the
impact of treatments (change of the independent variable(s)) on the dependent
variable(s).

Experimental design begins with formulation of a research objective that
is broken down into research questions and hypotheses. A hypothesis is a
statement that can be either true or false that the study will test, for instance
the expected outcome of a treatment on the dependent variable. Therefore,
experiments primarily aim to acquire quantitative or quantifiable data, which
can be analyzed statistically to accept or reject the study’s hypotheses and
answer the study’s research questions.

However, experiments are also affected by confounding factors [73], i.e. fac-
tors outside the researcher’s control that also influence the dependent variable.
These factors can be mitigated through random sampling that cancels out the
confounding factors across the sample [91] such that measured changes to the
dependent variable are caused only by changes to the independent variable(s).

However, in some contexts, e.g. in industry, it is not possible to random-
ize the studied sample and instead quasi-experiments need to be used [73,92].
Whilst controlled experiments are associated with a high degree of internal va-
lidity but lower construct validity (due to manipulation of contextual factors),
quasi-experiments have lower internal validity but higher construct validity
since they are performed in a realistic context.

Further, compared to case studies, controlled experiments have high repli-
cability, i.e. an experiment with a valid experimental procedure can be repli-
cated to acquire the same outcome as the original experiment. It is therefore
common that publications that report experimental results present the exper-
imental procedure in detail and make the experimental materials available to
other researchers.

Experiments were performed as part of two papers included in the thesis,
i.e. Papers A and F. In Paper A, the applicability of VGT to test non-animated
GUIs was compared to testing of animated GUIs. Additionally in Paper F, to
compare the false test results generated by 2nd and 3rd generation GUI-based
testing during system and acceptance tests.

1.3.6 Data analysis

Research methodologies and methods provide the researcher with results that
sometimes are enough to support, or answer, a study’s research questions.
However, in most studies the results, by themselves, are not enough and they
must therefore be analyzed.

Research results can be classified as qualitative, e.g. statements, and quan-
titative, e.g. numbers, [70], as stated in Section 1.3.3. However, regardless of
data type, results must be triangulated [17, 71], which for qualitative data
can be a challenge. The reason is because qualitative methods generally pro-
duce large quantities of information that are difficult to overview and syn-
thesize. This challenge can be solved by quantifying the information through
coding [78] where statements, observations, etc., are clustered in categories

1.3. RESEARCH PROBLEM AND METHODOLOGY 25

defined by codes that can then be analyzed individually to identify support
for the study’s research question(s). This practice is key in Grounded Theory
research [77] and is recommended to acquire a strong chain of evidence [71]
and can be performed in different ways. However, a general recommendation
is that it is performed by several people to mitigate coding bias.

During the thesis work, coding was only used for the data analysis in Paper
F since the study relied exclusively on qualitative data. Previous studies,
included in the thesis, all include empirical work and/or quantitative data,
which justified the use of less stringent analysis methods since the results of
these studies were triangulated with data sources of different type.

Further, quantitative data can be analyzed statistically, either with de-
scriptive or formal methods [93,94]. Descriptive statistics are used to visualize
data to provide an overview of the data, e.g. in graphs and plots, which for
larger data sets can be particularly helpful since it helps establish patterns,
distributions and other insights to the data. Descriptive statistics were par-
ticularly helpful in Paper D to visualize and draw conclusions regarding the
maintenance costs and return on investment of VGT.

In contrast, formal statistics are mathematical methods that are used to
compare, correlate, or evaluate data to find statistically likely patterns, e.g.
to compare if two data sets are (statistically) significantly different. Formal
statistical analysis was used in several of the studies included in the thesis, i.e.
Papers A, D, E and F, most often performed with the Student T-Test, the
Wilcoxon rank-sum test or the Mann-Whitney U test [95].

Further, formal statistical methods can be split into two different cate-
gories, parametric and non-parametric tests [93, 96], where parametric tests
provide statistical results of high precision but are associated with more pre-
requisites than non-parametric tests. These prerequisites include that the data
set should be normally distributed, that the sample is of suitable size, etc.
However, these prerequisites are often difficult to fulfill in industrial studies
and therefore it is argued that the use of parametric tests should be avoided
in favor of non-parametric tests in software engineering research [96], despite
the fact that non-parametric tests lower statistical precision. Due to the in-
dustrial focus of the thesis work, most formal statistical analysis performed in
the included studies were non-parametric, limited primarily by lack of normal
distribution in the acquired data sets.

In summary, research results can be both qualitative and quantitative and
analyzed with both descriptive and formal statistics, all used during this thesis
work to strengthen the validity of the studies’ conclusions. Hence, quantitative
data was used to statistically compare VGT tools and VGT to other test tech-
niques, triangulated with qualitative data to explain the quantitative results
and vice versa.

26
C
H
A
P
T
E
R

1
.

IN
T
R
O
D
U
C
T
IO

N

Paper Name Domain Size
(S/M/L)

City Development
process(es)

Test strategy VGT tool

A, C
and G

Saab AB Safety-critical
air-traffic
management
software

M Gothenburg Plan-driven
and Agile

Manual system and accep-
tance testing

Sikuli
(Python
API)

B Saab AB Mission-
critical mili-
tary control
software

M Järfälla Plan-driven
and Agile

Manual system and accep-
tance testing, automated unit
testing

Sikuli
(Python
API)

D Saab AB Safety-critical
air-traffic
management
software

M Växjö Plan-driven
and Agile

Manual system and accep-
tance testing

Sikuli
(Python
API)

D Siemens
Medical

Life-critical
medical jour-
nal systems

S Gothenburg Agile (Scrum) Manual scenario-based and
exploratory system and ac-
ceptance testing, automated
unit testing

JAutomate

E CompanyX Entertainment
streaming ap-
plication

L Gothenburg/
Stockholm

Agile (Scrum) Manual scenario-based and
exploratory system, accep-
tance and user experience
testing, automated unit, inte-
gration and system testing.

Sikuli
(Java API)

Table 1.3: Summary of key characteristics of the companies/divisions/groups that took part in the studies included in the thesis. In the
column “size” the companies’ contexts are categorized as small (S), medium (M) and large (L) where small is less than 50 developers,
medium is less than 100 developers and large is more than 100 developers in total. Note that Saab AB refers to explicit divisions/companies
within the Saab organization.

1.4. OVERVIEW OF PUBLICATIONS 27

1.4 Overview of publications

The following section will present summaries of the studies included in this
thesis, including their research objectives, methodology, results and contribu-
tions. These studies were primarily performed in Swedish industry at compa-
nies with different organizations, processes and tools that develop both safety-
critical systems as well as non-safety critical applications. An overview of these
companies has been presented in Table 1.3 based on a set of characteristics
that was acquired for to all companies, which includes size, domain, used test
techniques, etc.

1.4.1 Paper A: Static evaluation

Paper A, presented in Chapter 2, is titled “Automated System Testing us-
ing Visual GUI Testing Tools: A Comparative Study in Industry”. The pa-
per presents a single, embedded, case study at the safety-critical air-traffic
management software development company Saab AB in the Swedish city of
Gothenburg.

Research Objective: The main research objective of the study was to
acquire initial support for the applicability of VGT in industrial practice.
Specifically, its ability to automate system and acceptance tests for automated
GUI-based regression testing.

Methodology: The case study consisted of two phases where two VGT
tools, one commercial referred to as CommercialTool3 and an open source,
called Sikuli [20, 54], were evaluated. In Phase 1, static evaluation was per-
formed of the tools to acquire their different properties. In addition, four ex-
periments were performed to compare the tools’ image recognition algorithms’
ability to test animated and non-animated GUIs.

In Phase 2, 10 percent of an industrial test suite of 50 manual test cases was
automated in each tool. These test cases were carefully chosen after a manual
regression test of one of Saab’s main product’s subsystems, in continuation
called the SUT. The SUT had in the order of multiple 100K lines of code,
had a non-animated GUI and a comprehensive manual test suite. During test
automation, measurements were taken on the development time, lines of code
and script execution time. These were then compared statistically to determine
if there was any statistically significant difference between the tools.

Results: Twelve (12) properties were identified in the static evaluation
that showed that the two tools had different favorable properties. For in-
stance, whilst CommercialTool had faster image recognition and support for
automated test failure mitigation, Sikuli was free of charge and generally more
user friendly. Further, in the experiment, CommercialTool had higher success-
rate than Sikuli for non-animated GUIs but Sikuli had better success-rate for
animated GUIs.

In Phase 2, the development time and execution time of the SUT’s entire
test suite was estimated based on the developed test scripts. These estimates
showed that adoption of VGT could provide positive return on investment
within one development iteration of the SUT compared to manual testing.
Additionally, the estimates showed that the execution time of the suite was

3For reasons of confidentiality we cannot disclose the name of the tool

28 CHAPTER 1. INTRODUCTION

3.5 hours, which was an improvement of 4.5 times compared to manual testing
that took 16 hours on average.

Further, none of the null hypotheses in regards to development time, lines
of code and execution time could be rejected. The study therefore concludes
that there is no statistical significant difference between the two tools on any
of these measures. Therefore, since the tools could successfully automate the
industrial test cases, the study provides initial support that VGT is applicable
for automation of manual system test cases in industrial practice.

Contributions: The study’s main contributions are as such:

CA1: Initial support for the applicability of VGT to automate manual scenario-
based industrial test cases when performed by experts,

CA2: Initial support for the positive return on investment of the technique,
and

CA3: Comparative results regarding the benefits and drawbacks of two VGT
tools used in industrial practice.

This work also provided an industrial contribution to Saab with decision sup-
port regarding which VGT tool to adopt.

1.4.2 Paper B: Dynamic evaluation

Paper B, presented in Chapter 3, is titled “Transitioning Manual System Test
Suites to Automated Testing: An Industrial Case Study”. The paper presents
a single, holistic, case study at the mission-critical military control system
software development company Saab AB in the Swedish city of Järfälla.

Research Objective: The objective of the study was to acquire support
for the industrial applicability of VGT when adopted and used by practitioners.
Additionally, to identify challenges, solutions, costs of adoption and use of
VGT and finally the practitioners’ perceptions about the technique.

Methodology: The case study was performed in collaboration with Saab,
where two testers used the open source VGT tool Sikuli to automate several
manual test suites, at Saab referred to as acceptance test descriptions or ATDs,
for the system in the continuation called the SUT. The SUT was mission
critical, tested with 40 ATDs containing approximately 4000 use cases with a
total execution time of 60 man weeks (2400 hours).

The study consisted of three phases, where Phase 1 was an exploratory pre-
study performed to elicit the company’s expectations on VGT, the company’s
test practices, SUT information, etc. In Phase 2, a four month project was
conducted where the testers automated three out of the 40 ATDs with VGT,
during which data collection was performed through telephone and e-mail due
to the geographical distance between the researchers and the company. Finally
in Phase 3, semi-structured interviews were used to verify the study’s previous
results and elicit the practitioners’ perceptions about Sikuli and VGT.

Results: The study’s results were divided into three parts according to
the study’s phases, i.e. pre-study, case-study and post-study. The pre-study
provided contextual information and showed that Saab needed VGT because
of the high costs associated with the SUT’s manual testing.

1.4. OVERVIEW OF PUBLICATIONS 29

Further, the case study showed that the VGT scripts had been im-
plemented as 1-to-1 mappings of the manual test cases and therefore con-
sisted of small use cases, combined in meta-models, into longer test scenarios.
This architecture was perceived beneficial to lower development and mainte-
nance costs since the modular design facilitated change and reuse of use case
scripts [40].

In addition, the VGT scripts executed 16 times faster than the manual
tests, identified all regression defects the manual tests found but also defects
that were previously unknown to the company. These additional defects were
found by changing the order of the test scripts between executions that resulted
in stimulation of previously untested system states. As such, VGT improved
both the test frequency and the defect-finding ability of Saab’s testing com-
pared to their manual ATD testing.

However, six challenges were found with VGT; including high SUT-Script
synchronization costs, high maintenance costs of older scripts or scripts writ-
ten by other testers, low (70 percent) success-rate of Sikuli’s image recognition
when used over a virtual network connection (VNC) (100 percent locally), un-
stable Sikuli behavior, etc. These challenges were solved with ad hoc solutions;
for instance, minimized use of VNC, script documentation, script coding stan-
dards, etc.

Additionally, three months into the study a large change was made to the
SUT that required 90 percent of the VGT scripts to be maintained. This
maintenance provided initial support for the feasibility of VGT script main-
tenance, measured to 25.8 percent of the development cost of the suite. The
scripts’ development costs were also used to estimate the time to positive ROI
of automating all 40 ATDs, which showed that positive ROI could be achieved
within 6-13 executions of the VGT test suite.

Finally, the post-study showed that VGT was perceived as both valuable
and feasible by the testers, despite the observed challenges.

Contributions: The main contributions provided by this study are as
such:

CB1: Support that VGT is applicable in industrial practice when adopted and
applied by practitioners in an industrial project environment,

CB2: Additional support that positive ROI can be achieved from adopting
VGT in practice,

CB3: Initial support that the maintenance costs of VGT scripts can be feasi-
ble, and

CB4: Challenges and solutions related to the adoption and use of VGT in the
studied project.

Consequently the study supports the contributions made by Paper A regarding
the industrial applicability of VGT but also provides initial feasibility support
for the technique. However, the study also reported several challenges with
the technique that warranted further research.

30 CHAPTER 1. INTRODUCTION

1.4.3 Paper C: Challenges, problems and limitations

Paper C, presented in Chapter 4, is titled “Visual GUI Testing in Practice:
Challenges, Problems and Limitations”. The paper presents a multiple, holis-
tic, case study with results from two cases. The first case was performed at
the safety-critical air-traffic management software development company Saab
AB in the Swedish city of Gothenburg, referred to as Case 1, whilst the second
case was the case presented in Paper B, referred to as Case 2.

Research Objective: The objective of the study was to identify chal-
lenges, problems and limitations (CPLs) associated with the adoption and use
of VGT in practice and general solutions to these CPLs. A secondary objective
was also to find support for the ROI of adopting VGT.

Methodology: Both cases were performed independently of each other
with engineers that transitioned manual test suites into VGT. This design
allowed contextual CPLs and solutions to be distinguished from general CPLs
and solutions. CPLs were primarily collected in Case 1, triangulated with
results from Case 2, and systematically analyzed to determine the CPLs origin,
generalizability, commonality to other CPLs, perceived impact, etc. These
properties were then used to classify the CPLs into three tiers of varying
abstraction.

In addition, metrics on development costs and execution time were ac-
quired, which were used to estimate the time to positive ROI of adopting
VGT in comparison to manual testing, in both cases.

Results: 58 CPLs were identified in the study that were classified into
three tiers with 26 unique CPL groups on the lowest tier (Tier 3), grouped
into eight more abstract groups (Tier 2) and finally related to three top tier
CPL root causes (Tier 1). Further, 34 out of the 58 CPLs related to the tested
system, 14 to the test tool (Sikuli) and 10 to third party software (VNC and
simulators). Hence, more than twice of the CPLs were associated with the
SUT compared to the VGT tool.

The Tier 3 CPLs were also classified into six themes to analyze their impact
on VGT, which, based on the study’s results and related work, showed that
the CPLs had varying impact but were also common to other automated and
manual test techniques. This analysis also served to identify four general solu-
tions to mitigate half of the study’s identified CPLs. These solutions included
systematic development of failure and exception handling, script documen-
tation, minimized use of remote script execution over VNC and systematic
SUT-script synchronization.

In addition, measured development costs were used to calculate the time
to positive ROI of adopting VGT in the two cases, which showed that positive
ROI would be achieved after 14 executions of the VGT suite in Case 1 and
after 13 executions in Case 2. Additionally, based on the results and related
work [16], a theoretical ROI cost model was created to serve for future research
into the feasibility of VGT, which would, in addition to development costs, also
take maintenance costs into consideration.

Finally, the study provided additional support for the defect finding ability
of VGT since nine, in total, previously unknown defects were reported, three
in Case 1 and six in Case 2.

Contributions: The main contributions of this work are as such:

1.4. OVERVIEW OF PUBLICATIONS 31

CC1: 29 unique groups of challenges, problems and limitations (CPLs) that
affect the adoption or application of VGT in industrial practice,

CC2: Four general solutions that solve or mitigate roughly half of the identified
CPLs, and

CC3: Results regarding the development costs, execution time, defect-finding
ability and ROI of the use of VGT in industrial practice.

Additionally, the paper provides a general contribution to the body of knowl-
edge of automated testing that currently only holds limited empirical support
regarding CPLs [97].

1.4.4 Paper D: Maintenance and return on investment

Paper D, presented in Chapter 5, is titled “Maintenance of Automated Test
Suites in Industry: An Empirical study on Visual GUI Testing”. The paper
presents a multiple, holistic, case study with results from the two companies
Saab AB in Växsjö and Siemens Medical.

Research Objective: The objective of the study was to evaluate the
maintenance costs associated with VGT scripts. Hence, results essential to
support the feasibility of the use of VGT in industrial practice.

Methodology: The study was divided into two phases performed at Siemens
Medical and Saab AB that were chosen through convenient sampling since
companies that have used VGT for a longer period of time are rare.

Phase 1 was exploratory where three semi-structured interviews were per-
formed to elicit practitioners’ perceptions about VGT, VGT maintenance and
experienced CPLs. At the time of the study, Siemens Medical had transitioned
100 out of 500 manual test cases into VGT with the VGT tool JAutomate [67]
for the purpose of lowering the costs associated with manual scenario-based
testing and to raise the quality of one of the company’s systems.

In Phase 2, an empirical study was performed at Saab AB where a de-
graded [16] VGT suite was maintained by a researcher and a developer in two
steps. First, the VGT suite was maintained for another version of the SUT
which gave insights into the worst case maintenance costs of VGT suites. Sec-
ond, the maintained VGT suite was migrated to a close variant to the SUT
which gave insights into the costs of frequent maintenance of VGT suites. Fif-
teen (15) representative test scripts were maintained in total during the study,
where representativeness was determined through analysis of the VGT suite
and manual test specifications for the SUT. During the maintenance, measure-
ments were taken on maintenance time per script, division of maintenance of
images and script logic, number of found defects and script execution time.
These measurements were then compared statistically to evaluate:

1. The difference in maintenance costs of frequent and infrequent mainte-
nance.

2. The difference in maintenance costs of images and scripts, and

3. The difference between VGT development and maintenance costs,

32 CHAPTER 1. INTRODUCTION

Finally, the measurements were visualized in the theoretical cost model
developed in Paper C.

Results: Statistical analysis of the acquired measurements provided sev-
eral insights into the costs associated with VGT script development and main-
tenance. First, the costs of frequent maintenance was found to be statistically
significantly lower than infrequent maintenance. Second, the maintenance
costs of logic and images are equal in degraded VGT test suites but image
maintenance is significantly lower if the test suite is maintained frequently.
Finally, the maintenance cost of a script, per iteration of maintenance, is lower
than the development cost of the script, regardless of frequent or infrequent
maintenance.

Further, eight defects were identified during the study, some during the
maintenance effort and others by running the VGT scripts, which provides
further support for the defect finding ability of VGT.

0 100 200 300 400 500 600

1500

1000

500

0

20%
Fictional
project

7%
SaabIn-frequent

Frequent

45 180 532

weeks

Cost
(Hours)

Figure 1.6: Model of the measured development and maintenance costs of VGT
compared to the costs of manual testing.

Figure 1.6 presents a visualization of the time to positive ROI of VGT
adoption and use compared to manual regression testing based on extrapo-
lated cost data from the study. In the figure, VGT script development and
frequent maintenance is shown with a solid line and VGT script develop-
ment and infrequent maintenance with a long-dashed line . Further, manual
testing at Saab, which was seven percent of the total development costs of the
project, which had 60 week iterations, is shown with a short-dashed line to
be compared to a fictional project with 20 percent manual testing shown with
a mixed long- and short-dashed line . Gray, dashed, vertical lines
show when positive ROI is reached in the different cases.

In the fictional project, positive ROI is reached in 45 weeks, i.e. within
one development iteration of the project. However, in Saab AB’s context,
positive ROI would only be reached in 180 weeks if frequent maintenance was
used and in an infeasible 532 weeks with infrequent maintenance. Hence, VGT

1.4. OVERVIEW OF PUBLICATIONS 33

script maintenance is feasible but a VGT suite requires frequent maintenance if
positive ROI is to be reached in a reasonable amount of time. Additionally, the
time to positive ROI is dependent on the amount of manual testing performed
in a project, i.e. in a project with more manual testing, positive ROI is reached
faster. These results were supported by the interviews at Siemens Medical
(Phase 1) where VGT script maintenance was associated with substantial cost
and required effort, i.e. up to 60 percent of the time spent on VGT each week.
However, despite these challenges, the technique was still considered beneficial,
valuable and mostly feasibly by the practitioners.

Contributions: The main contributions of this study are as such:

CD1: That maintenance of VGT scripts is feasible in practice, shown both
through qualitative and quantitative results from two companies with
two different VGT tools,

CD2: That maintenance of a VGT script:

(a) when performed frequently is significantly less costly than when
performed infrequently,

(b) is significantly less costly per iteration of maintenance than devel-
opment, and

(c) images are significantly less costly than maintenance of script logic.

CD3: That VGT scripts provide value to industrial practice, shown both with
qualitative statements from practitioners and the technique’s defect find-
ing ability where eight defects were found using the technique, and

CD4: A ROI cost model based on actual data from industrial practice that
verifies that this theoretical cost model is valid for automated test adop-
tion and maintenance.

Hence, VGT can be feasible in practice but additional research was still
warranted after the study to verify these results after long-term (years) use of
VGT in practice.

1.4.5 Paper E: Long-term use

Paper E, presented in Chapter 6, is titled “On the Long-term Use of Visual
GUI Testing in Industrial Practice: A Case Study”. The paper presents a
single, embedded, case study with results from the company CompanyX.

Research Objective: The objective of the study was to evaluate the
long-term use of VGT in industrial practice, including short- and long-term
challenges, problems and limitations (CPLs) and script maintenance costs. A
secondary objective was to evaluate what alternative techniques that are used
to VGT and to evaluate their benefits and drawbacks.

Methodology: The study was divided into three steps where Step 1 was
a pre-study, at CompanyX, to acquire information about the company’s use
of VGT, willingness to participate in the study and what people to interview
in the study (acquired through snowballing sampling [98]), etc.

In Step 2, four interviews were conducted with five employees at Compa-
nyX that had detailed knowledge about how VGT and alternative automated

34 CHAPTER 1. INTRODUCTION

test techniques were used at the company. Additionally, the interviews were
complemented with two workshops, one exploratory in the beginning of the
study and one with one person to verify previously collected results and to
identify the company’s future plans for VGT.

Finally, VGT was statistically compared to an alternative test technique
developed by CompanyX (the Test Interface) based on properties acquired in
the interviews that were quantified based on the techniques’ stated benefits
and drawbacks.

Results: VGT was adopted at CompanyX after an attempt to embed
interfaces for GUI testing (the Test interface) into the company’s main appli-
cation had failed due to lack of developer mandate and high costs. Further,
because the application lacked the prerequisites of most other test automation
frameworks, VGT became the only option. VGT was adopted with the tool
Sikuli [54] and its success could be accounted to three factors:

1. The use of an incremental adoption process that began with a pilot
project,

2. The use of best engineering practices to create scripts, and

3. The use of a dedicated adoption team.

Several benefits were observed with VGT, such as value in terms of found
regression defects, robust script execution in terms of reported false test results,
feasible script maintenance costs in most projects, support for testing of the
release ready product, support for integration of external applications without
code access into the tests, etc. Additionally, VGT integrated well with the
open source model-based testing tool Graphwalker for model-based Visual GUI
Testing (MBVGT). MBVGT made reuse and maintenance of scripts more cost-
effective.

However, several drawbacks were also reported, such as costly maintenance
of images in scripts, inability to test non-deterministic data from databases,
limited applicability to run tests on mobile devices, etc. Because of these draw-
backs, CompanyX abandoned VGT in several projects in favor of the originally
envisioned “Test interface” solution which became realizable after the adop-
tion of VGT due to VGT’s impact on the company’s testing culture. Hence,
VGT had shown the benefits of automation which gave developers mandate
to adopt more automation and create the Test interface. These interfaces
are instrumented by Graphwalker models that use the interfaces in the source
code to collect state information from the application’s GUI components that
is then used to assert the application’s behavior. This approach is beneficial
since it notifies the developer if an interface is broken when the application is
compiled, which ensures that the test suites are always maintained.

Additionally, the Test interface has several benefits over VGT, such as
better support for certain test objectives (e.g. tests with non-deterministic
data), faster and more robust test execution, etc. However, the Test interface
also has drawbacks, such as inability to verify that the pictorial GUI conforms
to the application’s specification, inability to perform interactions equal to a
human user, required manual synchronization between application and scripts,
lack of support for audio output testing, etc.

1.4. OVERVIEW OF PUBLICATIONS 35

Analysis based on quantification of these properties, i.e. benefits and draw-
backs, showed that there is no significant difference between VGT and the Test
interface. Hence, both techniques have similar, and complementary, proper-
ties.

Finally, based on the study’s results, results from Papers B and C and re-
lated work [99], a set of 14 guidelines were synthesized to provide practitioners
with decision support and guidance to avoid pitfalls during adoption, use and
long-term use of VGT in practice.

Contributions: The main contributions of this paper are that:

CE1: VGT can be used long-term in industrial practice, as shown by Compa-
nyX’s use of Sikuli for many years,

CE2: VGT has several benefits, including its flexible use that allows it to
integrate external applications into the tests and test products ready for
customer delivery,

CE3: VGT has many challenges, including robustness issues, possibly due to
the immaturity of the technique’s tools,

CE4: There are alternatives to VGT in practice with benefits such as higher
robustness but with drawbacks that they do not verify that the pictorial
GUI conforms to the system’s specification, etc.

CE5: A set of 14 guidelines to support the adoption, use and long-term use of
VGT in industrial practice.

The study thereby complements the missing results from Paper D regarding
the long-term feasibility of VGT in practice.

1.4.6 Paper F: VGT-GUITAR

Paper F, presented in Chapter 7, is titled “Conceptualization and Evaluation
of Component-based Testing Unified with Visual GUI Testing: an Empirical
Study”. The paper presents a combined study with an experiment and a case
study performed in an academic setting.

Research Objective: The objective of the study was to compare the
differences in fault-finding ability of 2nd and 3rd generation (VGT) tools with
respect to false test results for system and acceptance tests. A secondary
objective was to combine the tool GUITAR with Sikuli into a hybrid tool
called VGT-GUITAR and evaluate the two tools’ capabilities on open source
software.

VGT-GUITAR: VGT-GUITAR is an experimental tool that was devel-
oped based on the tool GUITAR’s GUI ripping and MBT functionality [58],
explained in Section 1.2.3. VGT-GUITAR extends GUITAR’s ripper with
bitmap ripping to acquire screenshots of the SUT’s GUI components. These
screenshots are then used during replay of test cases, generated by GUITAR,
in a VGT driver (a Sikuli script) to interact with the SUT’s pictorial GUI
rather than by hooking into the SUT. For additional detail about the tool, see
Chapter 7.

Methodology: The study began with an experiment where a custom built
GUI-based application was mutated using GUI mutation operators, defined

36 CHAPTER 1. INTRODUCTION

during the study, to create 18 faulty versions of the application. A test suite
was then generated for the original version of the application that was executed
with GUITAR and VGT-GUITAR (Independent variable) on each mutant to
measure the number of correctly identified mutants, false positives and false
negative test results (Dependent variables). The dependent variables were then
analyzed to compare the two techniques in terms of reported false positives
and negatives for system and acceptance tests, where system tests evaluated
the SUT’s behavior whilst acceptance tests also took the SUT’s appearance
into account. In addition the execution time of the scripts in the two tools
were recorded and compared.

The study was concluded with a case study where GUITAR and VGT-
GUITAR were applied on three open source applications to identify support
for the tools’ industrial applicability.

Results: Statistical analysis of the experiment’s results showed that 3rd

generation scripts report statistically significantly more false positives for sys-
tem tests than 2nd generation tools and that 2nd generation tools report sta-
tistically significantly more false negative results for acceptance tests. These
results could be explain by observations of the scripts’ behavior on different
mutants and relate to how the two techniques stimulate and assert the SUT’s
behavior, i.e. through hooks into the SUT or by image recognition. As an
example, if the GUI’s appearance was changed such that a human could still
interact with it, e.g. by making a button larger, the 3rd generation scripts
would report a false positive result since the image recognition would fail.
However, the 2nd generation scripts would pass since the hook to the button
still remained. In contrast, if the GUI’s appearance was changed such that
a human could not interact with it, e.g. by making a button invisible, the
2nd generation scripts would produce a false negative since the hook allowed
the script to interact with the invisible button. However, the 3rd generation
scripts would successfully fail because the image recognition would not find a
match. The results of the experiment therefore indicate that a combination of
the 2nd and 3rd generation techniques could be the most beneficial because of
their complementary behavior for system and acceptance tests.

The proceeding case study did however show that VGT-GUITAR is not
applicable in industrial practice since the tool had zero percent success rate
on any of the open source applications, caused by technical limitations in the
tool, e.g. in reality it could not capture screenshots of all GUI components.
Additionally, the test cases were generated for GUITAR that can, for instance,
interact with a menu item without expanding the menu, i.e. functionality
that is not supported by 3rd generation tools. Hence, further development is
required to make VGT-GUITAR applicable in practice but the tool still shows
proof-of-concept for fully automated 3rd generation GUI-based testing due to
its successful use for the simpler application in the experiment.

Contributions: This study thereby provides the following main contri-
butions:

CF1: Comparative results regarding the fault-finding ability of 2nd and 3rd

generation GUI-based tools in terms of false test results for system and
acceptance tests.

CF2: Initial support that a completely automated 3rd generation test tool

1.4. OVERVIEW OF PUBLICATIONS 37

could be developed even though the tool developed in the study, VGT-
GUITAR, still requires additional work to become applicable in practice.

As such, the study primarily provides an academic contribution regarding
future research directions for VGT but also results regarding the applicability
of different GUI-based test technique’s use for system and acceptance testing.

1.4.7 Paper G: Failure replication

Paper G, presented in Chapter 8, is titled “Replicating Rare Software Failures
with Exploratory Visual GUI Testing”. The paper presents an experience
report provided by Saab AB in Gothenburg about how VGT was used to
replicate and resolve a defect that had existed in one of the company’s systems
for many years. As such, unlike the previously included papers, this paper did
not have any research objective or methodology and this section therefore only
present a summary of the report.

Experience report: The report presents how the company had received
failure reports from their customers for several years regarding a defect in one
of their systems that caused it to crash after long term use (3-7 months). These
customer failure reports were however not sufficient to identify the defect and
additional failure replication was therefore required. However, because the
defect manifested so seldom in practice it was deemed too costly to resolve
with manual practices, instead all customers were informed about the defect
and were recommended to reboot the system with even frequency to mitigate
failure.

In 2014 one of the company’s developers found a way to remove the defect
with a semi-automated test process that combined the principles of exploratory
testing with VGT. In the process, a small VGT script was used to provide
stimuli to the tested system’s features in individual, mutually exclusive, com-
ponents (methods). After each run, the script was modified by changing, or
removing, methods that interacted with features that were perceived to not
contribute to the manifestation of the defect, thereby incrementally ruling out
which feature(s) caused the failure. Consequently an approach common to ex-
ploratory testing; simultaneous learning, test design and test execution [41,42].
The reason for the use of VGT for the process was because of the system’s
legacy that restricted the use of any other test automation framework.

By using the developed process, Saab AB was able to replicate the failure
within 24 hours and resolve its defect within one calendar week. The defect
was a small memory allocation leak, i.e. memory was not properly deallocated
after a bitmap on the GUI had been rendered, but over time the leak built up
to critical levels that caused the system to crash.

Post analysis of this case showed that the defect could have been found
manually, at equal cost to the VGT approach but this defect analysis had
to be performed by an engineer with specific technical knowledge about the
system, which only a few developers at the company possessed. As such, this
case shows that automated testing can provide value to a company in terms
of quality gains rather than lowered costs.

Contributions: The main contributions of this experience report are as
such:

38 CHAPTER 1. INTRODUCTION

CG1: A success-story from industrial practice that shows that VGT can be
used to replicate and resolve non-frequent and nondeterministic defects,
and

CG2: A case where automated testing was paired with manual practices to
create a novel, semi-automated, test practice, implying that similar pro-
cesses can be achieved with other, already available, test frameworks in
practice.

Additionally this case provides implicit support of the benefits of collabora-
tion between academia and industry since it was academic transfer of VGT
knowledge to Saab AB that resulted in the company’s success story.

1.5 Contributions, implications and limitations

The objective of the thesis work was to find empirical evidence for, or against,
the applicability and feasibility of VGT in industrial practice. In particular,
what types of testing VGT can be used for, what the maintenance costs as-
sociated with VGT scripts are and what challenges, problems and limitations
(CPLs) are associated with the short and long-term use of the technique in
practice. Additionally, the research aimed to find ways to advance the indus-
trial applicability of VGT and outline areas of future VGT research.

Evidence to fulfill this objective were collected through an incremental
research process that included studies in academia and Swedish industry with
several VGT tools and research methods. The individual contributions of these
studies can be synthesized to answer this thesis research questions, as mapped
in Table 1.4, which represent four key contributions:

1. Empirical evidence for the industrial applicability of Visual GUI Test-
ing for different types of testing, i.e. regression, system, and acceptance
testing of both deterministic and non-deterministic defects, and in dif-
ferent contexts, i.e. for daily continuous integration, for safety-critical
and non-safety critical software.

2. Empirical evidence for the industrial feasibility of Visual GUI testing,
including associated script maintenance costs and reasonable time to
positive return on investment, given that frequent maintenance is used
and a suitable amount of effort is spent on manual testing prior to VGT
adoption.

3. Empirical evidence that there are challenges, problems and limitations
associated with Visual GUI Testing that affect the adoption, short and
long-term use of the technique in industrial practice, and

4. Technical and process solutions to advance Visual GUI Testing’s indus-
trial applicability, currently and in the future.

Together, these four contributions lets us draw the conclusion that VGT
fulfills the industrial need for a flexible GUI-based test automation technique
and is mature enough for widespread use in industrial practice. This conclu-
sion is of particular value to companies that have GUI-based systems that

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 39

lack the prerequisites, e.g. specific technical interfaces, required by other test
automation frameworks since VGT finally provides these companies with the
means to automate tests to lower cost and raise software quality. However,
there are still many challenges, problems and limitations (CPL) associated
with VGT that are pitfalls that could prohibit the successful adoption, or
longer term use, of the technique in practice. Pitfalls that must be taken into
consideration by adopting companies and addressed, and mitigated, by future
academic research.

The continuation of this section will present the detailed syntheses of the
included research papers’ individual contributions and how they provide sup-
port for the thesis objective and main conclusion.

1.5.1 Applicability of Visual GUI Testing in practice

VGT is first and foremost a test technique and its applicability must therefore
be judged on its ability to find defects. Ample support for the defect-finding
ability of VGT was provided in the thesis from Papers B, C, D and indicated
in E, where it was reported that VGT identified all defects found by man-
ual scenario-based regression testing but also new defects that practitioners
said would not have been found without VGT. Hence, the technique can find
defects with equal, or even greater, efficiency than manual, scenario-based,
system testing. As such, VGT provides concrete value in practice and a suit-
able complement to existing test techniques, a conclusion also supported by
explicit statements from practitioners in Papers B, D and E. Additionally, the
experience report in Paper G shows that VGT can be used to find unknown,
non-deterministic and infrequent defects.

Further, support for the thesis conclusions were acquired with several differ-
ent VGT tools, i.e. Sikuli [54], JAutomate [67] and CommercialTool. Different
benefits and drawbacks were identified with the tools but their core function-
ality, i.e. image recognition, make them equally applicable in practice. Ad-
ditionally, image recognition is what provides VGT with its main benefit, its
flexibility to test almost any GUI-driven system regardless of implementation
language, operating system or even platform. This provides industrial practi-
tioners with unprecedented ability to automate not only their SUT’s but also
the SUT’s environment, e.g. simulators, external software, etc. Thereby allow-
ing test cases that previously had to be performed manually to be automated,
a statement supported by Papers A, B, C and E. However, these conclusions
assume that the SUT has an accessible pictorial GUI, i.e. VGT has limited
or no usability for systems that lack GUI’s, such as server or general backend
software.

40
C
H
A
P
T
E
R

1
.

IN
T
R
O
D
U
C
T
IO

N

P. ID Contribution summary RQ1 RQ2 RQ3 RQ4
A CA1 VGT is applicable for automation of manual scenario-based industrial test cases X

CA2 Initial support for the positive return on investment of VGT X
CA3 Comparative results on benefits and drawbacks of two VGT tools X X

B CB1 VGT applicable in an industrial project environment X
CB2 Positive ROI achievable after adoption of VGT in practice X
CB3 Initial support that the maintenance costs of VGT scripts can be feasible X
CB4 Challenges and solutions related to the adoption and use of VGT X

C CC1 29 unique groups of challenges, problems and limitations (CPLs) that affect VGT X
CC2 Four general solutions that solve or mitigate roughly half of the identified CPLs X
CC3 Development costs, execution time, defect-finding ability and ROI of VGT X X

D CD1 Maintenance of VGT scripts is feasible in practice X
CD2 That maintenance of VGT (frequent, images, maintenance) is cost-effective X
CD3 VGT scripts provide value to industrial practice (e.g. finds defects) X
CD4 A ROI cost model based on data from industrial practice X

E CE1 VGT can be used long-term in industrial practice X X
CE2 VGT has several benefits in industrial practice X
CE3 VGT has many challenges X
CE4 There are alternatives to VGT in practice with some benefits over VGT X
CE5 14 guidelines to support the adoption, use and long-term use of VGT in industrial practice X X X

F CF1 Comparative results regarding 2nd and 3rd generation GUI-based tools’ abilities X X
CF2 Initial support for completely automated 3rd generation testing X

G CG1 VGT is able to replicate and resolve non-frequent and nondeterministic defects X
CG2 VGT can be paired with manual practices to create novel, semi-automated, test practices X

Sum 11 8 4 3

Table 1.4: Mapping of the individual contributions presented in Section 1.4 to the thesis research questions. P - Paper, ID - Identifier
of contribution, Cont. - Contribution, RQX - Research question X, CPLs - Challenges, problems and limitations.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 41

Furthermore, in contrast to other automated test techniques, VGT enables
regression testing of acceptance tests since, as discussed in Section 1.2.1, ac-
ceptance tests only differ from system tests in terms of the domain information
embedded in the test scenarios, e.g. domain information that also includes the
appearance of the SUT’s GUI. Hence, since image recognition allows VGT to
emulate a human user, it stands to reason that acceptance tests can also be
automated, a conclusion also supported by Papers B and F. However, scenario-
based scripts can only find defects in system states that are explicitly asserted,
which, currently, delimits the use of VGT to automated acceptance regression
testing. Acceptance testing otherwise requires cognitive reasoning and there-
fore a human oracle [69], which implies that it must be performed manually
by an end user.

Additionally, VGT scripts execute faster than manual scenario-based test
cases, reported in Paper B as much as 16 times faster than manual tests.
However, more importantly, VGT scripts execute almost without cost and
can therefore improve test frequency of GUI-based system tests, perceivably
from weekly executions to daily execution or even per code commit. As a
consequence, VGT can significantly improve the frequency of quality feedback
to the system’s developers and raise the system’s quality.

However, VGT scripts are still slow in comparison to other automated test
techniques, i.e. hundreds of automated unit tests can be executed at the same
time as one VGT script. This conclusion presents a potential challenge for the
use of VGT in practice, especially for continuous deployment where software,
on commit, is automatically tested, delivered and deployed to the software’s
customer, discussed further in Section 1.5.2.

Further, whilst a unit test stimulates an individual software component, a
single VGT script can stimulate all components of an entire sub-system, which
thereby makes VGT an efficient means of achieving software component cover-
age. Additionally, a unit test only provides the tester with detailed knowledge
of what component is broken, it does not provide information regarding what
feature of the system is broken. In contrast, a VGT script can identify what
feature of the system is broken but not in what component the defect resides.
This observation implies that automation is required on several levels of system
abstraction to provide test coverage of both software components and features
of the software. In addition, it shows the value of VGT in practice since it
is the only automated test technique that asserts the SUT’s behavior through
the same interface as the user.

However, VGT is not a replacement for existing techniques, e.g. manual
regression testing, since, despite its defect-finding ability, it can only find de-
fective SUT behavior that is explicitly asserted. In contrast, a human tester
can observe faulty system behavior regardless of where or how it manifests
on the GUI. However, as presented in Papers D and E, VGT can, and there-
fore only should, be used to mitigate costly, repetitive and error-prone manual
testing, complemented with manual test practices, such as exploratory testing
that finds new defects [42,43].

As such, the results provided by this thesis show that VGT is applicable
in industrial practice. A conclusion supported by results regarding the tools
flexibility of use, improved test execution speed and defect-finding ability over
manual testing. However, the technique is slower than other automated test

42 CHAPTER 1. INTRODUCTION

techniques, suffers from immature tooling and is suggested to report statis-
tically significantly more false positives for system tests than 2nd generation
GUI-based testing. VGT should therefore be complemented with other auto-
mated test techniques to provide complete test coverage of a SUT, in particular
in continuous delivery contexts.

1.5.2 Feasibility of Visual GUI Testing in practice

In order for VGT to be usable in practice it is not enough that it is applicable, it
also needs to be feasible. Feasibility refers to the practical and cost-effective use
of a technique over a longer period of time, which implies that the development
and maintenance costs of scripts need to provide positive return on investment
(ROI) compared to alternative testing practices, e.g. manual testing, over
time.

VGT is best compared to manual regression testing because both tech-
niques fulfill the same test objective and use the same types of inputs and
outputs for SUT stimulation and assertion. Such a comparison is also valu-
able since manual GUI-based testing is the only available alternative for many
companies [100], e.g. due to SUT legacy or other missing prerequisites for
other automated test techniques.

However, feasibility also involves test execution time since VGT is primarily
an automated regression testing technique which implies that VGT scripts
should be executed frequently to provide fast feedback to developers, i.e. a
practice that would be prohibited by too slow execution time.

Initial data on development costs and execution time of VGT scripts were
acquired in Papers A, B and C and were used in the respective papers to cal-
culate time to positive ROI. However, these results were acquired for different
sized VGT suites and compared to varying manual test execution costs, which
make them incomparable. Therefore the results were recalculated for the de-
velopment, but not maintenance, of a fictional VGT suite of 100 test cases
instead of 10, 300 and 33 test cases reported in Papers A, B and C respec-
tively. These fictional development costs were then compared to the average
total time spent on manual testing per iteration in the three cases (263 man-
hours). Hence, in contrast to previous work where script development time
was compared to the cost of running the manual test suites. This comparison
thereby identifies how many times the VGT suite needs to be executed, af-
ter development, to equal the amount of manual testing that could have been
performed for the same cost, i.e. the number of executions that are required
for VGT adoption to provide positive ROI. Furthermore, the execution time
of each fictional test suite was calculated that gives insights into the frequency
with which the test suites can be executed in practice, i.e. hourly, daily or on
only an even less frequent basis. The inputs and results of these calculations
are presented in Table 1.5.

The table shows that the development costs of a VGT suite are consid-
erable, i.e. in the order of hundreds of hours. However, once developed, the
VGT suite provides positive ROI after 2.3 test suite executions, on average,
compared to the total cost of manual testing with equivalent test cases.

Additionally, the table shows that the execution time of VGT suites can be
significant and we therefore conclude that execution of a full VGT suite does

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 43

Paper Manual
test
costs

Script
dev.
time

Dev.
time
of 100
scripts

Script
exe.
time

Exe.
time
of 100
scripts

Positive
ROI
after

A 150 mh 195
min

325 hours 3 min
27 sec

5 hours
45 min

2 exe.

B 488 mh 206
min

344 hours 18-36
sec

30-60
minutes

2 exe.

C 150 mh 387
min

645 hours 27
min

45 hours 3 exe.

Mean 263 mh 262
min

438
hours

10
min 4
sec

17 hours
15 min

2.3 exe

Table 1.5: Table that summarizes the estimated results on development time,
execution time and ROI of 100 VGT test cases from the results acquired in
Papers A, B and C. Script development time is compared to the average
time spent on manual testing in the three projects, 263 hours. mh.
- Man-hours, Dev. - Development, Exe. - Execution, ROI - Return on
investment, Min - Minutes, Sec - Seconds.

not support faster than continuous integration on a daily basis. Therefore,
test script prioritization is required to run VGT tests for regression testing
and continuous integration on a hourly basis. However, in comparison to in-
dustrial state-of-practice of weekly manual regression tests, VGT still provides
significantly improved test frequency [40].

Additionally, as can be seen in Table 1.5 the development costs and execu-
tion time for the VGT suite reported in Paper C was significantly higher than
in the other two cases. The reason was because the test suite was developed to
be robust, which was achieved by implementing several steps of failure mitiga-
tion code in the scripts and the test suite architecture. As such, we conclude
that the architecture of VGT scripts play a role for the feasibility of VGT
test development, which implies that there are VGT script best practices that
should be followed, e.g. modularized test script design, scripts should be as
short and linear as possible, etc. Further, more robust scripts take longer time
to execute, which can stifle their use for continuous integration if the entire
test suite needs to be executed often. As such there may exist a required
tradeoff between robustness and execution time that needs to be taken into
account during VGT script adoption and development.

However, the estimations presented in Table 1.5 do not take VGT script
maintenance into account. VGT maintenance was evaluated explicitly in Pa-
pers D and E, where Paper D provided support for the feasibility of VGT
script maintenance in two parts. First, the study showed, with statistical
significance, that frequent maintenance of a VGT suite is less costly than in-
frequent maintenance. Additionally, maintenance per script per iteration of
maintenance is lower than the development cost of a script, i.e. there is value
in maintaining scripts rather than to rewrite them, and the cost of maintain-
ing images is lower than script logic. Second, the quantitative results were

44 CHAPTER 1. INTRODUCTION

visualized in a ROI cost model, presented in Section 1.4.4 in Figure 1.6. These
results indicate, in a best case, that the development and maintenance costs of
a VGT suite provides positive ROI within on development iteration, given that
at least 20 percent of the project’s cost is associated with manual testing and
that maintenance is performed frequently. However, if a company currently
spends less time on manual testing and if scripts are maintained infrequently,
the time to positive ROI could be several years, in Saab AB’s case 532 weeks
(or over 10 years).

Consequently, successful long-term use of VGT has several prerequisites.
First, VGT needs to be integrated into the company’s development and test
process and the company’s organization needs to be adopted to the changed
process, e.g. to facilitate the need for frequent maintenance. Second, the
developed VGT suite should follow engineering best practice, i.e. be based
on a modularized architecture, have suitable amounts of failure mitigation,
etc [40]. Further, test scripts shall be kept as short and linear as possible to
mitigate script complexity, which is also mitigated by coding standards that
improve script readability. Third, test automation should first, and foremost,
be performed of stable test cases since this practice mitigates unnecessary
maintenance costs and aligns with the techniques’ primary purpose to per-
form regression testing. Additional factors were reported in Paper D, some
that are common to other automated test techniques, but it is unknown how
comprehensive this set of factors is and future research is therefore required
to expand this set.

In summary we conclude that VGT is feasible in industrial practice with
development and maintenance costs that are significant, yet manageable and
provide positive return on investment. However, there are still challenges
associated with the maintenance of VGT scripts that require suitable practices,
organizational change as well as technical support, to be mitigated.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 45

Description Affect Impact Support
1 VGT scripts (Sikuli) lock up

the computer during execu-
tion

Usage Low E

2 VGT documentation, guide-
lines and APIs, are lacking

Adoption Low B

3 Maintenance is affected by
script readability, complexity,
etc

Maintenance Low B

4 1-to-1 (manual-script) test
cases are not always suitable

Maintenance Medium B,C

5 Manual test specifications
don’t always support script-
ing

Adoption Medium B,C

6 VGT tools (Sikuli and JAu-
tomate) are immature/not ro-
bust

Usage Medium A,B,C,E

7 Image recognition is volatile,
fails randomly

Maintenance Medium A,B,C

8 Script tuning (Synchroniza-
tion, image similarity) is time
consuming

Maintenance Medium B,C,E

9 SUT deficiencies (bugs, miss-
ing functionality) prohibit
scripting

Adoption High B,C

10 Dynamic/non-deterministic
output is a challenge for VGT
scripts

Usage High A,E

11 VGT script image mainte-
nance costs are significant

Maintenance High E

12 VGT scripts (Sikuli) have lim-
ited applicability for mobile
testing

Usage High E

13 Remote script execution
(VNC) negatively affects img.
rec.

Adoption High B,C

Table 1.6: Summary of key reported CPLs. For each CPL, its affect and impact
has been ranked. Affect refers to what the CPL affects (Adoption, Usage or
Maintenance). Impact on how serious (Low, Medium or High) its presence
is for a company. Column “Support” indicates in which studies the CPL was
reported. The table is sorted based on impact.

46
C
H
A
P
T
E
R

1
.

IN
T
R
O
D
U
C
T
IO

N

Phase # Guideline Description
Adoption 1 Manage expectations It is not suitable/possible to automate anything and everything with VGT, consider

what is automated and why?
2 Incremental adoption A staged adoption process that incrementally evaluates the value of VGT is suitable to

minimize cost if the technique is found unsuitable.
3 Use a dedicated team A dedicated team can identify how/when/why to use VGT.
4 Use good engineering VGT costs depend on the architecture of tests/test suites and engineering best practices

should therefore be used, e.g. modularization.
5 Consider used software Different software solutions, e.g. VGT tools and third party software, should be evalu-

ated to find the best solution for the company’s needs.
Use 6 Change roles VGT can require new roles to be trained, which is associated with additional cost.

7 Development process VGT should be integrated into the development process, e.g. definition of done, and
the SUT’s build process, i.e. automatic execution.

8 Organization New roles require organizational changes that can disrupt development before the new
ways of working settle.

9 Code conventions Code conventions help improve readability and maintainability of the scripts.
10 Minimize remote tests For distributed systems, VGT scripts should be run locally or use VGT tools with built

in remote test execution support
Long-term 11 Frequent maintenance The test process needs to prevent test cases degradation to keep VGT maintenance

costs feasible long-term.
12 Measure The costs and value of VGT should be measured to identify improvement possibilities,

e.g. new ways of writing scripts.
13 Version control scripts When the number of SUT variants grow, so do the test suites and they should therefore

be version controlled to ensure SUT compatibility.
14 SUT life-cycle Positive return on investment of VGT adoption occurs after at least one iteration, so

how long will the SUT live?

Table 1.7: Summary of guidelines to consider during the adoption, use or long-term use of VGT in industrial practice.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 47

1.5.3 Challenges, problems and limitations with Visual
GUI Testing in practice

Sections 1.5.1 and 1.5.2 showed that VGT is applicable and feasible in indus-
trial practice but also mentioned challenges, problems and limitations (CPLs)
with the technique. These CPLs were primarily acquired in Papers B, C and
E and have been summarized in Table 1.6. In the table, each CPL has been
classified based on what phase of VGT it affects the most, i.e. adoption, e.g.
adoption, implementation or creation of test scripts, usage, e.g. running the
tests or using the tests for specific test purposes or SUTs and maintenance, e.g.
script maintenance or long-term use of VGT in a project. Further, the impact
of each CPL is classified as low, medium or high, where low means that it is
an annoyance but requires little or no mediation, medium means that it has
a negative effect that can be removed but requires mediation and high means
that it has a negative effect but can only be mitigated, not removed, through
mediation. Mediation, in turn, implies change to a company’s procedures,
organization, VGT scripts, SUT, etc.

Table 1.6 shows that many VGT CPLs relate to the technique’s or its tools’
immaturity, e.g. lack of robustness of both image recognition and the tools
themselves. As the technology matures these should be less of a problem.
Further, contextual factors, such as the test environment, seems to play an
important role, e.g. scripting can be prohibited by poor manual test specifica-
tions, external applications or defects in the SUT. These observations indicate
an interplay between many factors and it is therefore unlikely that any one,
or a simple, solution can be found to solve all the CPLs. Instead, as dis-
cussed in Section 1.5.2, VGT requires process, organizational and technical
changes to be applicable and feasible. Regardless, the results of this thesis
show that most CPLs can be solved or mitigated, as presented in Papers B
and C. Consequently, no CPL was identified that prohibits the technique’s use
in practice but several CPLs are considered more sever, e.g. the reported need
for substantial image maintenance in Paper E.

To provide practitioners with support to avoid these CPLs and the pitfalls
with the VGT, Paper E presented a set of 14 guidelines for the adoption, use
and long-term use of VGT in industrial practice. These guidelines are based
on best practices collected from all the studies presented in this thesis and
have been summarized in Table 1.7. However, this set of guidelines is not
comprehensive and future research is therefore required to expand this list.

Consequently, the results of this thesis show that there are many CPLs as-
sociated with VGT that must be considered by industrial practitioners during
the adoption, use or maintenance of VGT or VGT scripts. However, these
CPLs also provide an academic contribution regarding potential future re-
search areas, i.e. future research to improve the technique’s applicability and
feasibility in practice.

1.5.4 Solutions to advance Visual GUI Testing

The conclusion that VGT is applicable and feasible in industrial practice opens
up the possibility to also focus research on the advancement of the technique’s
use in practice. Advances that were studied in two of the thesis included

48 CHAPTER 1. INTRODUCTION

papers, i.e. Papers F and G.

In Paper F, initial research was performed towards fully automated VGT
by creating a proof-of-concept tool, VGT-GUITAR. VGT-GUITAR was shown
not to be applicable in practice due to technical limitations in the tool but the
study outlines a foundation for flexible, automated, GUI-based, exploratory
testing, i.e. an approach that could have considerable impact in practice to
lower test related costs and improve software quality. Additionally, this ap-
proach could perceivably mitigate the development and image maintenance
costs of VGT through automated acquisition of images from the SUT. Hence,
a technical advancement that would improve the applicability and feasibility
of the current VGT technique in practice.

Further, Paper G reported a novel test process for semi-automated fault
replication with VGT. The process combines the practices of exploratory test-
ing with stimuli provided by a simple VGT script and advances VGT by show-
ing its applicability for finding infrequent and non-deterministic defects. In
addition, the process provides companies with a means of improving their
long-term test practices since long-term tests are generally performed over
weeks or months in practice but generally without SUT stimuli. VGT could
provide such stimuli on the same level of abstraction as a human user and
thereby improve the representativeness of the test results for actual use of the
SUT in practice.

These individual contributions imply that VGT is applicable for more than
regression testing in practice, an observations that roots in its ability to emu-
late end-use behavior. Further, these results imply that VGT can be used in
contexts when the expected output can not be acquired as an oracle, instead,
a more basic oracle, e.g. a crash oracle, can be used together with a human
oracle to find defects, as reported in Paper G. Paper F also indicates that ex-
pected outputs can be automatically acquired through GUI ripping but future
work is required to develop and evaluate the theoretical foundation presented
in Paper F.

In summary, solutions already exist to advance the applicability of VGT,
e.g. by combining VGT with human oracles in semi-automated test practices
or processes. Further, advances in tooling can, through future work, enable
new and more advanced types of automated GUI-based testing based on VGT.

1.5.5 Implications

This thesis presents results with implications for both industrial practice and
academia, e.g. decision support for practitioners and input for future academic
research.

1.5.5.1 Implications for practice

The main implication of this thesis is that VGT can be adopted and used in
industrial practice, also over longer periods of time. This implies that compa-
nies with test (or software) related problems such as lacking interfaces required
by other test frameworks, e.g. due to SUT legacy, or high test related costs,
etc., now have a viable option for test automation. Additionally, adoption of
VGT can help improve the test automation culture in a company, i.e. endorse

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 49

or mandate process, organizational or SUT changes that enable additional test
automation in a company, as reported in Paper E.

For companies that have test automation, VGT provides a complement
to their existing testing toolbox. In particular, VGT can provide high-level
test automation for companies that currently test only on lower levels of sys-
tem abstraction. However, VGT is not a replacement for manual GUI-based
testing, instead it provides a suitable complement to mitigate the need for
repetitive manual testing. This can reduce costs for the company by releasing
resources, i.e. testers, which can instead focus on other types of testing, e.g.
exploratory testing. Additionally, it may also raise the enjoyment of daily work
for the individual, i.e. the human tester or developer. Statements supported
by interview results from Papers B, D and E.

Further, because VGT scripts can run more frequently than manual tests,
VGT can improve system quality [40]. This is an important implication of this
work because it is not only of industrial benefit, but also of benefit to society,
especially for safety-critical software systems, e.g. air-traffic management and
medical systems, since improved quality can imply higher safety.

Another implication is that defect identification of infrequent and non-
deterministic defects, e.g. defects that only manifest after longer periods of
manual system interaction, are no longer out of scope due to cost. This result
also implies that companies can improve their long-term test practices with
continuous, user-emulated, stimuli that improve the tests’ representativeness
for use of the system in practice, as shown in Paper G.

Consequently, VGT provides several benefits to industrial practice by im-
proving companies’ test processes and thereby their software quality, improved
software quality that benefits society as a whole.

1.5.5.2 Future research

This thesis provides fundamental support to the body of knowledge on VGT
regarding the technique’s applicability and feasibility. As such, this research
presents a stepping stone for future research to advance the technique and
automated testing in practice. In this section we have divided future research
into five different tracks; fundamental, technical, process, psychological and
related research, and discuss how each track could be pursued.

Fundamental : Fundamental future research on VGT regards additional
support for the conclusions of this thesis, e.g. studies in more companies
and contexts. The studies included in this thesis were performed with several
companies, VGT tools and domains but more work is required to strengthen
the body of knowledge of VGT and to ensure the generalizability of the results.
Future work can also identify more CPLs and solutions to said CPLs as well as
quantitative support for the long-term applicability of VGT. Hence, research
in more types of contexts, companies and for other types of systems, e.g. web-
systems, but also longitudinal research that follows the entire VGT life cycle
from adoption to use to long-term use of the technique.

Technical : Technical future research refers to technical advancement of
the technique itself, its tools and the image recognition algorithms it is built
on. These improvements could help mitigate the CPLs identified with VGT,
e.g. the robustness of available VGT tools, image recognition algorithms as

50 CHAPTER 1. INTRODUCTION

well as costs associated with image maintenance.

In addition, this track refers to research into novel technical solutions based
on VGT such as completely automated VGT, as outlined by Paper F. This
research could also help solve the image maintenance CPL associated with
VGT, for instance through GUI ripping which would also allow VGT scripts
to easily be migrated between variants of a SUT, since, as reported in Paper E,
test script logic can be reused between variants of an application but images
cannot.

Process: This track regards research into processes and practices to im-
prove the adoption, use or maintenance of VGT, the importance of which
discussed in Papers D and E. For instance, adoption of VGT should be per-
formed incrementally, developed test scripts should be short and linear, the
test suite should have a modularized architecture, etc. Paper E presented
a set of best practice guidelines for VGT but additional work is required to
create a more comprehensive set and to evaluate the current ones validity and
impact in more companies and domains. This track also includes research into
how VGT should be incorporated with other test techniques and practices in
a company, e.g. when and how to use VGT to lower cost and raise software
quality. As discussed in Section 1.5.1, VGT can test that a SUT’s features are
working correctly but not where in the code a defect is, and VGT therefore
needs to be complemented with testing on lower levels of system abstraction,
especially for continuous delivery and deployment [45]. However, how to effi-
ciently combine VGT with other automated test techniques is still a subject
of future research.

Consequently, this track primarily focuses on research into improving best
practice guidelines for how VGT should be adopted and used in industrial
practice and in different contexts. In addition, this track includes development
of novel practices and processes, as presented in Paper G, i.e. processes that
make use of VGT for semi-automated testing.

Psychology : The thesis explored the enjoyment of using VGT in Papers
B and D but enjoyment is only one factor that affect the use of a tool or
technique in practice, other factors such as stress, motivation, etc. are also
of interest. Hence, psychological factors that could affect practitioners’ per-
ception of the technique and which could potentially be improved through
improved tooling or practices. This research could also help answer why VGT
has only seen moderate adoption in practice so far and why adoption of VGT
seems to facilitate adoption of additional automation in a company as reported
in Paper E. Additionally, this research could provide further insights to guide
the research in the aforementioned fundamental and process oriented research
tracks, e.g. what factors to focus on to improve the technique’s applicability
or feasibility in practice.

Related research: This track relates to generalization of the results of
this thesis for other automated test techniques. For instance, this thesis re-
ports several CPLs and solutions that are general to other automated test
techniques. However, future research is required to analyze if said solutions
are applicable for other test techniques in practice. Further, only a few solu-
tions were reported for the CPLs, but it is possible that solutions that exist for
other techniques can be migrated to solve VGT CPLs. Hence, cross-technical
migration of solutions to common CPLs.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 51

Research
question

Internal
validity

External
validity

Construct
validity

Reliability/
conclusion
validity

RQ1:
Applica-
bility

High High High Moderate

RQ2:
Feasibil-
ity

High High High Moderate

RQ3:
CPLs

Moderate Moderate High Moderate

RQ4:
Future

Moderate Moderate Moderate High

Table 1.8: Summary of the threats to validity of the thesis results for each of
the thesis research questions. CPLs - Challenges, problems and limitations.

In addition, this thesis showed that it is possible to expand the applicability
of VGT by combining it with manual practices and human oracles, a practice
that is assumed to be generalizable to other automated test techniques and
thereby warrants future research. Such research is of industrial interest, and
importance, since it could theoretically allow companies to reuse existing tools
and techniques for new purposes, thereby expanding their usefulness and im-
prove the company’s developed software.

Finally, this track includes research of how to extend or improve other
test techniques with VGT capabilities, as outlined in Paper F where a hybrid
tool for GUI-based testing was created. This research was performed with
the 2nd generation GUI-based tool GUITAR but similar development could
be done for other tools, e.g. the commonly used tool Selenium [55], to allow
these tools to also assert the SUT’s behavior through the SUT’s pictorial GUI.
Thus providing the tools with a wider range of applicability in practice.

1.5.6 Threats and limitations of this research

This section presents an analysis of the threats to validity of the results and
conclusions presented in this thesis. Threats to validity were analyzed based
on the internal, external and construct validity as well as reliability/conclusion
validity of the work [71]. A summary of the evaluated validity for each research
question has been presented in Table 1.8 where validity is classified either as
low, moderate or high.

1.5.6.1 Internal validity

Internal validity refers to the cohesion and coherence of the results that sup-
port a research question. This was achieved in the thesis with an incremen-
tal research process where each study was based on the results, or gaps of
knowledge, from previous studies. Additionally, as can be seen in Table 1.4,
the papers included in this work provide multiple support for each research

52 CHAPTER 1. INTRODUCTION

question and also results that complement each other. For instance, the quan-
titative results regarding the feasibility of VGT (Papers B and D could be
triangulated by statements from practitioners that had used the technique for
a longer period of time (Papers D and E). Similar connections were found for
results that support the applicability, for instance regarding the technique’s
defect finding ability, both for regression testing (Papers B, C, D and E) and
for infrequent/non-deterministic defects, (Paper F). Therefore the internal va-
lidity of the conclusions for research questions 1 and 2 are considered high.

However, the internal validity of identified CPLs is only considerate mod-
erate because different, unique, CPLs were identified in different studies. This
observation implies that there could be additional CPLs that can emerge in
other companies and domains.

Lastly, the internal validity regarding advances of VGT are also perceived
to be moderate because these results were only provided from two studies, i.e.
Paper F and G, which had specific focuses that are perceived narrow compared
to the many possible advances to VGT as outlined in Section 1.5.5.2.

1.5.6.2 External validity

External validity refers to the generalizability of the results or conclusions for
other contexts and domains. The external validity of the conclusions regard-
ing the applicability and feasibility of VGT are considered high because the
results for these conclusions were acquired in different companies and with
different VGT tools. Additionally, the research results come from both com-
panies developing safety-critical software as well as agile companies developing
non-safety-critical applications.

CPLs were acquired in the same contexts as the technique’s applicability
and feasibility but many of the reported CPLs were context dependent and it
is unknown how comprehensive the set of identified CPLs are. Therefore the
external validity for this research question is only considered moderate. How-
ever, the reported practitioner guidelines were triangulated with both studies
on VGT in different contexts and domains as well as related research. As such
the external validity of these guidelines is considered high, but more work is
required to expand and evaluate this set of guidelines in the future.

Finally, for VGT advances, the external validity of the results are only
considered moderate because the thesis only includes two studies, Papers F
and G, which provide insights into explicit advances of the technique and it is
therefore unknown how valuable advances in these areas would be for different
industrial contexts and domains.

1.5.6.3 Construct validity

Construct validity refers to the research context’s ability to provide valid re-
sults to answer the study’s research questions. Most of the studies presented
in this thesis were conducted in industrial practice and they are therefore per-
ceived to have provided results of high construct validity to research questions
1, 2 and 3. However, research question 4, had less industrial support, only
Paper G, whilst the other main contributor to the question, Paper F, was per-
formed as an experiment in an academic setting with software applications,

1.6. THESIS SUMMARY 53

and tools, with limited representativeness for software in industrial practice.
Therefore, the construct validity for question 4 is only considered moderate.

1.5.6.4 Reliability/conclusion validity

Reliability/conclusion validity refers to the ability to replicate the study with
the same results. The majority of the studies presented in this thesis were in-
dustrial case studies which implies that none of these studies can be replicated
exactly. To mitigate this threat, the research methodology of each study has
been presented in detail, a practice that is perceived to allow the validity of
the studies to be judged without replication, triangulate the studies’ results
between the studies and replicate the studies in similar contexts. Further,
an effort has been made in this thesis to outline the overall research process
for the thesis work. However, due to the lack of replicability, of the major-
ity of the studies, the overall reliability/conclusion validity of this research
is considered moderate with the exception of the study presented in Paper
F that presents an academic experiment that would be replicable by another
researcher provided the study’s research materials.

1.6 Thesis summary

The objective of this thesis was to find evidence for, or against, the indus-
trial applicability and feasibility of Visual GUI Testing (VGT). This objective
was motivated by the industrial need for a flexible technique to test software
systems at high levels of system abstraction to alleviate the need for manual
testing techniques that are often costly, tedious and error-prone.

The thesis work followed an incremental research methodology that began
with exploratory studies to evaluate the applicability of VGT in practice. The
research proceeded with studies to explain the challenges, problems and limi-
tations (CPLs) and maintenance costs associated with the technique and was
concluded with a study to verify the previously collected results and acquire
evidence for the long-term use of VGT in industrial practice. Lastly, potential
advances of VGT were evaluated that also outlined new areas of research and
development for, or based on, VGT.

The results of these studies show that VGT is applicable and feasible in
industrial practice, where applicability was supported by its:

� Faster test execution speed and improved test frequency over manual
testing,

� Equal or greater defect finding ability than manual test cases,

� Ability to identify infrequent and non-deterministic defects that are too
costly to find manually,

� Ability to verify the conformance of a SUT’s behavior and appearance
through the SUT’s pictorial GUI, and

� Flexibility of use for any system with a GUI regardless of implementation
language, operating system or platform.

54 CHAPTER 1. INTRODUCTION

In turn, the feasibility of the technique was supported by:

� Positive return on investment (ROI) of VGT adoption if frequent main-
tenance is performed,

� Maintenance costs that per iteration of maintenance per script are sig-
nificantly lower than the development cost per script,

� Script execution times that allow VGT to be used for daily continu-
ous integration, development and delivery, which also contributes to the
applicability of VGT, and

� Results from industry that show its feasible use over many months or
even years.

However, acquisition of these results also uncovered many challenges, prob-
lems and limitations associated with the technique, which include, but were
not limited to:

� Robustness problems associated with present-day VGT tools and the
image recognition algorithms they use,

� Substantial costs associated with maintenance of images,

� Required, costly to achieve, synchronization between scripts and SUT
execution, and

� Environmental factors that affect the adoption, use or maintenance of
VGT scripts, but also

� 14 practitioner oriented guidelines that serve to ease the adoption and
use of VGT in industrial practice.

However, none of the identified CPLs was perceived, in our studies, to prohibit
the use of VGT in industrial practice.

Because of the identified support for VGT, advances to the technique itself
were also evaluated. First, by combining VGT with automated GUI com-
ponent ripping, model-based testing and test case generation a more fully
automated VGT approach was outlined. However, only initial results were
acquired but enough to warrant future research which could help mitigate the
costs of development and need for image maintenance reported from indus-
trial practice. Second, an experience report from industry reported the use
of VGT in a semi-automated exploratory process, which provides a broader
research contribution since it shows that automated tools and techniques can
be combined with manual practices to cover additional test objectives.

In summary, this thesis shows that VGT is applicable and feasible in in-
dustrial practice with several benefits over manual testing. The thesis also
provides cost information and CPLs that are pitfalls that industrial practi-
tioners must consider to make an informed decisions about VGT adoption. As
such, this work provides a clear contribution for a wider industrial adoption
of Visual GUI Testing. In addition, the thesis advances the knowledge on
GUI-based testing and outlines several important areas of future research.

Chapter 2

Paper A: Static evaluation

Automated System Testing using Visual GUI Testing Tools:
A Comparative Study in Industry

E. Börjesson, R. Feldt

Proceedings of the 5th International Conference on Software Testing
Verification and Validation (ICST’2012), Montreal, Canada, April
17-21, 2013 pp. 350-359.

55

Abstract

Software companies are under continuous pressure to shorten time to mar-
ket, raise quality and lower costs. More automated system testing could be
instrumental in achieving these goals and in recent years testing tools have
been developed to automate the interaction with software systems at the GUI
level. However, there is a lack of knowledge on the usability and applicabil-
ity of these tools in an industrial setting. This study evaluates two tools for
automated visual GUI testing on a real-world, safety-critical software system
developed by the company Saab AB. The tools are compared based on their
properties as well as how they support automation of system test cases that
have previously been conducted manually. The time to develop and the size of
the automated test cases as well as their execution times have been evaluated.
Results show that there are only minor differences between the two tools, one
commercial and one open-source, but, more importantly, that visual GUI test-
ing is an applicable technology for automated system testing with effort gains
over manual system test practices. The study results also indicate that the
technology has benefits over alternative GUI testing techniques and that it can
be used for automated acceptance testing. However, visual GUI testing still
has challenges that must be addressed, in particular the script maintenance
costs and how to support robust test execution.

56 CHAPTER 2. PAPER A: STATIC EVALUATION

2.1 Introduction

Market trends with demands for faster time-to-market and higher quality soft-
ware continue to pose challenges for software companies that often work with
manual test practices that can not keep up with increasing market demands.
Companies are also challenged by their own systems that are often Graph-
ical User Interface (GUI) intensive and therefore complex and expensive to
test [101], especially since software is prone to changing requirements, mainte-
nance, refactoring, etc., which requires extensive regression testing. Regression
testing should be conducted with configurable frequency [38], e.g. after system
modification or before software release, on all levels of a system, from unit
tests, on small components, to system and acceptance tests, with complex end
user scenario input data [102,103]. However, due to the market imposed time
constraints many companies are compelled to focus or limit their manual re-
gression testing with ad hoc test case selection techniques [104] that do not
guarantee testing of all modified parts of a system and cause faults to slip
through.

Automated testing has been proposed as one solution to the problems with
manual regression testing since automated tests can run faster and more often,
decreasing the need for test case selection and thereby raising quality, while
reducing manual effort. However, most automated test techniques, e.g. unit
testing [14, 32], Behavioral Driven Development [105], etc., approach testing
on a lower system level that has spurred an ongoing discussion regarding if
these techniques, with certainty, can be applied on high-level system tests,
e.g. system tests [15, 16]. This uncertainty has resulted in the development
of automated test techniques explicit for system and acceptance tests, e.g.
Record and Replay (R&R) [6, 106, 107]. R&R is a tool-supported technique
where user interaction with a System Under Test’s (SUT) GUI components are
captured in a script that can later be replayed automatically. User interaction
is captured either on a GUI component level, e.g. via direct references to the
GUI components, or on a GUI bitmap level, with coordinates to the location
of the component on the SUT’s GUI. The limitation with this technique is that
the scripts are fragile to GUI component change [108], e.g. API, code, or GUI
layout change, which in the worst case can render entire automated test suites
inept [12]. Hence, the state-of-practice automated test techniques suffer from
limitations and there is a need for a more robust technique for automation of
system and acceptance tests.

In this paper, we investigate a novel automated testing technique, which
we in the following call visual GUI testing, with characteristics that could lead
to more robust system test automation [54]. Visual GUI testing is a script
based testing technique that is similar to R&R but uses image recognition,
instead of GUI component code or coordinates, to find and interact with GUI
bitmap components, e.g. images and buttons, in the SUT’s GUI. GUI bitmap
interaction based on image recognition allows visual GUI testing to mimic user
behavior, treat the SUT as a black box, whilst being more robust to GUI layout
change. It is therefore a prime candidate for better system and acceptance test
automation. However, the body of knowledge regarding visual GUI testing is
small and contain no industrial experience reports or other studies to support
the techniques industrial applicability. Realistic evaluation on industrial scale

2.2. RELATED WORK 57

testing problems are key in understanding and refining this technique. The
body of knowledge neither contains studies that compare different visual GUI
testing tools or the strengths and weaknesses of the technique in the industrial
context.

This paper aims to fill these gaps of knowledge by presenting a comparison
of two visual GUI testing tools, one commercial referred to as Commercial-
Tool1, and one open source, called Sikuli [54], in an industrial context to
answer the following research questions:

RQ1: Is visual GUI testing applicable in an industrial context to automate
manual high-level system regression tests?

RQ2: What are the advantages and disadvantages of visual GUI testing
for system regression testing?

To answer these questions we have conducted an empirical, multi-step case
study at a Swedish company developing safety-critical software systems, Saab
AB. A preparation step evaluated key characteristics of the two tools and what
could be the key obstacles to applying it at the company. Dynamic evaluation
of the tools was then done in an experimental setup to ensure the tools could
handle key aspects of the type of system testing done at the company. Finally,
a representative selection of system test cases for one of the company’s safety-
critical subsystems was automated in parallel with both of the tools. Our
results and lessons learned give important insight on the applicability of visual
GUI testing.

The paper is structured as follows; section 2.2 presents related work fol-
lowed by section 2.3 that describes the case study design. Section 2.4 presents
results which are then discussed in section 2.5. Section 2.6 concludes the paper.

2.2 Related Work

The body of knowledge on using GUI interaction and image recognition for
automation is quite large and has existed since the early 90s, e.g. Potter [18]
and his tool Triggers used for GUI interactive computer macro development.
Other early works includes Zettlemoyer and Amant who explored GUI au-
tomation with image recognition in their tool, VisMap. VisMap’s capabilities
were demonstrated through automation of a visual scripting program and the
game Solitaire [19]. These early works did however not focus on automated
testing but rather automation in general with the help of image recognition
algorithms.

There is also a large body of knowledge on using GUI interaction for soft-
ware testing, as shown by Adamoli et al. [106] who have surveyed 50 papers
related to automated GUI testing for their work on GUI performance test-
ing. Note that we differentiate between GUI interaction for automation and
GUI interaction for testing since all techniques for GUI automation are not
intended for testing and vice versa.

One of the most common GUI testing approaches is Record and Replay
(R&R) [6, 106, 107]. R&R is based on a two step process where user mouse

1For reasons of confidentiality we cannot disclose the name of the tool.

58 CHAPTER 2. PAPER A: STATIC EVALUATION

and keyboard inputs are first recorded and automatically stored in a script
that the tool can then replay in the second step. Different R&R tools record
user input on different GUI abstraction levels, e.g. the GUI object level or the
GUI bitmap level, with different advantages and disadvantages for each level.
On the top GUI bitmap level a common approach is to save the coordinates
of the GUI interaction in a script, with the drawback that the script becomes
sensitive to reconfiguration of GUI layout but with the advantage of making
the scripts robust to API and code changes. The other R&R approach is to
record SUT interaction on a lower GUI object level by saving references to
the GUI code components, e.g. Java Swing components, which instead make
the scripts sensitive to API and code structure change [12] but more robust to
GUI layout reconfiguration.

GUI testing can also be conducted on the top GUI bitmap level with tech-
niques that use image recognition to execute test scenarios [54], in this paper
referred to as visual GUI testing. Visual GUI testing is very similar to the
R&R approach but with the important distinction that R&R tools do not use
image recognition and are thus more hardcoded to the exact positioning of
GUI elements. In current visual GUI testing tools, the common approach is
that scenarios are written manually in scripts that include images for SUT
interaction in contrast to the R&R approach where test scripts are commonly
generated automatically with coordinates or GUI component references. In a
typical visual GUI testing script input is given to the SUT through automated
mouse and keyboard commands to GUI bitmap components identified through
image recognition, output is then observed, once again with image recognition,
and compared to expected results after which the next sequence of input is
given to the SUT, etc. The advantages of visual GUI testing is that it is im-
pervious to GUI layout reconfiguration, API and code changes, etc., but with
the disadvantage that it is instead sensitive to changes to GUI bitmap objects,
e.g. change of image size, shape or color.

A different approach to GUI testing is to base it on models, e.g. generate
test cases from finite state machines (FSM) [109, 110]. However, the models
often need to be created manually at considerable cost and the approach often
face scalability problems. Automated model creation approaches have been
proposed, such as GUI ripping proposed by Memon [111].

Hence, the area of GUI interaction, automation and testing, is quite broad
but limited regarding empirical studies evaluating the techniques on real-world,
industrial-scale software systems. Comparative research has been done on tools
that use the R&R technique [106], but, to the authors’ knowledge, there are no
studies that compare visual GUI testing tools or evaluate if they can substitute
manual regression testing in the industrial context.

Another important test aspect is acceptance testing where user and cus-
tomer requirement conformity is verified with test scenarios that emulate end
user interaction with the SUT. The tests are similar to system test cases, but
contain more end user specific interaction information, i.e. how the system will
be used in its intended domain. Acceptance test scenarios should preferably
be automated and run regularly to verify system conformity to the system
requirements [38] and has therefore been subject to academic research. The
academic research has resulted in both tools and frameworks for acceptance
test automation, including tools for GUI-interaction [31], but to the authors’

2.3. CASE STUDY DESCRIPTION 59

knowledge there is no research using visual GUI testing for acceptance testing.

2.3 Case Study Description

The empirical study presented in this paper was conducted in a real-world,
industrial context, in one business area of the company Saab AB, in the con-
tinuation of this paper referred to as Saab. Saab develops safety critical air
traffic control systems that consist of several individual subsystems of which
a key one was chosen as the subject of this study. The subsystem has in the
order of 100K Lines of Code (LOC), constituting roughly one third of the
functionality of the system it is part of, and is tested with different system
level tests, including 50 manual scenario based system test cases. At the time
of the study the subsystem was in the final phase for a new customer release
that was one reason why it was chosen. Other reasons for the choice included
the subsystem size in LOC, the number of manual test cases, and because
it had a non-animated GUI. With non-animated we mean that there are no
moving graphical components, only components that, when interacted with,
change face, e.g. color. Decision support information for what subsystem to
include in the study was gathered through document analysis, interviews and
discussions with different software development roles at Saab.

CommercialTool was selected for this study because Saab had been con-
tacted by the tool’s vendor and been provided with a trial license for the tool
that made it accessible. It is a mature product for visual GUI testing having
been on the market since more than 5 years. The second tool, Sikuli, was
chosen since it seemed to have similar functionality as CommercialTool and, if
applicable, would be easier to refine and adapt further to the company context.
The company was also interested in the relative cost benefits of the tools, i.e.
if the functionality or support of CommercialTool would justify its increased
up-front cost.

The methodology used in the study was divided into two main phases,
shown in Figure 2.1, with three steps in each phase. Phase one of the study
was a pre-study with three different steps. An initial tool analysis compared
the tools based on their static properties as evaluated through ad hoc script
development and review of the tools’ documentation. This was followed by
a series of experiments with the goal of collecting quantitative metrics on
the strengths and weaknesses of the tools. The experiments also served to
provide information about visual GUI testing’s applicability for different types
of GUIs, e.g. animated with moving objects and non-animated with static
buttons and images, which would provide decision support for, and possibly
rule out, what type of system to study at Saab in the second phase of the
study. In parallel with these experiments an analysis of the industrial context
at Saab was also conducted. Phase two of the study was conducted at Saab
and started with a complete manual system test of all the 50 test cases of
the studied subsystem. This took 40 hours, spread over five days, during
which the manual test cases were categorized based on their level of possible
automation with the visual GUI testing tools. Both of the visual GUI testing
tools were then used to automate five, carefully selected, representative, test
case scenarios (ten percent) of the manual test suite during which metrics on

60 CHAPTER 2. PAPER A: STATIC EVALUATION

Experiments
Industrial context analysis

Comparable tool
properties and

Experimental results

Classified test cases

Test case Selection and
Automation

Collected Development and Execution metrics

Data analysis

Conclusions

Pre-Study

Industrial-Study Manual system test
participation

Company and
system context

information

Initial tool analysis

Figure 2.1: Overview of research methodology (square nodes show activi-
ties/steps and rounded ones outcomes).

script development time, script LOC and script execution time were collected.
In the following sections the two phases of the methodology will be de-

scribed in more detail.

2.3.1 Pre-study

Knowledge about the industrial context at Saab was acquired through docu-
ment analysis, interviews and discussions with different roles at the company.
The company’s support made it possible to identify a suitable subsystem for
the study, based on subsystem size, number of manual test cases, GUI prop-
erties, criticality, etc., and to identify the manual test practices conducted at
the company.

In parallel with the industrial context analysis, static properties of the
studied tools were collected, through explorative literature review of the tools’
documentation and ad hoc script development. The collected properties were
then analyzed according to the quality criteria proposed by Illes et al. [112],
derived from the ISO/IEC 9126 standard supplemented with criteria to define
tool vendor qualifications. The criteria refer to tool quality and are defined as
Functionality, Reliability, Usability, Efficiency, Maintainability, Portability,
General vendor qualifications, Vendor support, and Licensing and pricing.

The tools were also analyzed in four structured experiments where scripts
were written in both tools, with equivalent instructions to make the scripts
comparable, and then executed against controlled GUI input. The GUI input
was classified into two groups, animated GUIs and non-animated GUIs, chosen

2.3. CASE STUDY DESCRIPTION 61

GUI input
applications,
VNC server

VNC connection
User account 1 User account 2

Commands to
user account 2

Screen from
user account 2

MacBook Pro

CommercialTool

Sikuli + VNC
viewer

Figure 2.2: Visualization of the experimental setup.

to cover and evaluate how the tools perceivably performed for different types
of industrial systems. The ability to handle animated GUIs is critical for
visual GUI testing tools since they apply compute-intensive image recognition
algorithms that might not be able to cope with highly dynamic GUIs. Eight
scripts were written in total, four in each tool, and each one was executed in
30 runs for each experiment. The experiments have been summarized in the
following list:

Experiment 1: Aimed to determine how well the tools could differentiate be-
tween alpha-numerical symbols by adding the numbers six and
nine in a non-animated desktop calculator by locating and
clicking on the calculator’s buttons.

Experiment 2: Aimed to determine how the tools could handle small graph-
ical changes on a large surface, tested by repeated search of
the computer desktop for a specific icon to appear that was
controlled by the researcher.

Experiment 3: Aimed to test the tools image recognition algorithms in an
animated context by locating the back fender of a car driving
down a street in a video clip in which the sought target image
was only visible for a few video frames.

Experiment 4: Also in an animated context, aimed to identify how well the
tools could track a moving object over a multi-colored surface
in a video clip of an aircraft, represented by its textual call-sign,
moving across a radar screen.

The four experiments cover typical functionality and behavior of most software
system GUIs, e.g. interaction with static objects such as buttons or images,
timed events and objects in motion, to provide a broad view of the applicability
of the tools for different systems. Experiment 4 was selected since it is similar
to one of the systems developed by the company.

The experiments were run on a MacBook Pro computer, with a 2.8GHz
Intel Core 2 Duo processor, using virtual network computing (VNC) [113],
which was a requirement for CommercialTool. CommercialTool is designed
to be non-intrusive, meaning that it should not affect the performance of the

62 CHAPTER 2. PAPER A: STATIC EVALUATION

Tools (Sikuli and
CommercialTool)

Subsystem
part A

Subsystem
part B Simulators

VNC Connections

Computer 1

Computer 2 Computer 3 Computer 4

SUT

LAN connection

Figure 2.3: Visualization of the test system setup.

SUT, and to support testing of distributed software systems. This is achieved
by performing all testing over VNC and support for it is built into the tool.
Sikuli does not have VNC support so to equalize the experiment conditions
Sikuli was paired with a third party VNC viewer application. The VNC viewer
application was run on one user account connected to a VNC server on a second
user account on the experiment computer, visualized in Figure 2.2.

Finally the visual GUI testing tools were also analyzed in terms of learn-
ability since this aspect affects the technique’s acceptance, e.g. if the tool has
a steep learning curve it is less likely to be accepted by users [114]. The
learnability was evaluated in two ad hoc experiments using Sikuli, where two
individuals with novice programming knowledge, at two different occasions,
had to automate a simple computer desktop task with the tool.

2.3.2 Industrial Study

The studied subsystem at Saab consisted of two computers with the Windows
XP operating system, connected through a local area network (LAN). The
LAN also included a third computer running simulators, used during manual
testing to emulate domain hardware controlled by the subsystem’s GUI. The
GUI consisted primarily of custom-developed GUI components, such as but-
tons and other bitmap graphics, and was non-animated. During the study a
fourth computer was also added to the LAN to run the visual GUI testing tools
and VNC, visualized in Figure 2.3. VNC is scalable for distributed systems
so the level of complexity of the industrial test system setup, Figure 2.3, was
directly comparable to the complexity of the experimental setup used during
the pre-study, Figure 2.2.

In the first step of the industrial study the researchers conducted a complete
manual system test of the chosen subsystem with two goals. The first goal was
to categorize the manual test cases as fully scriptable, partially scriptable or
not scriptable based on the tool properties collected during the pre-study. The
categorization provided input for the selection of representative manual test

2.3. CASE STUDY DESCRIPTION 63

cases to automate and showed if enough of the manual test suite could be
automated for the automation to be valuable for Saab.

All the subsystem’s manual test cases were scenario based, written in nat-
ural language, including pre- and post-conditions for each test case and were
organized in tables with three columns. Column one described what input to
manually give to the subsystem, e.g. click on button x, set property y, etc.
Column two described the expected result of the input, e.g. button x changes
face, property y is observed on object z, etc. The last column was a check box
where the tester should report if the expected result was observed or not. The
test case table rows described the test scenario steps, e.g. after giving input x,
observing output y and documenting the result in the checkbox on row k the
scenario proceeded on row k+1, etc., until reaching the final result checkbox
on row n. Hence, the test scenarios were well defined and documented in a
way suitable as input for the automation.

The second research purpose of conducting the manual system test was
to acquire information of how the different parts of the subsystem worked
together and what or which test cases provided test coverage for which part(s)
of the subsystem. Test coverage information was vital in the manual test case
selection process to ensure that the selected test cases were representative for
the entire test suite so that the results could be generalized. Generalization
of the results was required since it was not feasible to automate all 50 of the
subsystem’s manual test cases during the study.

Five test cases were selected for automation with the goal of capturing
as many mutually exclusive GUI interaction types as possible, e.g. clicks, se-
quences of clicks, etc., to ensure that these GUI interaction types, and in turn
test cases including these GUI interaction types, could be automated. GUI
interaction types with properties that added complexity to the automation
were especially important to cover in the five automated test cases, the most
complex properties have been listed below:

1. The number of physical computers in the subsystem the test case re-
quired access to.

2. Which of the available simulators for the subsystem the test case re-
quired access to.

3. The number of run-time reconfigurations of the subsystem the test case
included.

The number of physical computers would impose complexity by requiring
additional VNC control code and interaction with a broader variety of GUI
components, e.g. interaction with custom GUI components in subsystem part
A and B and the simulators. Simulator interaction was also important to
cover in the automated test cases since if some simulator interaction could
not be automated neither could the manual test cases using that simulator.
Run-time reconfiguration in turn added complexity by requiring the scripts to
read and write to XML files. In Table 2.1 the five chosen test cases have been
summarized together with which of the three properties they automate. The
minimum number of physical computers required in any test case were two
and maximum three whilst the maximum number of run-time configurations
in any test case were also three. There were four simulators, referred to as

64 CHAPTER 2. PAPER A: STATIC EVALUATION

Test case Physical
comput-
ers

Run-
time
config.

Simulator

Test case 1 2 3 A
Test case 2 2 0 B
Test case 3 2 2 A
Test case 4 2 0 A
Test case 5 3 0 A

Table 2.1: Properties of the manual test cases selected for automation. The
number of physical computers does not include the computer used to run the
visual GUI testing tools.

A, B, C and D, but only simulators A and B were automated in any script
because they were the most commonly used in the manual test cases and also
had the most complex GUIs. In addition, simulators C and D had very similar
functionality to A and B and had no unique GUI components not present in A
or B and were therefore identified as less important and possible to automate.

Once the representative test cases had been selected from the manual test
suite they were automated in both of the studied tools during which metrics
were collected for comparison of the tools and the resulting scripts. Metrics
that were collected included script development time, script LOC and script
execution time.

2.4 Results

Below the results gathered during the study are presented divided into the
results gathered during the pre-study and the results gathered during the in-
dustrial phase of the study.

2.4.1 Results of the Pre-study

The pre-study started with a review of the studied visual GUI testing tools’
documentation from which 12 comparable static tool properties relevant for
Saab were collected. The 12 properties are summarized in Table 2.2 that
shows which property had impact on what tool quality criteria defined by Illes
et al. [112], described in section 2.3. The table also shows what tool was the
most favorable to Saab in terms of a given property, e.g. CommercialTool was
more favorable in terms of real-time feedback than Sikuli. The favored tool is
represented in the table with an S for Sikuli, CT for CommercialTool and (-)
if the tools were equally favorable.

In the following section each of the 12 tool properties are discussed in more
detail, compared between the tools and related to what tool quality criteria
they impact.

Developed in: CommericalTool is developed in C#, whilst Sikuli is devel-
oped in Jython (a Python version in Java), which is relevant for the portability
of the tools since CommercialTool only works on certain software platforms

2.4. RESULTS 65

whilst Sikuli is platform independent. Sikuli, being open source, also allows
the user to expand the tool with new functionality, written in Jython, whilst
users of CommercialTool must rely on vendor support to add tool functionality.

Script Language syntax: The script language in Sikuli is based on
Python, extended with functions specific for GUI interaction, e.g. clicking
on GUI objects, writing text in a GUI, waiting for GUI objects, etc. Sikuli
scripts are written in the tool’s Integrated Development Environment (IDE)
and because of the commonality between Python and other imperative/Object-
Oriented languages the tool has both high usability and learnability with per-
ceived positive impact on script maintainability. The learnability of Sikuli
is also supported by the learnability experiments conducted during the pre-
study, described in Section 2.3, where novice programmers were able to develop
simple Sikuli scripts after only 10 minutes of Sikuli experience and advanced
scripts after an hour.

CommercialTool has a custom scripting language, modelled to resemble
natural language that the user writes in the tool’s IDE, which has a lot of
functionality, but the tool’s custom language has a higher learning curve than
Sikuli script. The usability of CommercialTool is however strengthened by the
script language instruction-set that is more extensive than the instruction-set
in Sikuli, e.g. including functionality to analyze audio output, etc. Both Sikuli
and CommercialTool do however support all the most common GUI inter-
action functions and programming constructs, e.g. loops, switch statements,
exception handling, etc.

Supports imports: Additional functionality can be added to Sikuli by
user-defined imports written in either Java or Python code to extend the
tool’s usability and efficiency. CommercialTool does not support user-defined
imports and again users must rely on vendor support to add tool functionality.

Image representation in tool IDE: Scripts in CommercialTool refers to
GUI interaction objects (such as images) through textual names whilst Sikuli’s
IDE shows the GUI interaction objects as images in the script itself. The image
presentation in Sikuli’s IDE makes Sikuli scripts very intuitive to understand,
also for non-developers, which positively affects the usability, maintainability
and portability of the scripts between versions of a system. In particular this
makes a difference for large scripts with many images.

Real-time script execution feedback: CommercialTool provides the
user with real-time feedback, e.g. what function of the script is currently being
executed and success or failure of the script. Sikuli on the other hand executes
the script and then presents the user with feedback, i.e. post script execution
feedback. This lowers the usability and maintainability of test suites in Sikuli
since it becomes harder to identify faults.

Image recognition sweeps per second: Sikuli has one image recogni-
tion algorithm that can be run five times every second whilst the image recog-
nition algorithm in CommercialTool runs seven times every second. Commer-
cialTool is therefore potentially more robust, e.g. to GUI timing constraints,
and have higher reliability and usability, at least in theory, than Sikuli for this
property.

Image recognition failure mitigation: CommercialTool has several
image recognition algorithms with different search criteria that give the tool
higher reliability, usability, efficiency, maintainability and portability by pro-

66 CHAPTER 2. PAPER A: STATIC EVALUATION

Property Commer-
cialTool

Sikuli Impacts Favored
tool

Developed in C# Jython F/P/VS S
Script language
syntax

Custom Python F/U/M S

Supports im-
ports

No Java and
Python

F/U/E/
VS

S

Image represen-
tation in tool
IDE

Text-
Strings

Images F/U/M/P S

Real-time script
execution feed-
back

Yes No U/M CT

Image recogni-
tion sweeps per
second

7 5 F/R/U CT

Image recogni-
tion failure mit-
igation

Multiple
algorithms
to choose
from

Image
similarity
configu-
ration

F/R/U/
E/M/P

CT

Test suite sup-
port

Yes Unit tests
only

F/U/M/P -

Remote SUT
connection
support

Yes No F/U/P -

Remote SUT
connection
requirement

Yes No F/U/P S

Cost 10.000
Euros per
license per
computer

Free U/LP S

Backwards com-
patibility

Guaranteed Uncertain F/M/
GVQ

CT

Table 2.2: Results of the property comparison between CommercialTool and
Sikuli. Column Impacts: F - Functionality, R - Reliability, U - Usability,
E - Efficiency, M - Maintainability, P - Portability, GVQ - General Vendor
qualifications, VS - Vendor Support, LP - Licensing and pricing. Column
Favored tool: S - Sikuli, CT - CommercialTool, (-) - Equal between the tools

2.4. RESULTS 67

viding automatic script failure mitigation. Script failure mitigation in Sikuli
requires manual effort, e.g. by additional failure mitigation code or by setting
the similarity, 1 to 100 percent, of a bitmap interaction object required for
the image recognition algorithm to find a match in the GUI. Hence, Sikuli has
less failure mitigation functionality that can have negative effects on usability,
reliability, etc.

Test suite support: Sikuli does not have built in support to create,
execute or maintain test suites with several test scripts, only single unit tests.
CommercialTool has such support built in. A custom test suite solution was
therefore developed during the study that uses Sikuli’s import ability to run
several test scripts in sequence, providing Sikuli with the same functionality,
usability, perceived maintainability and portability.

Remote SUT connection support / requirement: Sikuli does not
have built in VNC support, a property that is not only supported by Com-
mercialTool but also required by the tool to operate. Sikuli was therefore
paired with a third party VNC application as described in Section 2.3, to
provide Sikuli with the same functionality, usability and portability as Com-
mercialTool.

Cost: The studied tools differ in terms of cost since Sikuli is open source
with no up-front cost whilst CommercialTool costs around 10.000 Euros per
‘floating license’ per year. A floating license means that it is not connected to
any one user or computer but only one user can use the tool at a time, hence
the Licensing and pricing quality criterion in this case affects the usability of
CommericalTool since some companies may not afford multiple licenses while
still wanting to run multiple scripts at the same time.

Backwards compatibility and support: The last property concerns
the backwards compatibility of the tools, and whilst CommercialTool’s ven-
dor guarantees that the tool, which has been available in market for several
years, will always be backwards compatible, Sikuli is still in beta testing and
therefore subject to change. Changes to Sikuli’s instruction set could affect
the functionality and maintainability of the tool and scripts. This property
also provides general vendor qualification information, e.g. the maturity of the
vendor and the tool, which plays an important part for tool selection and tool
adoption in a company, e.g. that CommercialTool may be favored because it
is more mature and the tool vendor can supply support etc.

The second part of the pre-study consisted of four structured experiments,
described in Section 2.3 and their results are summarized in Table 2.3. In
the first experiment a script was developed in each tool for a non-animated
desktop calculator application to evaluate CommercialTool’s and Sikuli’s im-
age recognition algorithms’ ability to identify alpha-numeric symbols. Sikuli
only had a success rate of 50 percent in this experiment, over 30 runs, because
the tool was not always able to distinguish between the number 6 and the
letter C, used to clear the calculator, whilst CommercialTool had a success
rate of 100 percent. In the second experiment the goal was to find a specific
icon as it appeared on the desktop, hence identify a small bitmap change on a
large surface, for which both tools had a 100 percent success rate. In the third
experiment the goal was to identify the back fender of a car driving down a
road in a video clip where the sought fender image was only visible for a few
video frames, imposing a time constraint to the image recognition algorithms.

68 CHAPTER 2. PAPER A: STATIC EVALUATION

Experiment Type Desc. CT
success
rate
(%)

Sikuli
success
rate
(%)

1 non-animated Calculator 100 50
2 non-animated Icon finder 100 100
3 animated Car Finder 3 25
4 animated Radar trace 0 100

Table 2.3: Academic experiment results. CT stands for CommercialTool. Type
indicates if the experiment was non-animated or not and Desc. describes the
experiment.

The car experiment resulted in Sikuli having a success rate of 25 percent and
CommercialTool 3 percent. The final experiment required the tools to trace
the call sign, a text string, of an aircraft moving over a multi-colored radar
screen in a video-clip, where Sikuli had a 100 percent success rate whilst Com-
mercialTool’s success rate was 0 percent.

A summary of the pre-study results show that CommercialTool had higher
success rate in the experiments with non-animated GUIs and had more built-in
functionality required for automated testing in the industrial context, shown
by the 12 analyzed properties. Sikuli on the other hand had higher success
rate in the experiments with animated GUIs and showed to be easier to adapt,
only requiring small efforts to be extended with additional functionality. In
addition, Sikuli was considered marginally favored according to the tool quality
criteria defined by Illes et al. and is therefore perceived as a better candidate
for future research.

2.4.2 Results of the industrial study

The industrial part of the study started with the researchers conducting a
complete manual system test of the studied subsystem. During the manual
system test all the test cases were analyzed, as described in Section 2.3, and
classified into categories. The category analysis showed that Sikuli could fully
script 81%, partially script 17% and not script 2% of the manual test cases.
CommercialTool on the other hand could fully script 95%, partially script 3%
and not script 2% of the manual test cases. The higher percentage of scripts
that could be fully automated in CommercialTool was given by the tool’s
ability to analyze audio output, required in seven of the manual test cases.
The 2% of the manual test cases that could not be scripted, in either tool,
were hardware related and required physical interaction with the SUT.

Based on the categorization and the selection criteria, discussed in Section
2.3, five manual test cases were chosen for automation. The automation was
done pair-wise in each tool, e.g. test case x was automated in one tool and then
in the other tool, with the order of the first tool chosen at random for each test
case. Random tool selection was used to ensure that the script development
time for the script developed in the secondly used tool would not continuously

2.4. RESULTS 69

CT Sikuli
Test
case

Dev-
time
(min)

Exe-
time
(sec)

LOC Dev-
time
(min)

Exe-
time
(sec)

LOC TC
Steps

ATC-1 255 111 103 105 90 212 5
ATC-2 195 405 233 200 390 228 4
ATC-3 285 390 368 260 338 345 16
ATC-4 205 80 80 180 110 92 9
ATC-5 120 90 115 150 154 169 8
Total: 17

hours
40
min-
utes

17.93
min-
utes

899
LOC

15
hours
55
min-
utes

18.00
min-
utes

1046
LOC

Table 2.4: Metrics collected during test case automation. CT stands for Com-
mercialTool, ATC for automated test case and TC steps for the number of test
steps in the scenario of the manual test case.

be skewed, lowered, because challenges with the script, e.g. required failure
mitigation, etc., had already been resolved when the script was developed in
the first tool.

The main contributor to script development time was in the study observed
to be the amount of code required to mitigate failure due to unexpected sys-
tem behavior, e.g. GUI components not rendering properly, GUI components
appearing on top of each other, etc. Failure mitigation was achieved through
ad hoc addition of wait functions, conditional branches and other exception
handling, e.g. try-catch blocks, which for each added function required extra
image recognition sweeps of the GUI that also increased the script execution
time. Scripts that required failure mitigation also took longer to develop since
they had to be rerun more times during development to ensure script robust-
ness. The development time required to make a script robust also proved to
be very difficult to estimate because unexpected system behavior was almost
never related to the test scenarios but rather a product of the subsystem’s im-
plementation. Each script was developed individually and consisted of three
parts. First a setup part to cover the preconditions of the test case. The
second part was the test scenario and the third part was a test teardown to
put the subsystem back in a known state to prepare it for the following test
case. After the five test scripts had been developed in each tool the LOC and
execution time for each script was recorded, shown in Table 2.4 together with
the script development time and number of steps in the corresponding manual
test case scenario.

Table 2.4 shows that the total development time, LOC and execution time
were similar for the scripts in both tools.

The five chosen test cases were carefully selected to be representative for
the entire manual test suite for the subsystem, as described in section 2.3, to
allow the collected data to be used for estimation. Estimation based on the

70 CHAPTER 2. PAPER A: STATIC EVALUATION

CommercialTool Dev. Time Sikuli Dev. Time

10
0

15
0

20
0

25
0

Figure 2.4: Boxplot showing development time of the five scripts in each tool.

average execution times, from Table 2.4, shows that the fully automated test
suite for the subsystem, all 50 test cases, would run in approximately three and
a half hours in each tool. A three and a half hour execution time constitutes
a gain of 78 percent compared to the execution time of the current manual
test suite, 16 hours, if conducted by an experienced tester. Hence, automation
would constitute not only an advantage in that it can be run automatically
without human input but a considerable gain in total execution time which
allows for more frequent testing. Potentially tests can run every night and over
weekends and shorten feedback cycles in development. In Figure 2.4 the script
development time for the scripts, taken from Table 2.4, have been visualized in
a box-plot that shows the time dispersion, mean development time, etc. Using
the mean development time, the development time for the entire automated
test suite, all 50 test cases, can be estimated to approximately 21 business days
for CommercialTool and 18 business days for Sikuli. The estimated develop-
ment time for the automated test suite is in the same order of time that Saab
spends on testing during one development cycle of the subsystem. Hence, the
investment of automating the test suite is perceived to be cost beneficial after
one development cycle of the subsystem.

The data in Table 2.4 was also subject to statistical tests to see if there
was any statistical significant difference between the two tools. The data was
first analyzed with a Shapiro-Wilks test of the difference between the paired
variables in Table 2.4, which showed that the data was normally distributed.
Normal distribution allowed the data to be analyzed further with the Stu-
dent t-test that had the p-value results 0.3472 for development time, 0.956
for execution time and 0.2815 for LOC. The Student t-test results were then
verified with a non-parametric paired Wilcoxon test that had results with the
same statistical implications. Hence, both the Student t- and Wilcoxon-tests
showed that we cannot reject the null hypothesis, H0, on a 0.05 confidence
level. Therefore, it can be concluded that there is no statistical significant dif-

2.5. DISCUSSION 71

ference between the scripts of the studied tools in terms of development time,
execution time or LOC. The statistical results are however limited by the few
data points the tests were conducted on.

2.5 Discussion

Our study shows several differences between the two studied tools but that
both tools were able to successfully automate 10 percent of an industrial man-
ual system test suite, for which 98 percent of the test cases can be fully or
partially automated with visual GUI testing. The open-source tool, Sikuli,
had a higher percentage of test cases that could only be partially scripted
since it has no current support for detecting audio output. However, this is
not a major obstacle since either the audio output can be visualized, and thus
tested visually, or Sikuli can be extended with Operating System (OS) system
calls.

CommercialTool and Sikuli differ in terms of cost, vendor support, test
functionality, script languages, etc., with impacts on different tool quality
criteria, shown in Table 2.2, and are all important properties to consider for
the industrial applicability of visual GUI testing. However, to show that visual
GUI testing has any applicability at all in industry the most important aspect
concerns the functionality of the image recognition algorithms.

The image recognition algorithms are what sets visual GUI testing apart
from other GUI testing techniques, e.g. R&R, and also determine for what
types of systems it is possible to apply the technique. R&R that interacts
through GUI components was determined as unsuitable for the automation
of the subsystem test cases since they had to interact with components not
developed by Saab, e.g. interaction with custom and OS GUI components.
These interactions required access to GUI component references that could not
be acquired. The GUI components in the SUT, e.g. the simulators, windows
in the OS, etc., did not always appear in the same place on the screen when
launched. This behavior also ruled out R&R with coordinate interaction as
an alternative for the study. Evaluation of visual GUI testing showed that it
does not suffer from R&R’s limitations and therefore works in contexts where
R&R cannot be applied. Visual GUI testing is applicable on different types of
GUIs, evaluated in the pre-study experiments and in industry, which showed
that both studied tools had high success-rates with non-animated GUIs and
that Sikuli also had good success-rate on animated GUIs as well. Hence, this
study shows that visual GUI testing works for tests on non-animated GUIs
and perceivably also for animated GUIs. Non-animated GUI applicability is
however a subject for future deeper research.

The purpose of automation of manual tests is to make the regression testing
more cost-efficient by increasing the execution speed and frequency and lower
the required manual effort of executing the tests cases. Estimations based on
the collected data show that a complete automatic test suite for the studied
subsystem would execute in three and a half hours, which constitutes a 78
percent reduction compared to manual test execution with an experienced
tester. Hence, the automated test suite could be run daily, eliminating the need
for partial manual system tests, reduce cost, increase test frequency and lower

72 CHAPTER 2. PAPER A: STATIC EVALUATION

the risk of slip through of faults. Mitigation of slip through of faults is however
limited with this technique by the test scenarios since faulty functionality not
covered by the test scripts would be overlooked, whilst a human tester could
still detect them through visual inspection. Hence, the automated scripts
cannot replace human testers and should rather be a complement to other test
practices, such as manual free-testing. The benefit of visual GUI testing scripts
compared to a human tester in terms of test execution is that the scripts are
guaranteed to run according to the same sequence every time, whilst human
testers are prone to take detours and make mistakes during testing, e.g. click
on the wrong GUI object, etc., which can cause faults to slip through.

Scenario based system tests are very similar to acceptance tests and based
on the results of this study it should therefore be concluded as plausible to
automate acceptance tests with visual GUI testing. This conclusion is sup-
ported by the research of similar GUI testing techniques, e.g. R&R, which has
been shown to work for acceptance test automation [31,107]. Further support
is provided by the fact that some of the manual test cases, categorized as
fully scriptable, for the studied subsystem had been developed with customer
specific data. The results of this study therefore provide initial support that
visual GUI testing can be used for automated acceptance testing in industry.

During the study it was established that the primary cost of writing vi-
sual GUI testing scripts was related to the effort required to make the scripts
robust to unexpected system behavior. Unexpected system behavior can be
caused by faults in the system, related or unrelated to the script, and must
be handled to avoid that these faults are overlooked or break the test execu-
tion. Other unexpected behavior can be caused by events triggered by the
system’s environment, e.g. warning messages displayed by the OS. Hence,
events that may appear anywhere on the screen. These events can be han-
dled with visual GUI testing but are a challenge for R&R since the events
location, the coordinates, are usually nondeterministic. Script robustness in
visual GUI testing can be achieved through ad hoc failure mitigation but is
a time-consuming practice. A new approach, e.g. a framework or guidelines,
is therefore required to make robust visual GUI test script development more
efficient. Hence, another subject for future research.

The cost of automating the manual test suite for the studied subsystem
was estimated to 20 business days, which is a considerable investment, and to
ensure that it is cost-beneficial the maintenance costs of the suite therefore
have to be small. Small is in this context measured compared to the cost of
manual regression testing, hence the initial investment and the maintenance
costs have to break even with the cost of the manual testing within a reasonable
amount of time. The maintenance costs of visual GUI testing scripts when the
system changes are however unknown and future research is needed.

Our results show that visual GUI testing is applicable for system regres-
sion testing of the type of industrial safety critical GUI based systems in use
at Saab. The technique is however limited to find faults defined in the scripted
scenarios. Hence, visual GUI testing cannot replace manual testing but min-
imize it for customer delivery. Visual GUI testing also allows tests to be run
more often and are more flexible than other GUI testing techniques, e.g. coor-
dinate based R&R, because of image recognition that can find a GUI compo-
nent regardless of its position in the GUI. Furthermore, R&R tools that require

2.6. CONCLUSION 73

access to the GUI components, in contrast to visual GUI testing, are not easily
applicable at this company since their systems have custom-developed GUIs
as required in their domain. We have also seen that visual GUI testing can be
applied for automated acceptance testing. Being able to continuously test the
system with user-supplied test data could have very positive results on quality.

Evaluating a technique’s applicability in a real-world context is a complex
task. We have opted on a multi-step case study that covers multiple different
criteria that gives the company better decision support on which to proceed.
Even though the test automation comparison is based on a limited number of
test cases the research was designed so that these test cases are representative
of the rest of the manual test suite. Still, this is a threat to the validity of
our results. Our industrial partner is more concerned with the amount of
maintenance that will be needed as the system evolves. If these costs are high
they will seriously limit the long-term applicability of visual GUI testing.

2.6 Conclusion

In this paper we have shown that visual GUI testing tools are applicable to au-
tomate system and acceptance tests for industrial systems with non-animated
GUIs with both cost and potentially quality gains over state-of-practice manual
testing. Experiments also showed that the open source tool that was evalu-
ated can successfully interact with dynamically changing, animated GUIs that
would broaden the number and type of systems it can be successfully applied
to.

We present a comparative study of two visual GUI testing script tools, one
commercial and one open source, at the company Saab AB. The study was
conducted in multiple steps involving both static and dynamic evaluation of
the tools. One of the company’s safety critical subsystems, distributed over
two physical computers, with a non-animated GUI, was chosen and 10 percent,
5 out of 50, representative, manual, scenario-based, test cases were automated
in both tools. A pre-study helped select the relevant test cases to automate as
well as evaluate the strengths and weaknesses of the two tools on key criteria
relevant for the company.

Analysis of the tools properties show differences in the tools functionality
but overall results show that both studied tools work equally well in the indus-
trial context with no statistically significant differences in either development
time, run time or LOC of the test scripts. Analysis of the subsystem test suite
show that up to 98 percent of the test cases can be fully or partially automated
using visual GUI testing with gains to both cost and quality of the testing.
Execution times of the automated test cases are 78% lower than running the
same test cases manually and the execution requires no manual input.

Our analysis shows that visual GUI testing can overcome the obstacles of
other GUI testing techniques, e.g. Record and Replay (R&R). R&R either
requires access to the code in order to interact with the System Under Test
(SUT) or is tied to specific physical placement of GUI components on the
display. Visual GUI testing is more flexible, interacting with GUI bitmap
components through image recognition, and robust to changes and unexpected
behavior during testing of the SUT. Both of these advantages were important

74 CHAPTER 2. PAPER A: STATIC EVALUATION

in the investigated subsystem since it had custom GUI components and GUI
components that changed position between test executions. However, more
work is needed to extend the tools with ways to specify and handle unexpected
system events in a robust manner; the potential for this in the technique is not
currently well supported in the available tools. For testing of safety-critical
software systems there is also a concern that the automated tools are not able
to find defects that are outside the scope of the test scenarios, such as safety
defects. Thus any automated system testing will still have to be combined
with manual system testing before delivery but the main concern for future
research is the maintenance costs of the scripts as a system evolves.

Chapter 3

Paper B: Dynamic
evaluation

Transitioning Manual System Test Suites to Automated
Testing: An Industrial Case Study

E. Alégroth, R. Feldt, H. H. Olsson

Accepted at the 6th International Conference on Software Testing
Verification and Validation (ICST’2013), Luxenbourg, March 18-
22, 2013.

75

Abstract

Visual GUI testing (VGT) is an emerging technique that provides software
companies with the capability to automate previously time-consuming, te-
dious, and fault prone manual system and acceptance tests. Previous work on
VGT has shown that the technique is industrially applicable, but has not ad-
dressed the real-world applicability of the technique when used by practitioners
on industrial grade systems. This paper presents a case study performed dur-
ing an industrial project with the goal to transition from manual to automated
system testing using VGT. Results of the study show that the VGT transition
was successful and that VGT could be applied in the industrial context when
performed by practitioners but that there were several problems that first had
to be solved, e.g. testing of a distributed system, tool volatility. These problems
and solutions have been presented together with qualitative, and quantitative,
data about the benefits of the technique compared to manual testing, e.g.
greatly improved execution speed, feasible transition and maintenance costs,
improved bug finding ability. The study thereby provides valuable, and previ-
ously missing, contributions about VGT to both practitioners and researchers.

76 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

3.1 Introduction

To date, there are no industrial case studies, from the trenches, that visual
GUI testing (VGT) works in industry when used by practitioners, nor data
to support the long-term viability of the technique. In our previous work,
we have shown that VGT is applicable in industry, even for testing of safety-
critical software [65]. However, previous work has been essentially driven by
researchers, e.g. they applied VGT techniques, compared the resulting test
cases to earlier manual efforts, and then collected feedback and refinements
from the industrial practitioners. There is a risk that this type of research does
not consider all the complexities and problems seen by practitioners when ac-
tually applying a technique in practice. Furthermore, researcher driven studies
are often smaller in scale and cannot evaluate longer term effects such as main-
tenance and refactoring of the test scripts or effects on, and of, changes to the
system under test (SUT). Hence, there is still a gap in VGT’s body of knowl-
edge regarding if the technique is applicable when performed by industrial
practitioners in a real world development context.

In this paper we aim to bridge this gap by presenting an industrial case
study from a successful project, driven entirely by industrial practitioners, with
the goal to transition into VGT at the company Saab AB, subdivision security
and defense solutions (SDS). The company chose VGT because of its ability to
automate high system-level test cases, which previous automation techniques,
e.g. unit testing [14, 32] and record and replay (R&R) [6, 106, 107], have had
shortcomings in their ability to achieve. High system-level tests developed with
automated unit tests have become both costly and complex, thereby spurring
a discussion if the technique is applicable for anything but the low system-level
testing, for which it was developed [15]. Furthermore, R&R techniques, which
were developed for automation of system-level tests, are instead limited by
being fragile to GUI layout and API change. Limitations that in the worst
case have caused entire automated test suites to become inept [12]. Hence, the
previous techniques have shortcomings in terms of flexibility, simplicity and
robustness to make them long-term viable.

However, in this case study we show that VGT can overcome these limita-
tions. Hence, showing that VGT has the capability to automate and perform
industrial grade test cases that previously had to be performed manually, with
equal or even greater fault finding ability, at lower cost. Capability provided
by the technique’s use of image recognition that, in combination with sce-
nario based scripts, allow VGT tools to interact with any graphical object
shown on the computer monitor, i.e. allowing VGT scripts to emulate a hu-
man user. In addition, the study presents the practitioners’ views on using the
technique, e.g. benefits, problems and limitations, when performed with the
open source tool Sikuli [54]. Consequently, this work shows that VGT works
for testing of real-world systems when performed by practitioners facing real-
world challenges such as refactoring and maintenance of the SUT. The specific
contributions of this work therefore include,

C1: An account on how the transition to VGT was successfully conducted
by industrial practitioners for a real-world system.

C2: The industrial practitioners experiences and perception on the use of

3.2. RELATED WORK 77

VGT.

C3: Qualitative and quantitative data on costs, challenges, limitations and
solutions that were identified during the VGT transition project.

Together these contributions can help both industrial practitioners in prac-
tice and guide researchers in further advancing the state-of-practice and state-
of-the-art in VGT.

The continuation of this paper is structured as follows. In Section 3.2
related work is presented, followed by Section 3.3 that presents the case study
methodology and data collection. Section 3.4 then presents the results and
analysis of the study that are then discussed in Section 3.5. Finally the paper
is concluded in Section 3.6.

3.2 Related Work

The concepts of using image recognition for GUI interaction is quite old and
has been evaluated in a considerable body of knowledge. Work on using im-
age recognition for GUI automation can be traced back to the early 90s, e.g.
Potter [18] and his computer macro development tool, Triggers. Other early
work in this area include the work of Zettlemoyer and Amant that used image
recognition in their tool VisMap, which was used to automate the interaction
with a visual scripting program as well as the game Solitaire [19]. However,
this work focused on using image recognition for automation which we dif-
ferentiate from testing since not all tools developed for GUI automation are
intended for testing and vice versa.

The body of knowledge on using GUI interaction for testing is also con-
siderable, e.g. shown by Adamoli et al. [106] in their paper on automated
performance testing that covers 50 papers on automated GUI testing. Auto-
mated GUI testing can be performed with different techniques but the most
common approach is referred to as record and replay (R&R) [6,106,107]. R&R
consists of two steps. First a recording step where user input, e.g. mouse and
keyboard interaction, to the system under test (SUT) is recorded in a script.
In the second step, the recorded script can automatically be replayed for re-
gression testing purposes. Different R&R tools record SUT interaction on dif-
ferent levels of GUI abstraction where the most common are on GUI bitmap
level, i.e. using coordinates, or GUI widget level, i.e. using software references
to buttons, textfields, etc. However, both approaches suffer from limitations
that affect their robustness. Coordinate based R&R has the limitation that
it is sensitive to GUI layout change whilst being robust to SUT code change.
Widget based R&R, in contrast, is sensitive to SUT API or code structure
change [12], but is instead robust to GUI layout change.

Image recognition based GUI testing with scenario based scripts, which we
refer to as visual GUI testing (VGT), does not suffer from these limitations
but it is only recently that the technique started to emerge in industry. One
plausible explanation to this phenomenon is that the image recognition is
performance intensive and it is not until now that the hardware has become
powerful enough to cope with the performance requirements. VGT is a tool-
supported technique, e.g. by Sikuli [54], EggPlant, etc., which conducts testing

78 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

through the top GUI bitmap level of a SUT, i.e. the actual bitmap graphics
shown to the human user on a computer monitor. Hence, scenario based VGT
scripts can emulate a human user and can therefore also test all applications,
regardless of implementation or platform, e.g. web, desktop, mobile. In most
VGT tools the scenarios have to be developed manually, but there are also
tools, e.g. JAutomate, which has record and replay functionality. Typical
VGT scripts are executed by first providing the SUT with input, i.e. clicks
or keyboard input, after which the new state of the system is observed, using
image recognition, and compared to some expected output, followed by a new
sequence of inputs, etc. In contrast to previous GUI testing techniques, VGT
is impervious to GUI layout change, API or even code changes. However,
VGT is instead sensitive to GUI graphics changes, e.g. changes in graphics
size, shape or color.

Another approach to GUI testing is to use models, e.g. using finite state
machines to generate test cases [109, 110]. These models generally have to be
constructed manually, but automatic approaches, e.g. GUI ripping proposed
by Memon [111], also exist. The benefit with GUI ripping is that it mitigates
the extensive costs related to model creation. Costs that originate in the
complexities of developing a suitable model. The limitation of this approach
is that it is dependent on the SUT implementation, e.g. development language.

The area of GUI interaction based testing and automation is therefore quite
broad but still limited in regards of empirical studies in real-world contexts
with industrial grade software systems. R&R tools have been compared [106]
and evaluated in industry, for both system- and acceptance-test automation,
but, to our best knowledge, it is only our own work that evaluates VGT in
an industrial context [65]. Our previous work is however limited since it was
conducted only for a small set of real-world test cases and since the VGT
automation was performed by researchers rather than practitioners. Hence,
the body of knowledge on VGT, to the authors best knowledge, lacks industrial
case studies that report on the real-world use of the technique.

Most research on GUI based testing focuses on system testing. However,
acceptance testing is an equally important, valid and plausible test aspect to
consider, i.e. tests where requirements conformity is validated through end user
scenarios performed regularly on the SUT [38]. Scenario based acceptance tests
do however distinguish themselves from system tests by including more end
user specific interaction information, i.e. how the system will be used in the end
users’ domain. Automated acceptance testing has also been a subject of much
research, which has resulted in both frameworks and tools, including research
into GUI interaction tools [31]. However, to the authors’ best knowledge, only
our previous work has considered the subject of using VGT for acceptance
testing.

3.3 Research methodology

This section will present the company where the VGT transition was performed
as well as the research methodology used to collect data during the case study.

3.3. RESEARCH METHODOLOGY 79

VGT tool
analysis

Practitioner
driven VGT
transition
project

Saab AB, SDSResearch Team

Su
pp

or
t com 2

com 1

com N

Stage

Pre-
study

Case-
study

Post-
study

Workshop 1: Initial analysis, open interviews

Workshop 2: Deep structured interviews

Figure 3.1: Overview of the case study, including the two performed workshops
and the continuous, yet discrete, communication between the company and the
research team. Note that the academic support effort is considerably smaller
than the VGT transition effort.

3.3.1 Research site

The case study presented in this paper was conducted in collaboration with,
and at, the Swedish company Saab AB, subdivision SDS, in the continuation
of this paper referred to as Saab. The study was conducted at the company
because they had taken the initial steps towards transitioning into VGT to
automate their current manual testing, which presented an opportunity to
collect data to bridge the current gap regarding VGT’s real world applicability.
Figure 3.1 visualizes the stages of the case study, which will be presented in
more detail in the following section based on the guidelines for reporting case
studies presented by Runeson and Höst, 2009 [17].

Saab develops military control systems for the Swedish military service
provider on behalf of the Swedish military forces. The system is, when deployed
in the field, distributed between several mobile nodes and provides the ability
to map the position of friendly and hostile forces on the battlefield and share
this information among the nodes. Hence, the core functionality of the system
relies on a map visualization, provided by a map engine, which allows the
user to place symbols representing military units onto the map. Due to the
system’s intended use it is considered both safety and mission critical. In
addition, the system is developed for a touchscreen monitor for use while the
node is in motion, i.e. buttons and other graphical GUI objects are larger
than a conventional desktop application to mitigate faulty system interaction
when used in rough terrain. The system is both developed and maintained by
the company, with a development team that is independent from the testing
team. In addition, the system has a very large and complex requirements
specification aligned with 40 test specifications built from roughly 4000 use
cases which has an estimated manual execution time of 60 man-weeks (2400
man-hours).

80 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

3.3.2 Research process

The case study consisted of three stages, shown in the leftmost column (named
‘Stage’) in Figure 3.1. The first stage was explorative in nature, the second
sought to improve and support the VGT transition and the third was descrip-
tive in nature. In the first stage, the row named ‘Pre-study’ in Figure 3.1,
a workshop was conducted with the goal of collecting information about the
company’s goals with the VGT transition, their manual test practices, the
SUT, etc. This information was collected using unstructured open interviews
with the testers that were driving the VGT transition at the company. Un-
structured open interviews were chosen because very little was known about
the company at this stage of the study. In addition, several documents were
acquired that could provide further information about the manual test suite
and the SUT.

In the second stage of the case study, which was four calendar months,
a communication process was followed to allow the testers driving the VGT
transition and the research team to exchange information on a regular basis,
i.e. the row named ‘Case study’ in Figure 3.1. The communication process
was put in place for two reasons. First because the project was to be driven
by the testers at the company rather than the research team; the latter delib-
erately distanced themselves from the project in order for all collected data to
genuinely portray VGT’s use in the real world. The second reason was out of
necessity due to the physical distance, i.e. 500 kilometers, between the research
team’s location and the company. The information exchange took place more
often at the start of the project, at least once each week, since the research
team had deeper understanding of VGT than the testers, i.e. the research team
could provide the testers with expert support. This support included infor-
mation of how to improve the VGT test suite that was being constructed but
also suggestions of how to document the test suite and solutions to specific,
low-level, problems that the testers had run into. In cases where the research
team did not already have a feasible solution to a problem, the research team
instead aided in the information acquisition to help the testers develop a solu-
tion. Further into the project, the information exchange became less frequent
with telephone or mail communication roughly twice each month. During these
discrete instances, challenges, limitations and solutions were discussed as well
as the progress of the VGT transition. In addition, cost and time metrics were
collected from the testers. Hence, the role of the research team in this stage
of the project was two-fold. First to provide support for the VGT transition
project, and second to acquire empirical data regarding the VGT transition
from the testers.

In the third stage of the study, which aimed to portray the project and its
outcome, a second workshop was held on site at the company, during which two
structured deep interviews were held with the driving testers, shown in the row
named ‘Post-study’ in Figure 3.1. Additionally, at this point of the project,
an additional tester had joined the transition project who could provide a new
perspective and further information about the transition and usage of VGT.
The purpose of the interviews was to verify previously collected data, get a
deeper understanding of the transition project as well as to collect further
data on challenges, limitations and solutions that had been identified. Both

3.4. RESULTS AND ANALYSIS 81

of the interviews were recorded and conducted using the same set of questions
in order to raise the internal validity of the answers [17]. 71 questions were
prepared for the interviews, 67 with the purpose of eliciting and validating
previously collected information and 4 attitude questions aimed at capturing
the testers views on VGT, post project. More specifically, the four questions
were,

Q1: Does VGT work? Yes/No, why?

Q2: Is VGT an alternative or only a complement to manual testing?

Q3: Which are the largest problems with VGT?

Q4: What must be changed in the VGT tool, Sikuli, to make it more
applicable?

In all of the questions, VGT refers to VGT performed with Sikuli [54], since
Sikuli was the VGT tool that was used during the project. After the inter-
views, the recordings were transcribed in order to make the information more
accessible. In addition, the answers were analyzed and compared among the
respondents, i.e. the driving testers, to ensure that there were no inconsis-
tencies in the factual data. The analysis showed that the respondents had
answered the majority of the questions the same, including all attitude ques-
tions, but that they had complementing views on the attitude questions, i.e.
what was the largest issue with working with VGT, etc.

3.4 Results and Analysis

The following section presents the results, and analysis of the results, di-
vided according to the three stages of the VGT transition project, i.e. pre-
transition (pre-study), during the transition (case-study) and post-transition
(post-study) to VGT.

3.4.1 Pre-transition

The VGT transition at Saab was initiated out of necessity to shorten the time
spent on manual testing. For each release, every six months to one year, the
SUT went through extensive regression testing where a selected subset of the
SUT’s test cases were manually performed. Each regression test session had a
budget of four to six weeks of man-hours. The test cases were documented in
40 test suites, referred to as acceptance test descriptions (ATD). Each ATD
consisted of a considerable set of use cases (UC), e.g. roughly 100, which each
defined valid SUT input and the expected output. On a meta level these UCs
were linked together into test chains that defined the test case scenarios, as
exemplified in Figure 3.2. A test case was defined as a test path through a
test chain that could be either linear, or contain branches, where a set of UCs,
UC1 and UC2 (Top left of Figure 3.2), were first executed to set up the SUT
in a specific state. The set up was then followed by the execution of one of a
set of optional UCs, UC3A-C (Middle of Figure 3.2) to create a test path. Test
paths could also have varying length, as exemplified in the figure where UC3A
(Middle left in Figure 3.2) is followed by UC3AA (Bottom of Figure 3.2) while

82 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

UC
1

UC
2

UC
3B

UC
3A

UC
3C

UC
3AA

UC
4

UC 3A
User System

Place
Tank-

symbol
to map

Tank-
symbol
appears
on map

UC 3B
User System

Place
Car-

symbol
to map

Car-
symbol
appears
on map

Figure 3.2: Example of a acceptance test description (ATD) test chain (to the
left) constructed from a set of ATD use cases (to the right). In the example
the test chain contains three unique test-paths, i.e. test cases, that were, prior
to the VGT transition, executed manually. UC - Use case.

the other two branches (UC3B and UC3C) lack following UCs. Hence, each
test chain could contained a set of branching test-paths, i.e. test cases, defined
by either common or unique UCs. The modular architecture of the manual
test cases provided a lot of flexibility but was also considered tedious since
some test chains required a lot of setup while only performing a small/short
test thereafter.

The manual test period, four to six weeks, for the SUT, was then followed
by a factory acceptance test (FAT) with the customer, executed over an ad-
ditional two to three weeks, to validate the system, i.e. six to ten weeks of
testing in total. However, a FAT would only be initiated if the manual tests
had been executed successfully. Hence, transitioning to VGT from manual
testing would constitute a large gain for the company in terms of development
time, cost and potentially raised quality, since a larger subset of test cases
from the ATDs could be executed faster and at higher frequency [65]. Raising
test frequency was also important since manual testing was the only means of
testing the system, i.e. no other tests existed for regression testing purposes
such as automated unit tests, etc.

Three VGT tools were evaluated for the project, i.e. EggPlant, Squish and
Sikuli, to find one suitable for the VGT transition. A brief overview of the
results of the evaluation is given in Table 3.1. The primary success factors
during the evaluation, which took six man-weeks, were tool cost and script
language ease of use. Each tool was evaluated based on its static properties as
well as through ad hoc scripting and automation of actual use cases from the
ATDs. In addition, the evaluation took into consideration the research teams’
previous work, i.e. comparison of different VGT tools [65].

The result of the evaluation was that EggPlant was a mature and suitable
tool but that it was very expensive and that the tool’s scripting language was a
limitation, i.e. it had a high learning curve and did not suit the modular design
of the tests that the testers were aiming for. Squish, used by other departments

3.4. RESULTS AND ANALYSIS 83

Tool Advantages Disadvantages
EggPlant VNC support, Mature

product, Powerful
High cost, Script language
limitations

Squish Reference based, fast Limited thread based interac-
tion, inability to work with
the map

Sikuli Open source (free), flexi-
ble, Python scripting lan-
guage

Volatile IDE, lacks test suite
support

Table 3.1: Summary of advantages and disadvantages of the VGT tools eval-
uated during the VGT transition project.

at Saab, was not suitable either since it performed GUI based testing through
manipulation of execution threads in the application. However, the SUT was
running roughly 40 threads at a time, spread over different system components,
which limited Squish ability to interact with the SUT. Additionally, the tool
was unable to identify objects placed on the map, due to its limited image
recognition capabilities, which was a key feature of the SUT that the VGT
tool had to be able to cope with in order to be applicable. Lastly, Sikuli was
evaluated and found to be a feasible option, partly because the tool is open
source, and thereby carries no up front cost, but mostly because of the tool’s
scripting language which is based on Python. Python was considered valuable
since it has a familiar syntax, i.e. common to most imperative and object-
oriented programming languages, and because Python provides the capabilities
of an object-oriented programming language. The main limitation with Sikuli,
that was identified at this stage of the project, was that the tool did not have
built in support for either development or management of test suites. However,
thanks to the power of the tool’s scripting language this was considered a
minor obstacle since a custom solution could easily be developed by importing
and extending existing testing and test suite libraries for Python. Another
problem that was identified was that Sikuli did not have any built in virtual
network connection (VNC) support, required to test the SUT’s distributed
functionality. However, by pairing Sikuli with a third part VNC client-server
application, this issue was also easily solved.

3.4.2 During transition

The VGT transition took place during roughly four calendar months, during
which three representative ATDs were fully implemented into a VGT test suite.
Representativeness was measured by the ATD’s complexity, where two of the
chosen ATDs were considered more complex than the average 40 ATDs, whilst
the third was equal in complexity to the remaining ATDs. The VGT test
suite architecture, visualized in Figure 3.3, consisted of two main parts. First,
a main script for each ATD that imported all the automated ATD test cases,
i.e. the test chains built from use cases. The second part was the test cases
themselves which were executed by the main script according to the numerous
test paths in each test chain. This architecture was required since Sikuli does

84 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

ATD main script

TC

cfg
lib

globTC
TC

TCTC of
UCs

VGT test suite

Start

Stop

Legend

Run
Import to

Figure 3.3: VGT test suite architecture. TC - Test case, UCs - Use cases.

not, as mentioned, provide any support for either development or management
of test suites. The VGT test suite was also developed using external libraries,
’lib’ in Figure 3.3. One of these libraries was a Python library for formatting
and producing output. Output that could be viewed graphically through any
web browser, i.e. the result of each test case was visualized as passed or failed
in a table. Additionally, a Java library for taking screenshots was incorporated
in the VGT test suite. The screenshots provided additional value to the result
output by capturing the state of the system when a bug was identified, i.e.
the faulty state of the GUI was captured for further analysis and for manual
recreation of the bug. According to the testers, this functionality made it
easier to explain, and present, the faults they encountered to the developers,
thereby quickening SUT maintenance time. In addition, all global variables
used in the scripts were placed in its own library called ’glob’, whilst the ’cfg’
library included all external paths, i.e. paths to where to save log files, find
the external libraries, etc.

After automation of the three ATDs, the testers compared the VGT test
suite’s execution time against the manual test suite execution time. Results
showed an estimated speed up of a factor 16, from two work days (16 hours)
to 1 hour for the two complex ATDs and from 1 day to 30 minutes for the
third. Hence, the automation constituted a huge gain in test case execution
time with no reported detrimental effects on bug finding ability, i.e. all bugs
in the system that were identified using manual test practices could also be
identified using the VGT test suite. In addition, due to the quicker execution
speed, the automated ATDs could be run several times in sequence. The
iterative test suite execution placed the SUT in states that the manual test
cases did not cover. Consequently, three new faults were uncovered that had
not been identified earlier with the manual testing. In addition, these bugs
were automatically captured and recorded by the screenshot capabilities of the

3.4. RESULTS AND ANALYSIS 85

VGT test suite which made them simpler to present, recreate and motivate
as faulty behavior to the developers. However, even with the much higher
execution speed, the testers reported that they were often asked, “Doesn’t it
execute quicker than this?”. The simple answer, as reported by one of the
testers, is, “Sikuli, or VGT, is limited by the speed of the SUT”, i.e. the
VGT test suite cannot run faster than the reaction speed of the SUT’s GUI.
Consequently, the scripts often had to be slowed down, using delays, in order
to synchronize them with SUT loading times to ensure that the SUT’s GUI
was ready for new input before the script continued its execution.

During development, attempts were made to integrate the VGT test suite
into the SUT’s build system, i.e. to allow completely automatic system regres-
sion testing after each new build. However, since the VGT test suite required
manual setup and some configuration before execution, such a scheme was
never implemented due to time constraints. Instead, the VGT test suite was
run on an ad hoc basis, i.e. not periodically, but with much higher frequency
than the previous manual testing. The higher frequency regression testing was
reported as most beneficial for the development of the SUT since it provided
the developers with quicker feedback.

3.4.2.1 VGT test suite maintenance for improvement

To ensure validity of the automated test scripts, they were developed as a
1-to-1 mapping of the manual test cases, i.e. the manual tests were used as
a specification for the automated scripts. However, later during the project,
the VGT test suite was subject to maintenance. The maintenance done to
the test case scenarios included, but was not restricted to, modification of
the order of script operations, in order to provide smoother and quicker test
case execution, and further modularization to facilitate strategic reuse. Hence,
breaking the 1-to-1 mapping in some of the test cases. However, the purpose
of each automated test case, i.e. the functionality the test case aimed to verify
in the SUT, was kept the same. Consequently, a conclusion can be drawn that
strict automation, i.e. 1-to-1 mapping, of the manual test specification may
not necessarily be the best automation approach. Rather, the specification
should only be used to specify what to test in the SUT, not necessarily how.
The reason is because with automatic testing you can, and often want, to
improve the test execution speed as much as possible, which can be done by
grouping certain actions together. In contrast, manual test scenarios need to
be unambiguous and test actions defined logically to have high quality [115],
which isn’t necessarily the fastest. Hence, the quality of a VGT script is
greatly affected by how it is designed and implemented, i.e. narrowing the gap
between testing and traditional software development.

The performed refactoring of the VGT test suite was required since this
project was conducted under continuous time pressure, with project managers
expecting quick results. This pressure resulted in, as presented by the testers,
development of the first possible solution for certain problems which neces-
sarily wasn’t always the best solution in terms of script quality, performance,
reusability, etc. Additional refactoring was also required due to the testers
inexperience of using Sikuli at the start of the project. Among the refactor-
ing that was made, in order to improve maintenance of the scripts, all global

86 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

variables were moved to a common namespace, i.e. ‘glob’, as shown in Figure
3.3. Hence, all variables were clustered in one library and then, together with
the libraries, ‘lib’ and ‘cfg’, imported to all scripts that required them.

During the VGT test suite maintenance, the testers observed that it was
easier to maintain the scripts that they had written last since they had a
clearer memory of what the scripts did. Additionally, they reported that
whilst maintenance of their own code was almost as quick as writing code from
scratch, maintenance of scripts written by the other tester took considerably
longer. One solution to mitigate these problems would have been a common
coding standard of how to name variables, write loops and branches, etc. This
problem, once again, illustrates how VGT, using Sikuli, in many respects has
more in common with traditional software development than testing. However,
as reported by the testers and in contrast to traditional development, the
maintenance work was made easier by the scenario based structure of the
scripts and the intuitiveness provided by inclusion of images in the scripts,
a feature provided by Sikuli’s IDE. It was perceived by the testers that pure
Python code would have been more difficult to maintain; the in-script images
simplified understanding and remembrance.

3.4.2.2 VGT test suite maintenance required due to SUT change

Three calendar months into the VGT transition project a huge change was
made to the SUT which included replacement of the map engine. Since the
map engine was part of the core functionality of the SUT this change also
affected the VGT test suite, i.e. causing 85-90 percent of the scripts to fail
and thereby require some kind of maintenance, which included changing 5-
30 percent of the images in every maintained script. The maintenance effort
required to get the VGT test suite working completely again took roughly
three man-weeks (240 man-hours) of work, which is to be related to the VGT
test suite development time of three man-months (1032 man-hours). Hence,
the estimated maintenance time of the entire VGT test suite, all 100 percent
of the test scripts, would be 25.8 percent of the development time, i.e. 266
man-hours, which can be compared to the manual test budget of 480 man-
hours per SUT development iteration. Note, the 4-6 week manual execution
time, 120 hours, is with two testers. Consequently, the estimated development
time of all 40 ATDs would be 13760 man-hours (7.6 man-years) and assuming
all of the tests broke, the maintenance time would be 3550 man-hours, equal
to roughly 21 man-months of continuous work or equivalent to the budge of 7
iterations of manual testing, i.e. roughly 3.5 years. However, the time required
to execute all of the 40 ATDs manually is estimated to 2400 hours. Hence,
assuming that none of the tests required maintenance and the complete VGT
test suite (40 ATDs) was executed continuously, i.e. 24 hours a day, the ROI
for the entire development would be positive after roughly 8 days (199 hours),
i.e. after executing all the 40 automated ATD’s 6 times. Additionally, for
the three ATDs that were automated in the project, a positive ROI would
be reached after 13 executions, i.e. after 32.5 hours of continuous execution,
which is less than the time of the manual ATD execution, i.e. 80 man-hours.

These numbers, summarized in Table 3.2, do however not reflect the man-
ual testing that is performed during the VGT test script development, required

3.4. RESULTS AND ANALYSIS 87

Artefact Dev.
time

Maintenance
of VGT test
suite

Man.
exe.
time

Positive
ROI
reached
after

VGT
test suite
(Project)

1032mh 266mh 80mh 13 VGT test
suite execu-
tions

Entire test
suite (Es-
timated)

13760mh 3550mh 2400mh 6 VGT test
suite execu-
tions

Table 3.2: Summary of development-, maintenance- and manual execution
times (man-hours) and return on investment (ROI) (VGT test suite dev. time
/ manual exe. time) data acquired from the VGT transition project. mh -
man-hour, h - hour

to validate test script conformance to the manual test specifications. Further-
more, the numbers do not take into account aspects such as the number of
faults found during the test execution, i.e. quality gained from quicker feed-
back to the SUT developers and other benefits provided by the VGT test suite,
e.g. identification of previously unknown bugs. With these aspects taken into
account, the driving testers estimated that the currently achieved ROI of the
VGT transition was neither positive or negative. Hence, their perception is
that all future regression testing performed with the VGT test suite will pro-
vide positive ROI for the company. However, the numbers also show that
it would be unfeasible to automate all the 40 ATDs since it would take 7.5
man-years. Hence, an important conclusion is therefore that a company may
have to prioritize or be selective in which manual test suites they decide to au-
tomate. Furthermore, as described by the testers, VGT primarily solves cost
and speed problems rather than raising quality. The higher test frequency
can help identify bugs faster, but bugs are only found if covered by the test
scenarios.

The testers encountered a set of additional problems during the VGT tran-
sition, which have been summarized in Table 3.3. The main problem was the
volatility and instability of the VGT tool, i.e. Sikuli. Sikuli is still a release
candidate, i.e. not a finished product, and therefore suffers from some lingering
bugs. These bugs affect the stability of the tool’s IDE that is prone to failure
in certain instances, e.g. if the execution thread of a script is manually termi-
nated, or if the tool is terminated with an unsaved script, etc. The solution to
solve these problems has been to only use Sikuli’s IDE for script development
and instead run the developed VGT test suite from the command line, which
was found to greatly improve stability.

The single largest problem, as described by the developers, was however the
failure rate of Sikuli’s image recognition algorithm, which was not improved
by running the scripts from the command line. Estimates done by the testers
indicate that the VGT test suite only had a success rate of 70 percent. This
low success rate has been established by the testers to be due to the use of

88 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

VNC. The VNC server-viewer application is used to run test cases that are
distributed over several physical computers. However, not all of the test cases
require the VNC connection and when these tests were executed against the
SUT, without VNC, the testers observed a close to 100 percent success rate,
even when the VGT test suite was left to its own devices for over 24 hours.
Consequently, the solution that was employed, during the pre-transition stage
of the project, to allow Sikuli to test the distributed system, also proved to be
the largest problem for the stability of the scripts. The cause of the problem
has not yet been verified but the hypothesis is that the problem is related to
network latency, causing the remote images sent from the VNC server to the
VNC viewer to be distorted, causing the image recognition algorithm to fail.

Additional problems caused by the VNC solution relates to the mouse
pointer. Sikuli, when executed locally, disregards the mouse pointer, i.e. re-
moves it from the screen, when it’s performing the image recognition. However,
when executed over VNC the mouse pointer cannot be removed and if placed
in the wrong position, e.g. in front of the sought button, it causes the image
recognition to fail. The problem can easily be mitigated by adding operations
in the script to continuously move the mouse pointer to a safe location. How-
ever, this solution is inconvenient and adds unnecessary code and execution
time to the scripts. Additionally, as reported by the testers, it adds frustration
to the script development.

Yet, even though there were many problems, challenges and limitations
that hindered the VGT transition, the testers still claim that they had not
encountered anything that they could not automate using Sikuli. Additionally,
the testers experienced that the development itself contributed to raising the
quality of the SUT since it required them to perform the test cases manually
several times to obtain a greater knowledge of how to automate them. Hence,
the development work itself helped uncover several faults in the SUT. Faults
that could later also be identified automatically by the VGT test suite.

3.4.3 Post-transition

After the VGT transition was completed, a second workshop was held on site
at the company during which structured interviews were performed with the
testers driving the project. The purpose of the interviews was primarily to
verify previously collected information but also to capture the testers views on
if VGT is viable for system- and acceptance-testing in industry.

During the interviews, four attitude questions were asked, presented in
Section 3.3 and summarized in Table 3.4. For the first question, does VGT
work, the interviewees were clear that it did. Two motivations stated by
one of the testers was, “It is such a good way to quickly run through and
make sure that everything still works and you can use it on any system”.
An additional motivation from another tester was, “VGT is the only thing
that works on our system”. Hence, VGT is perceived not to be bound to
any specific implementation language, API, etc., and its image recognition
capabilities therefore allows it not only to interact with one application at a
time, but seamlessly interact with different applications at once.

For the second question, when asked if VGT is a complement or a replace-
ment for manual testing, the testers stated that it is a complement, “It’s part of

3.4. RESULTS AND ANALYSIS 89

Title Problem Solution
VNC VNC has negative effects on

the image recognitions ability
to identify GUI graphics

Minimize use of VNC if possi-
ble, use high-quality VNC ap-
plication, use EggPlant

Mainte-
nance

Understanding other develop-
ers scripts can be problematic
even with the scenario based
structure of the scripts

Enforce coding standards to
raise understandability and
readability of the scripts

1-to-1
map-
ping

1-to-1 mapping between man-
ual and automated tests is
not always possible or favor-
able

Modularization of test scripts
can increase test execution
speed and reusability. Hence,
a 1-to-1 mapping should be
strived for only if it does not
have detrimental effects on
test quality.

Sikuli
IDE
volatil-
ity

Sikuli is not a finished prod-
uct and therefore cause the
Sikuli IDE to fail unexpect-
edly

Use IDE only for script de-
velopment but execute scripts
from command-line

Lack
of
docu-
men-
tation

Sikuli’s API is poorly docu-
mented

Ensure internet connectivity
to make it possible to look up
solutions and other informa-
tion online.

Image
recog-
nition

Many problems were identi-
fied with Sikuli’s image recog-
nition, e.g. spontaneous in-
ability to find images, click
operations performed next to
intended location, etc.

No one solution was iden-
tified, but potential solu-
tions include fine-tuning the
scripts, better selection of im-
ages, running scripts locally
without VNC, etc.

Table 3.3: Summary of problems and solutions identified during the VGT tran-
sition project.

90 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

Nr Question Answer
1 Does VGT work? Yes/No,

why?
Yes, only technique the testers have
identified capable of automating
their manual tests.

2 Is VGT an alternative
or only a complement to
manual testing?

complement, since it can only find
faults covered by the scripted sce-
narios.

3 Which is the largest prob-
lem with VGT?

The volatility of the tool and the im-
age recognition.

4 What must be changed in
the VGT tool, Sikuli, to
make it more applicable?

Support for testing of distributed
systems, e.g. through VNC.

Table 3.4: Summary of the driving testers’ responses to the four attitude ques-
tions asked during the second workshop.

the test palette”. Based on their perception, VGT may work as a replacement
for smaller systems, but for large and complex systems it is neither suitable
or plausible that this could be achieved. The reason is because it is improba-
ble that test scenarios can be devised that cover all states of a large systems,
which is equally unlikely for manual scenario based test cases. Instead, manual
exploratory testing should be used to uncover new faults.

For the third question, what is the biggest problem with VGT, one of the
testers stated, “I don’t see any problems with it, but we need to get around
the fact that it does not always work and that we always don’t know why.”,
referring to Sikuli’s volatility. Another tester answered, “The image recog-
nition comes with an inherent uncertainty”, i.e. fragility to unexpected SUT
behavior, etc. However, the testers had a pragmatic approach to these issues
and stated, “Sikuli is a program, it’s also a system and systems have faults”.
Hence, they had accepted the tools limitations but also identified that most of
these limitations could be mitigated through structured script development,
redundancies in the scripts and other failure mitigation practices.

Finally, when asked what can be improved with the VGT tool, the testers
answered that the reliability of the tool should be increased or at least a
study should be conducted that can explain why the image recognition works
in some cases, for some images, and not for others. Additionally, the tool
documentation needs to be improved and since one of the largest issues during
the VGT transition was found to be how the tool interacted with VNC, Sikuli
should be fitted with VNC capability, similar to EggPlant. As stated by the
developers, “EggPlant was much more stable with VNC. We have not managed
to make Sikuli as stable.”.

Due to the success of the transition project, i.e. identification of previ-
ously unknown faults in the SUT and the perceived cost-effectiveness of the
technique, the use of VGT has also been accepted by the customer as a com-
plement to the manual testing. Additionally, because of the success, the com-
pany plans to continue the automation of more ATDs and also develop a new
VGT test suite to test all basic functionality of the SUT. This new VGT test

3.5. DISCUSSION 91

suite will not be based on the manual ATDs but rather on domain knowledge
about the intended low-level functionality of the SUT. The testers at Saab
have also started looking at the possibility of creating an automatic thread-
based exploratory test (TBET) based VGT application. TBET, a refinement
of exploratory testing [116], is executed by following one or several execution
threads, scenarios, through the SUT to find faults, and also their causes. How-
ever, no actual implementation had been conducted on such a solution at the
time of the project.

Hence, it can be concluded that even though VGT has its limitations, chal-
lenges and problems, it is still a viable and applicable technique for industrial
use when performed by practitioners. This conclusion is strengthened by the
impact that the transition project has had within the Saab corporation where
more Saab companies have started working with the technique. Even though,
as reported by the testers, there are naysayers claiming that “Automation did
not work 25 years ago and therefore it won’t work now.”. However, in this
paper we have presented information that contradicts the naysayers claims,
e.g. feasible development and maintenance costs, raised fault finding ability.

3.5 Discussion

The data collected during the industrial case study shows that the transition
to VGT was both successful and of benefit to Saab, benefits summarized in
Table 3.5. Firstly, the execution speed of the company’s previously manual
tests was greatly improved that allows for greater test frequency and thereby
faster feedback to the developers, i.e. from months to hours. Secondly, and
perhaps more importantly, the automated tests did not just identify all the
faults found by the manual tests, but also previously unknown faults. Con-
sequently, this report provides support that VGT does not just lower testing
costs, but can also helps raise software quality. However, as also reported,
the transition cost of several large manual test suites can be extensive, so a
cost-benefit prioritization model of what test suites to automate should be de-
veloped, which is a subject of future work. Thirdly, the return on investment
(ROI) of transitioning to the technique, i.e. automating the manual tests, was
perceived by the driving testers to become positive after only one iteration of
SUT development. A claim supported by our previous research [65], which
came to the same conclusion at another Saab company. Additional support
comes from the fact that the manual tests are continuously performed dur-
ing VGT transition to ensure script validity, i.e. not taking time away from
the normal manual testing, and the benefit of faster fault identification due to
raised test frequency. Manual testing cost increases linearly with each develop-
ment iteration, but VGT only has an initial cost for developing the automated
test suites after which the cost of executing the scripts is constant. Hence, due
to the execution speed of a VGT test suite, the number of executions required
to reach a positive ROI can be performed quickly, as shown in Table 3.2.

Additionally, as shown in Table 3.5, other improvements were identified
that are of benefit for future use of VGT and compared with previous GUI
testing techniques, e.g. record and replay (R&R). Firstly, results show that
the maintenance costs of a VGT test suite are not excessive, i.e. 25 percent

92 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

Description Past Current Benefit (ver-
sus manual
testing) or
improvement

ATD execu-
tion time

1-2 days per
ATD (60 man-
weeks for all
ATDs), manu-
ally

0.5-1 hour per
auto. ATD (Es-
timated 33 hours
for all automated
ATDs)

Test execution
16 times faster,
higher test fre-
quency, quicker
feedback to
developers

Fault find-
ing

- 3, previously
unknown, faults
found

VGT provides
greater fault
identification
ability, higher
system quality

Test ROI Linear cost
(Manually)

Constant cost af-
ter 1 iteration
(Automatic)

Positive ROI af-
ter one itera-
tion, feasible de-
velopment cost

Script main-
tenance cost

Unfeasible in
the worst case
for previous
GUI test tech-
niques (record
and replay) [12]

∼25% of the
development
cost of the VGT
test suite (Saab
project, with
Sikuli)

Maintenance
cost perceived
feasible

Sikuli exe-
cuted over
VNC

∼70% success
rate with VNC

100% success
rate without
VNC

Sikuli stable
when executed
locally

Table 3.5: Summary of quantitative benefits and improvements identified dur-
ing the VGT transition project.

3.5. DISCUSSION 93

of the development cost. In addition, the script refactoring was generally
contained to parts of or specific scripts, which should be compared to the
required maintenance of previous techniques, e.g. R&R, where entire test suites
were rendered useless due to SUT change. Consequently, the black box nature
of VGT, due to the image recognition, makes changes to the SUT maintainable.
However, the collected data is not enough to draw a definitive conclusion that
the maintenance costs of VGT scripts are feasible for industrial use; more
research is needed on this in the future.

Secondly, Table 3.5 presents data regarding the stability of VGT when used
together with a virtual network connection (VNC). VNC was used during the
project because the SUT was distributed over several computers. However,
this pairing was recognized as a large problem since it lowered the success
rate of the automated test suite, when it should have succeeded, to roughly 70
percent, i.e. due to image recognition failures. The VNC problem was iden-
tified by running a subset of test scripts, which could be run locally, against
the SUT that resulted in a success rate of 100 percent, even when the tests
were rerun continuously for 24 hours. Hence, Sikuli’s image recognition was
not the source of the problem, but rather it was the third party VNC ap-
plication, mitigated by local VGT test script execution. However, since the
system was distributed over several computers, i.e. nodes, this solution instead
limited which test cases could be executed. Hence, this was not identified as
a benefit but rather an improvement of how to use Sikuli to raise test suite
stability. Consequently, either a better VNC application has to be obtained
or VNC should be integrated into Sikuli as already available in the VGT tool
EggPlant, which was perceived by the testers be much more stabile in this
regard. However, EggPlant, as reported by the testers, had other limitations,
e.g. a high cost and, what they considered, an unintuitive and more restricting
scripting language. Consequently, existing VGT tools suffer from important,
but different limitations, that makes it likely that manual test execution will
still have to complement automated testing. However, the testers’ common
view is that VGT both works and provides substantial value to the company,
even given the tools’ limitations.

The testers also identified other less quantifiable benefits with VGT dur-
ing the project. One benefit being the techniques flexibility and ability to
work with any application regardless of implementation language or even plat-
form, i.e. web, desktop, mobile, etc. This flexibility allows VGT to interact
with the SUT whilst also interacting with SUT related simulators, written in
other programming languages, or even the operating system if required. This
is a specific benefit of VGT that might or might not be present with other
similar testing tools, such as R&R or GUI testing techniques that are spe-
cific to the GUI library in use. In addition, the VGT tool that was used,
i.e. Sikuli, uses Python as a scripting language that provides the user with
all of the properties of a lightweight, object-oriented programming language.
These properties presents new interesting opportunities for automated test-
ing but also new problems. Since the scripts follow the rules of traditional
software development they are also subject to the same types of faults, i.e. if
implemented incorrectly they can contain bugs. Consequently, an inherent risk
with complex scripts is that they report type 2 errors, i.e. false negatives, due
to the scripts themselves being faulty. Hence, the question becomes, how do

94 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

you verify the tests? Verification of scenario based scripts that strictly follow
a manual test description can perceivably be done through comparison with
the outcome of the manual tests. However, for more advanced VGT-based
test applications a more complex verification technique might be required, e.g.
based on oracles or properties, or other state-of-art techniques, to ensure that
all faults in the SUT are identified.

3.5.1 Threats to validity

The main threat to the validity of this study is that it only presents results
from one VGT transition project at one company. Hence, the results may
have low external validity for other companies and domains [17]. In addi-
tion, since no structured data collection process could be performed by the
driving testers during the project, due to resource constraints on the com-
pany’s end, quantitative metrics were only sparsely collected. The risk that
very little quantitative data would be available from the project was identi-
fied already before the case study started and originates in the fact that this
project was performed in a real-world context with real-world time constraints.
Consequently, the results presented in this work are primarily based on data
collected through interviews and are therefore mostly qualitative in nature.
Further work is therefore required in more companies to provide additional
support regarding the real-world applicability of VGT. Another threat is that
the driving testers at the company might have been biased, i.e. wanting the
transition to be successful. However, based on their thorough descriptions of
faults, limitations and problems, this threat is considered minor.

3.6 Conclusion

In this paper we present an industrial case study from a successful visual GUI
testing (VGT) transition project, performed by practitioners, at the company
Saab AB, subdivision SDS. Additionally, problems, limitations and solutions
that were identified during the project are presented. Furthermore, support is
given that the maintenance costs of a VGT test suite, developed in Sikuli, are
not excessive, i.e. in this project 25.8 percent of the VGT test suite develop-
ment cost.

In previous work we have shown the industrial applicability of VGT, but in
a smaller transitioning project driven by researchers with expert knowledge of
the technique. The more extensive transitioning project presented in this paper
was instead initiated from industry, and originated in the business need to
shorten the execution time of manual regression testing. The main limitation
of the VGT tool, Sikuli, used during the project, was its unpredictability,
e.g. uncertain image recognition outcome and tool IDE instability, which was
partly mitigated through local test suite execution via the command line. The
benefits of VGT were reported to be the technique’s flexibility to work with
any application, greatly improved test execution speed (16 times faster than
manual tests) and ability to identify all faults found by the previous manual
tests. Furthermore, the VGT test suite could identify previously unknown
faults, due to increased test execution speed that allowed the tests to be run
several times in sequence. Results also showed that the VGT transition cost,

3.6. CONCLUSION 95

of three automated acceptance test descriptions (ATD), was feasible, but that
VGT transition of all of the company’s 40 ATDs would take 7.5 man-years
of work, i.e. prioritization of the ATD transition will be required. However,
the practitioners perception was still that the developed VGT test suite was
beneficial and will provide the company with positive return on investment for
all future use. Hence, even though there were problems and limitations, the
practitioners’ perceptions, and collected data, show that VGT is a beneficial
and feasible technique for industrial system test automation.

96 CHAPTER 3. PAPER B: DYNAMIC EVALUATION

Chapter 4

Paper C: Challenges,
problems and limitations

Visual GUI Testing in Practice: Challenges, Problems and
Limitations

E. Alégroth, R. Feldt, L. Ryrholm

Published in the Empirical Software Engineering Journal, 2014.

97

Abstract

In today’s software development industry, high-level tests such as system and
acceptance tests are mostly performed with manual practices that are often
costly, tedious and error prone. Test automation has been proposed to solve
these problems but most automation techniques approach testing from a lower
level of system abstraction. Their suitability for high-level tests has been ques-
tioned. High-level test automation techniques such as record and replay exist,
but studies suggest that these techniques suffer from limitations, e.g. sensi-
tivity to GUI layout or code changes, system implementation dependencies,
etc.

Visual GUI Testing (VGT) is an emerging technique in industrial practice
that aims to overcome many of the limitations experienced with previous test
automation techniques. The core of VGT is image recognition applied to an-
alyze and interact with the bitmap layer of a system’s front end. By coupling
image recognition with test scripts, VGT tools can emulate end user behavior
on almost any GUI-based system, regardless of implementation language, op-
erating system or platform. However, VGT is not without its own challenges,
problems and limitations (CPLs) but, like for many other automated test tech-
niques, there is a lack of empirically grounded knowledge of these CPLs and
how they impact industrial applicability. There is also a lack of information
on the cost of applying this type of test automation in industry.

This paper reports an empirical, multi-unit case study performed at two
Swedish companies that develop safety-critical software, while they transi-
tioned their manual system test cases into tests automated with VGT. One
complete test suite, consisting of 33 test cases, was automated in one of the
projects and three test suites in the other, exact number of test cases is uncer-
tain because of the structure of the manual test cases. The results from the
study participants showed that the transitioned test cases could find defects
in the tested systems and that no manual test cases were found that could
not be automated. During these transition projects, a total of 58 different
CPLs were identified and then categorized into 29 groups. These groups are
presented and their implications for the transition to and use of VGT in indus-
try is analyzed. In addition, four high-level practices are presented that were
identified during the study, which would address about half of the identified
CPLs. Furthermore, collected metrics on cost and return on investment of the
VGT transition are reported together with information about the VGT suites’
defect finding ability. A total of nine defects were identified by the automated
tests or during the transition, of which 5 were unknown to testers with exten-
sive experience from using the manual test suites. The main conclusion from
this study is that even though there are many challenges in transitioning to
automated testing based on VGT, the technique is still valuable, flexible and
considered cost-effective by the industrial practitioners.

98 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

4.1 Introduction

Currently available automation techniques for high-level testing, i.e. system
and acceptance testing, leave more to be desired in terms of cost efficiency and
flexibility, leaving a need for more empirical research into test automation [3,
4, 12, 13, 16, 52, 97, 117]. This need for automation support is one factor why
manual testing is persistently used in industrial practice even though these
practices are considered costly, tedious and error prone [2–7,118].

Manual testing has long been the main approach for testing and quality
assurance in the software industry and in recent years there has been a renewed
interest in approaches such as exploratory testing that focus on the creativity
and experience of the tester [116]. The more traditional manual tests are
often pre-defined sets of steps performed on a high level of system abstraction
to verify or validate system conformance to its requirement specification, i.e.
system tests, or that the system behaves as expected in its intended domain,
i.e. acceptance tests [25, 38, 102, 103]. However, software is prone to change
and therefore requires regression testing [8,9], which can lead to excessive costs
since testers continuously need to re-test. Manually having to repeatedly follow
the same test descriptions and look for the same problems is also tedious and
error prone.

To mitigate these problems, whilst retaining or increasing the end quality
of the software being tested, automated testing has been proposed as a key
solution [7]. Many automated test techniques approach testing from lower
levels of system abstraction, e.g. unit tests [11, 14, 32], which make them a
powerful tool for finding component and function level faults. However, the
use of these techniques for high-level testing has been questioned since empir-
ical evidence suggests that high-level tests based on low-level test techniques
become complex, costly and hard to maintain [3, 16].

Thus, a considerable body of work has been devoted to high-level test au-
tomation, resulting in techniques such as coordinate- and widget/component-
based Record and Replay with a plethora of tools such as Selenium [55], JFCU-
nit [119], TestComplete [120], etc. The tools record the coordinates or proper-
ties of GUI-components during manual user interaction with the system’s GUI.
These recordings can then be played back to emulate user interaction and
assert system correctness automatically during regression testing. However,
empirical studies has identified limitations with these techniques. They are
typically sensitivity to GUI layout or code change and tools dependend on the
specifics of the system implementation, etc., which negatively affect the tech-
niques’ applicability and raises the cost of maintaining the tests [10,12,16,52].

Visual GUI Testing is an emerging technique in industrial practice that
combines scripting with image recognition in open source tools such as Sikuli [20],
and commercial tools such as JAutomate [67]. Image recognition provides sup-
port for user emulated interaction with the bitmap components, e.g. images
and buttons, shown to the user on the computer monitor and is therefore
perceived to enable testing of any GUI-based system, regardless of implemen-
tation, operating system or even platform. Empirical research has shown the
technique’s industrial applicability for high-level test automation with equal
or even better fault finding ability than its manual counterparts [121]. How-
ever, VGT is not without its challenges, problems or limitations (CPLs), such

4.1. INTRODUCTION 99

as CPLs related to tool immaturity and image recognition volatility. These
CPLs have not been sufficiently explored in the existing studies and it is thus
hard to give a balanced description of VGT to industrial practitioners as well
as advice and help them in successfully applying it.

In this paper we present an empirical study performed at two different com-
panies within the Swedish corporation Saab, in which two teams transitioned
existing, manual system test cases to VGT test scripts. The two projects were
independent from each other and in two different sites, one driven by a re-
searcher and the other by industrial practitioners, yet both projects provided
corroborating results.

During the study, a total of 58 CPLs were identified that were categorized
into 29 groups of mutually exclusive CPLs that affect either the transition to,
or usage of, VGT in industrial practice. These groups have implications for the
industrial applicability of VGT, e.g. adding frustration and confusion during
transition and usage, but also automated testing in general. Consequently, the
results of this study add empirical evidence regarding CPLs, which is currently
limited, to the general body of knowledge about automated testing [97]. In
addition, four general solutions were identified during the study that mitigate
or solve roughly half of the identified CPLs related to VGT. Solutions that
provide support and guidance to industrial practitioners that intend to evalu-
ate or use the technique. Furthermore, quantitative information was acquired
during the study regarding the VGT suites’ defect finding ability, the VGT
suites’ development costs and the projects’ evaluated return on investment.
Information that provide decision support for industrial practitioners regard-
ing the potential value and cost of transitioning their manual testing to VGT.
Based on these results we draw a conclusion regarding the CPLs implications
on the cost-effectiveness, value and applicability of VGT for high-level test
automation in industry.

Hence, the specific contributions of this work are:

C1: Detailed descriptions of the challenges, problems and limitations (CPLs)
that impact either the transition to, or usage of, VGT in industry.

C2: Descriptions of identified practices, from the industrial projects, which
solve or mitigate CPLs that impact the transition to, or usage of, VGT
in industry.

C3: Quantitative information on the defect finding ability of the developed
VGT suites compared to the manual test suites that were used as
specification for the automated tests.

C4: Detailed information on the cost of transition, usage and return on
investment of the VGT suites, in context of the manual test suite
execution cost.

The next section, Section 4.2, presents a background to manual testing
and GUI-based testing as well as related work on previously used GUI-based
test techniques and VGT. Sections 4.4 presents the results from the study,
including identified VGT related CPLs, solutions to said CPLs, VGT bug
finding ability, metrics on the cost of transitioning to VGT and ROI metrics.
Section 4.5, presents a discussion regarding the results, future work, as well as
the threats to validity of the study. Finally Section 7 will conclude the paper.

100 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

4.2 Background and Related work

The purpose of high-level testing, e.g. system and acceptance testing, is to
verify and/or validate system conformance to a set of measurable objectives
for the system, i.e. the system’s requirements [25]. These tests are generally
performed on a higher-level of system abstraction since their goal is to test
the system in its entirety, which also makes them hard to automate, generally
requiring large and complex test cases. Tests that are particularly hard to
automate are non-functional/quality requirements (NFR) conformance tests
for NFRs such as usability, user experience, etc. The reason is because NFRs
differ from the functional requirements since they encompass the system in its
entirety, i.e. they depend on the properties of a larger subset, or even all, of
the functional components. Hence, for a non-functional/quality requirement
to be fulfilled, all, or most, of the components of the system have to adhere to
that requirement, which is verified either during system or acceptance testing
of the system. Both system and acceptance tests are, in general, based around
scenarios [37,122], but with the distinction that system tests only aim to verify
the functionality of the system. In contrast, acceptance tests aim to validate
the system based on end user scenarios, i.e. how the system will be used in its
intended domain. Note that we use the word scenario loosely in this context,
i.e. not just documented scenarios, e.g. use cases, but ad hoc scenarios as well.
These tests should, according to [25, 38, 102, 103], be performed regularly on
the system under test (SUT), preferably using automated testing. Automated
testing is proposed because both manual system and acceptance testing are
suggested to be costly, tedious and error-prone [2–7]. Therefore, a considerable
amount of research has been devoted to high-level test automation techniques,
which has resulted in both frameworks and tools, including graphical user
interface (GUI) based interaction tools [31,107].

GUI-based test automation has received a lot of academic attention, with
research into both high-level functional requirement and NFR conformance
testing, as shown by Adamoli et al. [106]. In their work on automated per-
formance testing they identified 50 articles related to automated GUI testing
using different techniques. One of the most common they identified was cap-
ture/record and replay (R&R) [6,106,107]. R&R is a two step approach, where
user input, e.g. mouse and keyboard interaction performed on the SUT, are
first captured in a recording, e.g. a script. In the second step, the record-
ing is replayed to automatically interact with the SUT to assert correctness
during regression testing. However, different R&R techniques capture record-
ings on different levels of system abstraction, i.e. from a GUI component
level to the actual GUI bitmap level shown to the user on the computer’s
monitor. The GUI bitmap level R&R techniques drive the test scenarios by
replaying interactions at exact coordinates on the monitor, i.e. where the
GUI interactions were performed by the user during recording. However, the
assertions are generally performed on lower levels of system abstraction, i.e.
component level, but some tools also support bitmap comparisons. In contrast,
widget/component-based R&R techniques are performed completely on a GUI
component level, i.e. by capturing properties of the GUI-components during
recording and using these properties, in combination with direct interaction
with the GUI components, e.g. invoking clicks, to perform interaction during

4.2. BACKGROUND AND RELATED WORK 101

playback. However, both of these techniques suffer from different limitations
that affect their robustness, usability, cost, but foremost their maintainability,
suggested by empirical evidence related to the technique [4,10,13,52,123,124].
The coordinate-based R&R techniques are sensitive to GUI layout change [6],
e.g. changing the GUI layout will cause the script to fail, whilst being robust
to changes in the code of the tested system. Widget/component-based R&R
techniques are instead sensitive to API or code structure change, whilst being
robust to GUI layout change [12]. In addition, the technique can pass test
cases that a human user would fail, e.g. if a widget blocks another widget, the
use of direct component interaction still allows the tool to interact with the
hidden widget. Furthermore, because direct component interaction is used,
the technique also requires access to the backend of the system and generally
only work for SUTs written in one programming language. Some exceptions
exist, e.g. TestComplete [125], which support many different programming
languages, or even interaction with the Windows operating system, but not
other operating systems, e.g. MacOS. Hence, even though previous techniques
have properties that support their use for high-level testing, they still suffer
from limitations that perceivably limit their use for systems written in dif-
ferent programming languages, distributed systems, and cloud based systems
where access to the backend is limited. Thus, indicating that there is a need
for more research into high-level test automation.

Visual GUI Testing is an emerging technique in industrial practice that uses
tools with image recognition capabilities to interact with the bitmap layer of
a system, i.e. what is shown to the user on the computer’s monitor. Sev-
eral VGT tools are available to the market, including both open source, e.g.
Sikuli [54], and commercial, e.g. JAutomate [67], but even so the technique
is only sparsely used in industry. VGT is performed by either manual devel-
opment, or recording, of scripts that define the intended interaction with the
SUT, usually defined as scenarios, which also include images of the bitmap-
components the tools should interact with, e.g. buttons. During script exe-
cution, the images are matched, using image recognition, against the SUT’s
GUI and if a match is found an interaction is performed. This capability is
also used to assert system correctness by comparing expected visual output
with actual visual output from the SUT. Hence, VGT uses image recogni-
tion both to drive the script execution and assert correctness compared to
previous techniques where image recognition was only used in some tools for
assertions. Furthermore, VGT is a blackbox technique, meaning that it does
not require any knowledge of the backend and can therefore interact with any
system, regardless of implementation language or development platform, e.g.
desktop (Windows, MacOS, Linux, etc.), mobile (iPhone, Android, etc.), web
(Javascript, HTML, XML, etc.).

In our previous work [65], we performed an empirical, comparative, study
with two VGT tools to identify initial support for the technique’s industrial
applicability. The tools, Sikuli and CommercialTool1, were compared based on
their static properties as well as their ability to automate industrial test cases
for a safety-critical air traffic management system. 10 percent of the tested
system’s manual test cases were automated with both tools, which showed
that there was no statistical significant difference between the tools and that

1The name of CommercialTool can not be disclosed due to confidentiality reasons.

102 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

both tools were fully capable of performing the automation with equal fault
finding ability as the manual test cases. However, the study was performed by
academic experts in VGT and therefore a second study was performed, driven
by industrial practitioners in an industrial project [121]. Results of the second
study showed that VGT is also applicable when performed in a real project
environment when used by industrial practitioners under real-world time and
cost constraints. Thus, providing further support that VGT is applicable in
industry.

A general conception within the software engineering community is that
automated testing is key to solving all of industry’s test-related problems.
However, Rafi et al. [97] that performed a systematic literature review regard-
ing the benefits and limitations of automated testing, as well as an industrial
survey on the subject, found little support for this claim. In their work, they
scanned 24.706 academic reports but only found 25 reports with empirical
evidence of the benefits and limitations of automated testing. Additionally,
they found that most empirical work focus on benefits of automation rather
than the limitations. Furthermore, the survey they conducted showed that 80
percent of the industrial participants, 115 participants in total, were opposed
to fully automating all testing. In addition, they found that the industrial
practitioners experienced a lack of tool support for automated testing, e.g.
the tools are not applicable in their context, have high learning curves, etc.
Consequently, their work shows that there are gaps in the academic body of
knowledge regarding empirical work focusing on the benefits and in particu-
lar the limitations of automated testing as well as the actual needs for test
automation in industry. A gap that this work helps to bridge by explicitly
reporting on the challenges, problems and limitations related to high-level test
automation using VGT.

4.3 Industrial case study

The empirical study presented in this report consisted of two parts. First, a
VGT transition project driven by a researcher at the company Saab AB, in
the swedish city of Gothenburg, building on our previous work [65]. Second, a
VGT transition project in another Saab company within the Saab corporation,
in the swedish city of Järfälla, which was driven by industrial practitioners with
minimal support by the research team. Hence, the two projects complement
each other by providing information of academic rigor from the project driven
by the researcher, and information from the practical usage of VGT from the
second project driven by industrial practitioners. Thus, this paper presents
the results from two holistic case studies [17] from two different companies, in
the continuation of this report referred to as Case 1, the study in Gothenburg,
and Case 2, the study in Järfälla. The two case studies were conducted in
parallel, but with different research units of analysis [17]. In Case 1 the unit
of analysis was the VGT transition of one complete manual system test suite
of a safety-critical air traffic management system, performed by experts from
academia. In Case 2, the unit of analysis was instead the success or failure of
the VGT transition project when performed in a practical context by industrial
practitioners under real-world time and cost constraints. Consequently, Case

4.3. INDUSTRIAL CASE STUDY 103

1 provided more detailed information about the VGT transition, whilst Case 2
provided information from a VGT transition project performed by industrial
practitioners under practical conditions.

4.3.1 The industrial projects

Both VGT transition projects were conducted in industry with two mature
industrial software products/systems. In Case 1, the VGT transition was per-
formed on a distributed, safety-critical, air traffic management system with an
excess of 1 million lines of code, highly configurable to satisfy customer needs,
developed in a multiple programming languages. Additionally, the system was
graphical user interface (GUI) driven with a very shallow GUI, meaning that
most graphical bitmap components were continuously shown to the user, i.e.
the GUI did not change much during interaction. The system has been devel-
oped using both plan-driven and iterative development processes, starting with
requirements acquisition activities, followed by development activities and fi-
nally testing activities. For each activity a set of artifacts were developed,
such as requirements specifications, design documents, user guides, test docu-
mentation, etc. However, for the study, the only document of interest was the
manual system test descriptions, which specifies the manual test cases used
for system testing. System testing that is generally performed once or twice
every development iteration, i.e. once or twice every six months. Furthermore,
the company’s developers are highly-educated and most have many years of
industrial experience as different roles, e.g. as developers, testers and project
managers. However, the company does not use dedicated testers, instead the
developers perform the testing. The company has a hierarchal, yet flexible,
organization, distributed between two locations, i.e. Gothenburg and Växsjö.
However, Case 1, due to resource constraints was only performed in Gothen-
burg. Furthermore, the system used in the project was developed according
to a quality assurance process that is compliant with the RTCA DO-278 qual-
ity standard. A standard required by many of the system’s customers, which
consist of both domestic, public and military, airports as well as international,
public, airports.

In Case 2 the VGT transition was performed on manual test cases for a
battlefield control system which is distributed over several computers and is
both safety- and mission-critical. However, due to the limited involvement of
the research team in Case 2, and confidentiality reasons, less can be disclosed
about the system’s details. The product is however mature, i.e. it has been
developed, maintained and deployed for many years. Additionally, the tested
system is GUI-driven but with a deeper GUI meaning that the entire view of
the GUI can change during interaction with the system, e.g. when opening
menus or new windows. Development of the system was, at the time of the
study, performed using an iterative process with regular manual testing per-
formed by dedicated testers. However, in contrast to the system developed in
Case 1, the tested system in Case 2 did not follow any quality assurance stan-
dard. The look and feel of the graphical bitmap components of the system’s
GUI were however specified by a military standard. Finally, the product’s
main customer is a Swedish military contractor.

Figure 4.1 visualizes the research process and the three parallel tracks that

104 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

Previous VGT
Study

VGT
evaluation

Workshop 1

Workshop 2

VGT
transition

Transition
and data
collection
support

VGT seminar

1

2

3

N

Study
Start

Case1: Saab AB
Gothenburg Research Team Case2: Saab AB

Järfälla

VGT
Transition

Data
Collection

Study
End

Data analysis: Challenges,
Problems and Limitation (CPL)

classification of 58 CPLs.

Test
System
CPLs

Test Tool
CPLs

Support
Software

CPLs

Data Analysis

Results

Figure 4.1: Visualization of the research process showing three tracks. Track 1
contains activities performed in Case 1 and prior work at Saab AB in Gothen-
burg. Track 2 the activities of the research team and Track 3 the activities of
Saab AB in Järfälla. Boxes that cross over the dotted lines were performed by
the research team and the respective company.

were performed by the researchers in Case 1, practitioners in Case 2 and the
support and data acquisition performed by the research team. The support
activities were continuous in Case 1, with members of the research team on
site, at the company, daily during the project. In Case 2, personal support
was only given during two full-day workshops on site, whilst all other support
activities were conducted over email or telephone. The workshops performed
in Case 2 were also the main source of data acquisition from the company, e.g.
information such as what type of system they were working with, what the
Sikuli test architecture would look like, etc. In the second workshop, two semi-
structured, one hour, interviews were held with the industrial practitioners to
validate previously acquired information through triangulation. Consequently,
the data acquisition in Case 2 was divided into three distinct phases, introduc-
tion (Workshop 1, in phase 1), data acquisition and implementation support
through remote communication (Phase 2) and finally a retrospective analysis

4.3. INDUSTRIAL CASE STUDY 105

(Workshop 2, phase 3).

After the completion of Case 1 and Case 2, all collected/acquired informa-
tion was analyzed and the CPLs identified. In Case 1, the analysis was done
through a combination of discussions with the researcher who did the data
collection and analysis of the thorough documentation that had been kept
during the entire project. In Case 2, document analysis was used as well, but
the primary source of information came from the workshops and particularly
the interviews since explicit questions were asked regarding the CPLs, and
solutions to said CPLs. The two projects were performed mutually exclusive
from one another, meaning that the leading researcher in Case 1 had no in-
teraction with the industrial practitioners in Case 2. Thereby ensuring that
any corroborating evidence from the two projects were not influenced by each
other.

After identification, the CPLs were categorized into three tiers, with 29
mutually exclusive CPLs on the lowest level of abstraction, i.e. Tier 3. The
Tier 3 CPLs were then generalized into 8 groups, Tier 2 CPLs, which could be
grouped even further into three top tier CPLs, i.e. Tier 1 CPLs. Furthermore,
the Tier 3 CPLs were analyzed to identify which were the most prominent
CPLs in the projects. Prominence was evaluated based on occurrence in both
projects, as well as more subjective measures, e.g. perceived negative impact
on the transition, or usage, of VGT, added frustration to the VGT transition,
and perceived external validity. In addition this analysis revealed four high-
level generic solutions that had been identified during the two projects, which
solve or mitigate roughly 50 percent of the identified CPLs. Cost, and return
on investment, was also evaluated during the study based on the quantitative
metrics that were collected from both cases and then analyzed. This analysis
was performed in context of the acquired qualitative information, e.g. the in-
dustrial practitioner’s statements regarding VGT’s benefits and drawbacks, to
rule out bias by ensuring that the qualitative and quantitative information was
coherent. All information analysis was performed by another member of the
research team than the one who performed the transition project in Case 1 to
mitigate bias in the results. Finally, conclusions were drawn from the analyzed
information, which were reviewed and validated by the researcher who did the
data collection and industrial practitioners to eliminate bias introduced during
the analysis.

4.3.2 Detailed data collection in Case 1

The VGT transition in Case 1 started with an analysis of the automated test
scripts that were developed in our previous work at Saab in Gothenburg to
identify what should/could be reused in the new project. In parallel with this
analysis, a thorough analysis was performed of the manual test suite for the
tested system. The document analysis was necessary because the version of
the tested system differed from the system that had previously been used.
In addition, the document analysis was required because the researcher who
did the data collection was unfamiliar with the system and lacked the details
of the previous work. A thorough documentation process was put in place
at this stage of the project based around a set quantitative and qualitative
metrics that were collected for each developed VGT script and/or the VGT test

106 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

suite, including development time, execution times, CPLs, etc. Specifically, the
information collection focused on sources and causes of CPLs that affected the
VGT transition, e.g. was the CPL related to the script, the VGT tool or the
system.

Even though the version of the tested system in Case 1 differed from the
one used in our previous work, the core functionality of the new version was
the same as the old, i.e. airport landing and air traffic management. The main
difference was that the new version only had one control position, whilst the
old system had three, each with different capabilities for different operators.
Consequently, the new version had limited functionality and analysis of the
manual tests therefore showed that only 33 out of the 50 manual test cases,
mentioned in previous work, were applicable. However, all of these 33, appli-
cable, test cases could be automated and thereby constituted a full automated
test suite, VGT suite, for that particular version of the system.

Furthermore, the system was distributed over three physical computers,
which required the VGT tool, Sikuli, to be paired with a third party Virtual
Network Connection (VNC) application in order to perform the test cases.
Thus, the test system setup included three computers that were intercon-
nected, through a local area network (LAN), to a fourth computer that ran a
VNC viewer application and Sikuli. The test system setup has been visualized
in Figure 4.2. Consequently, Sikuli, rather than to execute scripts locally, ex-
ecuted the scripts through the VNC viewer application to facilitate test script
execution of distributed test cases that required interaction with more than
one computer.

Once the analysis of the manual test suite, and the setup of the test system
had been completed, an architecture was defined for the development of the
VGT suite. The VGT suite architecture consisted of a main script that im-
ported the individual test case scripts, and helper scripts, and executed these
sequentially. The VGT scripts were implemented one at a time using the man-
ual test cases as a specification, ensuring that each VGT script was a 1-to-1
mapped representation of the manual test case. This implementation choice
was possible because the test steps in the manual test cases were defined in
sequential scenarios. Hence, each test step of an automated test script became
directly traceable to an equivalent manual test step in a manual test case.
Additionally, to verify the automated test cases, the test scripts were exe-
cuted after each test step had been developed, and verified against the results
of corresponding manual test step. Furthermore, the automated test steps
were defined in mutually exclusive methods, written in Sikuli script which is
a scripting language based on Python. This approach made the scripts mod-
ular, allowing test steps to be reused. Modularity was one of the keywords for
the transition projects to ensure reusability and maintainability of the scripts.
Finally, after a test script had completed, and successfully executed against
the tested system, it was integrated into the VGT suite. In situations where
erroneous test script behavior was identified post-integration into the VGT
suite, the test scripts were corrected and validated during execution of the en-
tire VGT suite, i.e. execution of all the test cases in sequence. The validation
was rigorously performed, even though time consuming, to ensure high quality,
by comparing the outcome of each automated test step with the outcome of
corresponding manual test step.

4.3. INDUSTRIAL CASE STUDY 107

VGT tool (Sikuli)

Subsystem
part A

Subsystem
part B Simulators

VNC Connections

Computer 1

Computer 2 Computer 3 Computer 4
Tested system

LAN connection

Figure 4.2: The setup of the tested system, including all computers that were
connected in a local area network (LAN), accessed by Sikuli using VNC.

A second keyword for the VGT transition project in Case 1 was robust-
ness. Robustness was achieved by implementing the scripts with three levels of
failure redundancy for critical functions to mitigate catastrophic failure either
due to image recognition failure, script failure, test system failure or detec-
tion of a defect in the tested system. In addition, all scripts were written as
modular as possible to ensure reusability of generic functions. Modularization
also made it possible to run specific test steps out of order, thereby shortening
script verification, since the entire test script did not have to be re-executed
every time new functionality had been added or changed.

In addition, to increase the fault finding ability of the VGT suite, a third
party screen-capture software was integrated into it. The screen-capture soft-
ware was used when a script failed, which would cause the tested system to
automatically reset to a known state after which the test scenario would be
rerun whilst being recorded by the screen-capture software. The recording
functionality simplified script verification and was also used to identify defects
in the tested system, i.e. if a script failed, a new video clip was recorded and
saved which the developers could view in order to recreate the defect. In ad-
dition to the he video-recordings, textual log files were created and saved for
each executed test case.

4.3.3 Detailed data collection in Case 2

In contrast to Case 1, Case 2 was driven by industrial practitioners and started
with a three week long evaluation of VGT as a technique. Three tools were
evaluated during this period, i.e. Sikuli, eggPlant and Squish, to identify the
most suitable tool to fulfill the company’s needs. After the evaluation, and
because of recommendations from the research team, Sikuli was identified as
the most suitable alternative for the automation.

Similarly to the transition in Case 1, the industrial practitioners in Case
2 used their manual test cases as specifications for the automated test cases.

108 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

Main script

Test case X

Setup()
Test()
Teardown()

Step_1()
...
Step_N()

VGT Suite

Support
script X

Reusable
methods,
VGT suite

setup
variables,

Global
images,etc

Execute
Import

Legend

1
n

0..n

n

1

Test result log(s)

Result

Figure 4.3: The architecture of the VGT suites developed in Case 1 and Case
2.

However, since the testers possessed expert domain knowledge, not every test
case was implemented as a 1-to-1 mapping to the equivalent, manual, test
case. The deviations from the 1-to-1 mappings were required since the manual
tests in Case 2, defined as use cases, were not mutually exclusive, but rather
linked together into test chains that contained several test flows, where each
test flow constituted a test case. The manual test case architecture in Case
2 was however perceived to provide the VGT suite with a higher degree of
flexibility and reusability than the manual test architecture used in Case 1.
However, similar to the VGT suite developed in Case 1, the developed VGT
suite in Case 2 was based around a main script that imported individual test
cases and executed these according to a predefined order that was specified by
the user.

Furthermore, similar to Case 1, quantitative metrics and qualitative infor-
mation was collected during the project. However, in contrast to the system-
atic, and rigorous, information collection in Case 1, it was performed in an
ad hoc fashion in Case 2 because of time and cost constrains. The collected
information was then conveyed to the research team, as shown in Figure 4.1,
through e-mail, telephone or during the interviews in Phase 3.

4.3.4 The VGT suite

In this this study we do not consider the developed VGT suites, or their ar-
chitecture, part of the contributions of the work since the main focus of the

4.3. INDUSTRIAL CASE STUDY 109

study was on the challenges, problems and limitations (CPLs) that were iden-
tified during their development and usage. However, to provide background,
and replicability, of the study, the following section will describe the developed
VGT suites in more detail.

The VGT suites developed in Case 1 and Case 2 were similar in terms of
architecture and were both built in Sikuli script, which is based on Python.
Sikuli has support for writing individual VGT based unit tests and includes
special assertion methods for unit testing. However, Sikuli does not have sup-
port for creating test suites of several individual unit tests. Hence, in order to
create a VGT test suite of unit tests, using Sikuli’s supported functionality, all
the tests have to be grouped into one large script, which has negative effects on
reusability, maintainability, usability, etc, for large suites. Therefore, custom
test suite solutions were created in both projects by using Python’s support for
object orientation and its ability to import scripts into other scripts. There-
fore, both VGT suites consisted of a main script that imported the individual
test cases and executed these according to an order specified manually in a list
in the main script. The architecture for the VGT suites is visualized in Figure
4.3. As can be seen in the figure, each script was given a setup method, a test
method, containing the test steps of each test case, and a teardown method.
Consequently, the VGT scripts were developed to follow the same guidelines
used for automated unit tests, e.g. JUnit [11]. Additionally, user defined
methods, variables to setup the VGT suite, etc, were extracted from the indi-
vidual scripts and put in a set of support scripts that were then imported to
the main script and/or the test scripts that required them. The modular, and
hierarchal, architecture helped shorten development time, increase reusability
and improve maintainability of the scripts, since all reusable components were
grouped in one location.

Test assertions were conducted through visual comparison between ex-
pected and actual output from the SUT using Sikuli’s image recognition algo-
rithm. This was achieved using branch statements, i.e. if the expected output
was observed the test step passed, else it failed.

The key difference between the VGT suite developed in Case 1 compared
to Case 2 was how test result output was generated. In Case 1, the output was
generated as textual log files using a custom solution that was spread across
the main script and the individual test scripts. The solution documented the
results of individual test steps but also summarized the results from the entire
test case, i.e. providing feedback to the developers on two levels of abstraction.
In addition, the output included video recordings of failed script executions,
created using the third party recording software Camtasia.

In Case 2, the output was produced using an open source Python library
that formatted the output from the test scripts into an HTML format, i.e.
providing a graphical representation of the test results, similar to the output
from automated unit tests, e.g. JUnit [11]. However, in contrast to Case 1,
Case 2’s VGT suite did not record failed test scenarios, instead it only took
screenshots of the tested system’s faulty state when a test case failed, i.e.
capturing the GUI’s faulty state when a fault occurred.

The purpose of adding screenshots, and video recordings, to the VGT
suites’ output was to provide the developers of the tested system with more
information to simplify fault identification and recreation. This functionality

110 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

also helped the testers to distinguish defects in the tested system from faults
in the VGT suite itself, either caused by faulty test case implementation or
image recognition failure during test script execution. Hence, mitigating the
risk of false positives, i.e. reporting defects that were actually not defects.

4.4 Results and Analysis

During the study, 58 challenges, problems and limitations (CPLs) were identi-
fied related to the transition, or usage, of VGT. These CPLs were categorized
post-project completion into three tiers of VGT related CPLs, as shown in
Figure 4.4. Three main categories of CPLs were identified, i.e. CPLs related
to the tested system, the VGT tool or support software, constituting the Tier
1 CPLs. The Tier 1 CPLs were then split into eight CPL sub categories based
on their origin and/or root of cause, i.e. the Tier 2 CPLs. These eight Tier 2
CPLs are: CPLs related to the version of the test system, the general test sys-
tem, defects in the test system, CPLs related to the practices of the company,
the tested system’s simulators, Sikuli, the test scripts or third party software.
In Figure 4.4 these eight categories have been divided even further into a third
level of abstraction, consisting of 29 identified mutually exclusive groups of
CPLs, i.e. Tier 3 CPLs.

Out of the 58 identified CPLs, 14 were identified as Sikuli specific. Five
of the 14 Sikuli CPLs were unique, i.e. mutually exclusive from any other
Sikuli CPL, eight were related to image recognition failure or tool volatility
and the last CPL related to the developed VGT test scripts. Furthermore, 20
out of the 58 identified CPLs were related to the version of the tested system,
six related to the general system, i.e. the product, six were defects in the
tested version of the system, one to the company in general and one to the
simulator environment, i.e. 34 in total. Hence, more than twice as many of the
identified CPLs originated from the tested system compared to the tool, i.e.
Sikuli. The remaining 10 CPLs were related to the third party software that
was used in order to realize the VGT suite, e.g. the virtual network connection
(VNC) application used to implement distributed test cases and the recording
software, Camtasia.

The detailed information regarding the CPLs were identified primarily in
Case 1, but were corroborated by information acquired in Case 2. Hence,
as can be seen in Figure 4.4, only 18 out of the 29 mutually exclusive CPLs
were identified in both cases, i.e. 62 percent of the CPLs. However, the
two cases were performed mutually exclusively of one another, meaning that
the researcher who did the data collection in Case 1 had no contact with
the industrial practitioners in Case 2. This study design intended to ensure
that the collected information was based on the individual cases and could
corroborate each other. Hence, provide evidence to support that the identified
CPLs are generic for any VGT project performed with Sikuli.

In the following sections details regarding the identified CPLs will be pre-
sented. The presentation will use Case 1 as a base case but corroborating
information from Case 2 will be presented as well.

4.4. RESULTS AND ANALYSIS 111

Wrong test specification

Challenges
Problems

and
Limitations

Test
System

Test Tool

Support
Software

Test
System
version

Test
System

(General)

Test
system
(Defect)

Company
specific

Test
system

(Environ
ment)

Test Tool

Test
scripts

Third
party

software

Manual tests out of date

Missing SUT functionality

BUG causes SUT crash

Manual test ambiguous

incorrect SUT startup

BUG causes SUT freeze
BUG, GUI doesn't react

Windows OS crash SUT

Manual test faulty
Missing GUI components

SUT slower after time

Img. Rec. failure

Only US keyboard

Sikuli gets corrupted

Performance intensive

Img. Rec. diffrentiation

Selecting text

VNC limited functionality
VNC disconnects

VNC shows wrong colors

VNC crashes

Recording SW won't start

SUT emulation failure

Animated components

Script img. get corrupted

Case 1:
Gothenburg

Both Cases:
Gothenburg
and Järfälla

Tier1 Tier2 Tier3 Observed

Budget limitations
Simulator missing func.

SUT "slower" than Sikuli

Figure 4.4: A hierarchal tree diagram over the Challenges, Problems and Limi-
tations (CPLs) that were identified in Case 1 and Case 2. The CPLs have been
divided into three tiers of abstraction, with Tier 3 being the lowest level where
the 58 identified CPLs have been grouped into 29 groups of mutually exclusive
groups of CPLs. The model continues to the right (The grayed out symbols),
connecting to Figure 4.5, which shows potential solutions to the Tier 3 CPLs.
SUT - System under test, VNC - Virtual Network Connection, Img. Rec.
- Image recognition, GUI - Graphical User Interface, OS - Operating system,
SW - Software, Func. - Functionality.

4.4.1 Test system related CPLs

The identified test system related CPLs were split into five sub-categories, as
shown in Figure 4.4. These CPLs are related to the version of the test system,

112 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

the general test system, defects in the test system, specific to the company
or the test system’s simulators. In this section, a summary of each CPL sub-
category has been described, including data related to the individual CPLs of
each category.

4.4.1.1 Test system version

Testing of complex systems with several versions and/or variants is related to
several CPLs that also affect VGT. One such CPL relates to the manual test
specification, e.g. that it can be faulty, out of date or developed for another
version or variant of the tested system, i.e. not aligned with the tested system.
This CPL appeared in Case 1 and was caused by the build, i.e. version, of
system used in the project which was a demo system used to demonstrate the
functionality of the product to potential customers, i.e. not a system intended
for customer delivery. As a consequence, the demo system was limited in
terms of functionality, lacked documentation, etc. The reason why this system
was used in Case 1 was because of resource constraints. Whilst the product of
the system required 12 computers, including three redundant servers, the demo
system required only three computers in total. Furthermore, because the VGT
suite was implemented as a 1-to-1 mapping of the manual test suite, not all of
the system’s manual test cases could be automated. In our previous work [126]
we performed automation with VGT on a version of the tested system that
had 50 applicable manual test cases. However, for the product of the tested
system, i.e. the full system, there are 67 manual system test cases in total of
which only 33 could be automated in Case 1. Hence, restricting the usability
and portability of the developed VGT test suite for other versions or variants
of the product system. However, all of the 33 test cases were automated and
thereby constituted a complete automated system test suite for demo system.

Lack of functionality that prohibited automation of more manual test cases
were, but not limited to, the system version’s lack of operator roles, missing
GUI components, missing radar functionality, missing simulator support, etc.
This functionality had purposely been omitted by the company when the demo
system was developed to scale down the amount of required hardware.

Furthermore, several CPLs were related to the manual test cases for the
tested system, e.g. some test cases were incorrect or out of date. Other tests
were found to be ambiguous or aimed at testing functionality that was no
longer part of any variant or version of the system. These test cases were
reported to the company and were considered a positive side effect of the
automation since the faulty tests could be removed from the test specifications
for several versions or variants of the system. Thus, this CPL relates to the
complexity of keeping test specifications up to date as a mature system evolves
into versions/variants over time.

Another identified CPL originates from the developers’/testers’ lack of do-
main knowledge in combination with ambiguity in the manual test description-
s/specifications. If a developer/tester performing the VGT transition lacks
domain knowledge, it may be impossible for him/her to implement certain
tests or he/she might implement them incorrectly due to ambiguities in the
test specification, whilst a domain expert would have been able to resolve the
CPL. This CPL was observed in Case 1, where the test specification that was

4.4. RESULTS AND ANALYSIS 113

used for the test automation was intended for another version of the tested
system, making several of the test cases inapplicable. Hence, many of the
test cases could only partially be implemented, or not be implemented at all,
because the tested system lacked functionality. Furthermore, this made the
VGT script implementation time consuming since the researcher who did the
data collection continuously had to ask other developers at the company what
the ambiguous test cases referred to, or what went wrong when the test cases
did not align with the system specification. To resolve the CPL the test spec-
ification that was initially used in Case 1 was replaced with another version
that was perceived to be better aligned with the system. However, it was soon
found that the new version of the test specification included other test cases
that could not be implemented on the version of the tested system used in the
project, i.e. causing new CPLs. The new CPLs were not discovered before
the automation had already started, once again due to the researcher who did
the data collection’s lack of domain knowledge. If the VGT transition had
instead been performed by a domain expert, he or she might have been able
to identify earlier that the test case was not applicable. Thus, saving time
and cost. This assumption is supported by information from Case 2 where the
industrial practitioner’s reported no such problems since they had extended
knowledge of both the test cases and the SUT.

Several other CPLs were identified during analysis of the manual test spec-
ification, even though most of the CPLs were uncovered during script develop-
ment. These CPLs were related to defects in the tested system that caused the
VGT scripts to terminate with a certain probability or every time they were
executed. During real-world execution of the VGT suite, i.e. during regression
testing, a VGT script would terminate after identifying a defect, report the
defect in the test output log, followed by a roll-back of the system to a known
state before executing the next script. Consequently, a manual test case that
identifies a defect at test step n can in practice only be automated up to step
n since the defect would prohibit any interaction with the tested system af-
ter this step. This is because all further execution, after identifying a defect,
would be within an unknown, and potentially useless, system state, making
the interaction at test step n+1 invalid and/or useless compared to real-world
use of the system. Furthermore, continued execution has a high probability of
reporting false positive results because the test steps are generally dependent
on one another, i.e. test step x sets the system in a state that is asserted in
test step x+1 that also sets the system in a state that is required in test step
x+2, etc. However, since the VGT suite, in Case 1, was developed for future
use at Saab, all test steps had to be implemented regardless if they succeeded
a faulty test step or not. Thereby, raising the usability and portability of the
developed VGT suite for versions of the tested system where the fault had
been corrected. To ensure that the test steps after a defect had been identified
would still be performed during script execution, the assertion of the defect
finding step, e.g. test step n, was disabled. Thus, test step n could perform
the necessary interaction with the SUT required for test step n+1. However,
since these test cases ignored the defects, the continued script execution, i.e.
test steps n+1 and forward, potentially put the system in an invalid/unnatural
state. Six defects were found during Case 1, by six different manual test cases,
resulting in six partially implemented test scripts, i.e. scripts with disabled

114 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

CPL category CPL sub-
category

Nr. of occur-
rences

Percentage
of all CPLs

Test System Test System version 20 0.344
Test System Test System (Gen-

eral)
6 0.103

Test System Test System (De-
fects)

6 0.103

Test System Test Company spe-
cific

1 0.0172

Test System Test System (Envi-
ronment)

1 0.0172

Total 37 0.5844

Table 4.1: Summary, and distribution, of problems, challenges and limitations
(CPLs) related to the tested system.

assertions. Hence, in future use of the test suite, for other versions or variants
of the system, these assertions first need to be enabled.

The defect identification was continuous in four of the six developed test
scripts that found defects. To ensure that these test scripts would execute
all their test steps, the assertions that found the defects were disabled during
verification of the scripts. This was possible because the test steps were mu-
tually exclusive from one another and because of the shallow GUI design of
the tested system that continuously showed all the GUI’s bitmap components
to the user. However, in the remaining two test cases the tested system’s
faulty behavior was not consistent. In these test cases the assertions were left
active during verification of script functionality which gave the test scripts a
certain probability of failure. This also made it possible to identify the faults
in sufficient detail to report them to the company.

However, because of CPLs related to faulty system behavior, it is reason-
able to assume that VGT transition of systems early in their development cycle,
i.e. VGT transition of immature systems, lead to more partially implemented
test scripts because some assertions cannot be implemented. The reason is
because a VGT script, like previous GUI-based techniques and manual system
tests, aim to test the system in its entirety, and therefore requires the system
to have reached a reasonable level of maturity in order to be applicable [127].

It is also perceived that an incremental script development process in par-
allel with system development has benefits over a big bang script implemen-
tation. This assumption is based on the research into other automated test
techniques and practices [16, 33], in particular Test-driven Development that
suggests continuous, and incremental, test script development [128]. However,
as shown in this study, a big bang implementation for legacy systems is also
considered viable. We will return to the viability of this approach in Section
4.4.6, which discusses the return on investment of the VGT transition in Case
1 and Case 2. However, even though these assumptions are supported by
research in other areas of automated testing, future work is still required to
verify their affects on VGT.

4.4. RESULTS AND ANALYSIS 115

4.4.1.2 Test system (General)

One of the most time consuming CPLs that was identified, in both Case 1
and Case 2, was that Sikuli, due to the speed of Sikuli’s image recognition
algorithm, executes scripts faster than the system’s GUI can respond. Conse-
quently, when Sikuli tries to perform an interaction, it is not certain that the
GUI is ready to receive new input, which can cause the script to fail. This CPL
is time-consuming because it requires the user to add delays in the scripts to
synchronize the scripts’ execution with the tested system. Furthermore, this
practice slows down the script execution time since the delays either have to
wait for the GUI to reach a stable state or be based on fixed delays based on
the worst case responce time of the system. Furthermore, this practice, even
though it adds robustness, usability, reusability and portability to the VGT
suite it also adds maintenance costs since these delays generally have to be
maintained every time the system’s performance is changed. In addition, as
reported by the practitioners in Case 2, this practice adds frustration to the
VGT transition, especially for long test scenarios, since each synchronization,
i.e. added delay, requires the script to be rerun to verify correctness. Conse-
quently, If an added delay is not sufficient to synchronize the script with the
system’s execution, the script once again has to be rerun. In addition, since
the delays should preferably be as short as possible, but still ensure script
robustness, this practice requires some trial and error which is both tedious
and time consuming.

To mitigate this problem, most VGT tools, including Sikuli, have special
methods that delay the script execution until a sought image is found, i.e. the
script is delayed until a stable GUI state has been reached. However, these
methods still require fine-tuning and therefore do not completely remove the
synchronization CPL. For web-based systems, this CPL is especially problem-
atic since network latency has to be taken into consideration when adding the
delays, i.e. sudden dips in network latency, if not mitigated in the script, can
cause the scripts to fail. Hence, a conclusion can be drawn that the execution
speed of a VGT script is governed by the response time of the tested system.
This conclusion is also corroborated by information collected in Case 1.

This problem became even more troublesome in Case 1 because it was ob-
served that the tested system lost performance over time, i.e. its response rate
deteriorated after a couple of days if the computers were not restarted. Similar
reports were presented from Case 2 and had the effect that test scripts that
had previously succeeded stopped working. However, given that the solution
was to simply restart the computer(s) this CPL is considered minor. However,
since only minor dips in response rate can cause the scripts to fail, which might
be hard for a human to detect, this CPL is worth mentioning since it caused
frustration during the project.

In addition, as reported by the practitioners in Case 2, a common com-
ment by project managers and other developers viewing the automated script
execution was: ”Isn’t the execution faster than this?”. This comment reflects,
and reveals, an important perception about automated test techniques, i.e.
the perception that all automated tests execute very fast. This perception is
mostly true, e.g. automated unit tests can execute many hundreds, or even
of thousands, of test case lines of code in minutes [33]. However, these auto-

116 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

mated test techniques, e.g. unit testing, approach testing from a lower level
of system abstraction, e.g. through a white-box approach that stimulate the
components directly, but out of context. In addition, these techniques do not
provide interaction stimuli to the tested system in the same way as the end-
user of the system. For instance, a unit test generally only tests one or a couple
of components at once, thereby disregarding the timing constraints between
the components that appear during actual usage of the system. Attempts
have been made to use lower level test techniques, e.g. unit tests, for system
test automation. However, these tests have quickly become very large and
complex and therefore unmaintainable [15, 16]. VGT scripts take these tim-
ing constraints into consideration by emulating end user interaction, but, as
mentioned, at the cost of test execution speed. However, based on information
from both Case 1 and Case 2, VGT tests can still execute up to 16 times faster
than their manual equivalent tests. Hence, VGT scripts execute considerably
slower than unit tests, which may be a CPL for industrial VGT adoption since
the general perception of industrial practitioners, as mentioned, is that au-
tomated testing is vert fast. However, what must also be considered is the
higher level of system abstraction of these tests, which make them applicable
for system and acceptance test automation.

Another CPL, which is general for all systems, relates to unexpected system
behavior, which includes the behavior of the tested system itself, behavior of
the operating system or third party software used to run the tested system
or its surrounding environment. In Case 1, such CPLs appeared at several
occasions but especially in test cases that required reconfiguration of the tested
system. The reason was because reconfiguration required both the tested
system and the computers’ operating system (OS) to be restarted. When
the OS was shut down, one or several of the tested system’s services often
crashed, causing the operating system to launch a pop-up message asking
the user to terminate the process. The pop-ups blocked, or delayed, other
components in the GUI from becoming visible and were thereby not available
for the image recognition algorithm to find, causing the scripts to fail. Events,
similar to this scenario can be handled using exception handling but it is
often difficult, or even impossible, to anticipate when this type of unexpected
behavior will occur, especially if the unexpected behavior is sparse. However,
failure to mitigate these events can cause the entire VGT suite to fail, or
report false positive faults. Scenarios when this type of behavior occur are
when popups, e.g. software update messages or error messages are launched
by the operating system, when system performance suddenly drops due to, for
instance, a new process is started by the operating system, hardware failure
or a defect in the tested system. To mitigate catastrophic script failure due
to unexpected behavior, or because of identified defects, the VGT suite in
Case 1 was implemented with triple failure mitigation redundancy. First,
certain operations, e.g. delay operations based on image recognition, were
encapsulated by exception handling blocks that, if triggered, tried to redo the
operation on an individual test script level. Second, if the exception handling
failed, the exception would be sent up one level in the VGT suite architecture
to the main script that would try to roll back the system to a known state and
then rerun the test script from the beginning. Third, if the rollback failed, the
main script would restart the tested system to ensure a stable system state and

4.4. RESULTS AND ANALYSIS 117

then rerun the failed test case from the beginning. This solution added extra
execution time to the overall test suite, but also added confidence that found
defects were actually defects in the system rather than spontaneous image
recognition failures or faults in the test scripts. Hence, if all three levels of
failure mitigation failed to resume the test execution, the cause was in general
ruled out to be a defect in the tested system. Similar practices were used in
Case 2, but only with one level of failure mitigation.

4.4.1.3 Test system (Defects)

Many of the encountered defects, discussed in Section 4.4.1.1, were previously
known to the company in Case 1. However, during the project, defects were
also uncovered that were previously unknown or only partially known to the
company. Hence, defects that had not been corrected in later versions or
variants of the tested system. The reason why these previously unknown
defects were uncovered by VGT was because of the quicker and more cost
effective execution of the VGT suite compared to manual tests. One reason was
because some of the identified faults were not consistent, i.e. could not always
be replicated, neither manually or automatically. For instance, one such defect
regarded a tab menu in the tested system that did not always load properly.
However, since there is no cost related to running the VGT suite it could be run
several times in a row and thereby force the faulty system behavior to appear.
In combination with the video recording functionality of the VGT suite in
Case 1, the faulty behavior of the system could be determined and the defects
could be reported in more detail to the company. Hence, showing how the
video recording functionality of the VGT suite adds to its fault-finding ability
and thereby usability. The faults that were uncovered were of different nature,
from faulty GUI functionality, e.g. tabs not launching, to complex faults in
the services of the tested system’s backend, e.g. missing alarms intended to
warn the system user of incorrect or missing input from external interfaces.
However, even though some of the defects could be considered minor, the tested
system was safety-critical and therefore all faults or defects were considered
critical.

Similar information regarding the identification of system defects was ac-
quired from Case 2, where the speed and low execution cost of the VGT suite
made it possible to identify three previously unknown defects in the tested
system. However, in Case 2 the cause to why the defects had previously not
been identified differed from the cause in Case 1. Previous to the automation
in Case 2 the test cases were always executed in a linear order, i.e. starting
with test case 1 to test case n, and only executed once every development
iteration, which was generally six months to one year. Furthermore, due to
strict testing budgets, it was not feasible to run all of the system’s manual
test cases each development iteration. However, the automated tests, which
were equivalent to these manual tests, could be executed several times every
week and several times in row each time, which lead to the discovery of the
previously unknown defects. Therefore, the practitioners in Case 2 reported
that if it hadn’t been for VGT these defects had probably never been found.

Even though these examples show strengths with the technique, they also
present a possible CPL, i.e. the CPL that a company may become so reliant

118 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

on the technique that it is used as a substitute for manual testing. However,
VGT is not perceived to be able to replace manual testing, primarily because
the technique can only find faults that are specified in the test scenarios [16].
Hence, manual exploratory testing is still required in order to complement
VGT to uncover new defects in the tested system [42]. These statements were
also supported by the industrial practitioners in Case 2.

Furthermore, the information regarding defect and fault-finding indicates
that the order of test case execution can affect the fault-finding ability of the
scripts, e.g. executing test case b after a may may not have the same outcome
as executing a after b. Thus, providing support for our previous statement,
i.e. since there is no cost associated with running a VGT suite it can help
uncover new defects by supporting execution several times in a row with dif-
ferent predetermined, or even random, test case orderings. Thus, perceivably,
increase their effectiveness [9] by covering more system states and sequences
of interaction that may appear during real-world usage of the system. How-
ever, some of these sequences may be invalid, i.e. never appearing in practical
use, but potentially still add value to the development company by exposing
what features of the system, in what scenarios, cause faulty system behavior.
Consequently, the capability of VGT suites to be executed several times in
different sequences, without additional cost, add to their usability. However,
in order for the suites to do so effectively they require a good architecture.
Thus presenting VGT suite developers with a CPL that is related to tradi-
tional software development rather than testing. A CPL that is common to
most script-based test automation that also presents new CPLs, for instance
how to design a test suite in a good and modular way and how to verify that
the test code is correct. In particular, verification of test cases is a difficult
CPL since the scripts need to be trustworthy, i.e. not find false positive and
absolutely not false negatives. One way of performing verification of VGT
tests is to verify them against the manual test descriptions, i.e. ensure that
the VGT scripts perform in the same way as their manual test equivalents.

4.4.1.4 Test company specific CPLs

There was a mismatch between the tested system in Case 1 and the test spec-
ification that was used for the VGT transition. The researcher driving the
automation in Case 1 also lacked the domain knowledge to identify this mis-
match which later required several partial test cases to be refactored. However,
the source of this CPL is not VGT specific but rather a general CPL that is
related to the complexity of product management [129]. Product manage-
ment that becomes increasingly more difficult as the number of artifacts, e.g.
test specifications, increase in number for different versions and variants of a
system, which can lead to confusion and faulty use, as experienced in Case
1. Hence, this CPL adds support to the conclusion that any VGT transition
project should be driven by a domain and/or test system expert in order to
mitigate that unnecessary effort is spent on development of VGT suites from
faulty specifications.

In Case 2 another company specific CPL was identified that related to
the VGT transition project’s limited budget. The limited budget forced the
industrial practitioners to develop the first possible VGT script solution they

4.4. RESULTS AND ANALYSIS 119

could identify, which wasn’t necessarily the best in terms of script performance,
reusability, etc. This CPL is common in industry and affects any process
improvement and is therefore not VGT specific.

4.4.1.5 Test system (Environment)

Another CPL that was identified during Case 1 was related to the tested sys-
tem’s simulators. The intended use of the tested system is to control the
landing lights and radar equipment at an airport. However, since the actual
hardware equipment, e.g. a radar station, is not available during development
and testing at the company, the company instead uses a set of different simu-
lators to stimulate the tested system’s external interfaces. Hence, simulating
the hardware interfaces using software, which is a common practice in indus-
try [65, 130]. These simulators are maintained by the development company
and as the tested system has evolved so has the simulators, i.e. new, or ad-
ditional, functionality has been added to the simulators to better represent
the hardware interfaces connected to the system. Additionally, new simula-
tors are constructed over time to test new functionality of the tested system
that the previous simulators were not able to test, e.g. timing constraints on
the input data which is sent over the external interfaces. However, not all
simulators used at the company are compatible with all versions or variants
of the tested system. Thus presenting a CPL regarding what test cases that
could be automated for the version of the tested system in Case 1 since the
test specifications specified the use of newer simulators than the system could
support. Therefore, older versions of the simulators had to be used instead.
Hence, restricting the usability, reusability and portability of the developed
VGT suite as it is currently implemented. The costs required to refactor the
VGT suite to work with newer simulators is also unknown and therefore a sub-
ject of future work. However, based on the research teams’ expert assessment,
none of the interactions with the new simulators were determined to be unim-
plementable. Hence, there is no evidence to suggest that the migration to a
new simulator environment would not be possible at the company. This expert
conclusion is based on the fact that most of the company’s simulators mainly
use standard Windows components that Sikuli, through empirical evaluation,
has no problem to interact with.

4.4.2 Test tool related CPLs

The CPLs discussed so far have all been related to the tested system, or the
development company, and are therefore perceived as CPLs that are plausible
to appear in any VGT transition project, with any VGT tool. However, in
both Case 1 and Case 2, the VGT tool Sikuli was used and the following
section will present specific CPLs identified for that tool. Two sub-categories
of CPLs were identified as Sikuli specific, i.e. CPLs related to the tool and
CPLs related to the VGT suite that was developed.

4.4.2.1 Test tool (Sikuli) related CPLs

Sikuli is a tool developed and maintained in an open source project that was
started at the User Interface Design Group at the Michigan Institute of Tech-

120 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

CPL category CPL sub-
category

Nr. of occur-
rences

Percentage
of all CPLs

Test Tool Test tool (Sikuli) 13 0.224
Test Tool Test scripts 1 0.0172

Total 14 0.2412

Table 4.2: Summary, and distribution, of problems, challenges and limitations
(CPLs) related to the test tool (Sikuli).

nology, but is now maintained and developed by the Sikuli Lab at the Univer-
sity of Colorado Boulder. The tool was at the time of the study still a release
candidate, i.e. not a finished product. Consequently, the tool was volatile, con-
taining several defects that affected the stability of the tool’s image recognition
algorithm, its behavior in general and its integrated development environment
(IDE). The defects related to the tool’s IDE caused it to crash and freeze
sporadically, forcing the user to restart the tool, which, as reported from the
researcher who did the data collection in Case 1, and the industrial practition-
ers in Case 2, added frustration to working with the tool. However, as also
reported by the practitioners in Case 2, there are ways of improving the tool’s
stability, e.g. by running the scripts from the command-line rather than the
tool’s IDE. No explicit reason was found why this practice raised the robust-
ness of the scripts, but it was perceived, by the industrial practitioners, to be
related to defects in the tool’s script engine.

During test script development it is often required to terminate the test
script execution manually, e.g. due to recognized faulty behavior. However,
manual termination of the script execution can cause Sikuli scripts to be cor-
rupted. Hence, a serious CPL, which was identified both in Case 1 and Case
2, with impact on robustness and usability of Sikuli. In the instances where
the CPL occurred, it was reported that the script logic could always be re-
covered but that the links to the sought images in the script all broke, which
required recapturing of all the images. Hence, for larger scripts, this CPL can
be both time consuming and tedious whilst also adding frustration. The mit-
igation practice found for this CPL during the project was once again to run
the scripts from the command-line rather than from Sikuli’s IDE, which made
it possible to terminate the script execution without any reported incidents.
Thus, the recommendation, given by the industrial practitioners in Case 2, is
to restrict the use of Sikili’s IDE to script development only. Additionally, this
CPL has been identified on both Windows and MacOs versions of the tool,
but with perceivably higher frequency in Windows.

The most prominent Sikuli related CPLs are however connected to the
tool’s image recognition algorithm, e.g. it randomly fails in cases where it has
previously succeeded, randomly clicks on generic positions next to the sought
images. These random failures were identified in both Case 1 and Case 2 to
be the source of the most frustration during the VGT transition since the
source of the problem has yet to be identified and appears completely random
in nature. Image recognition failure often occurs during script development
because the similarity level of the sought image is either too high or too low for

4.4. RESULTS AND ANALYSIS 121

the image recognition algorithm, which uses fuzzy recognition, to find a match,
e.g. because there are several similar images on the screen. To ease the script
development in these instances, Sikuli’s IDE has a built in feature that allows
the user to preview what the image recognition algorithm considers a match to
the sought image on the tested system’s GUI. This feature shows the developer
where Sikuli has found a match on the screen, indicated with a square. If
several matches are found, these are ranked according to the similarity of the
found image compared to the sought image. The ranking is visually displayed
with squares of different color, from light blue, for a match of low similarity,
to bright red, for a match of high similarity. During script execution, Sikuli
will always interact with the image with the highest similarity, if not told
otherwise. According to the researcher who did the data collection in Case 1,
and the practitioners in Case 2, corroborated by the authors’ own experiences,
this feature has never failed to find a match, i.e. indicating a 100 percent
success rate of the image recognition algorithm. However, it was reported,
from both cases, that even though the preview feature indicates that a match,
of high similarity, is found in the tested system’s GUI, this does not ensure
that the image recognition will find the sought image during script execution.
Furthermore, even if the link to the sought image has been corrupted in the
script, as described above, this feature still shows a match. The successful
matching of corrupted images added a lot of confusion and frustration in both
Case 1 and Case 2, since this feature’s behavior did not align with the behavior
of the script, i.e. the feature indicated a match but the script failed.

Another identified CPL related to the image recognition algorithm was
that it is often too lenient or too strict on what is considered a match to the
sought image. Therefore, a lot of effort during script development is required
to fine-tune, i.e. raise or lower, the similarity level of individual images, which
in its default setting is set to 70 percent similarity. For larger scripts this
practice becomes quite time consuming, especially since no pattern has been
identified regarding which images require higher, or lower, similarity level than
the default setting. Furthermore, as mentioned above, Sikuli’s scripts some-
times get corrupted, requiring images to be recaptured. Recaptured images do
not retain the image similarity properties they had before they got corrupted.
Hence, the similarity level once again needs to be set manually. Consequently
adding further to the frustration to the script development. Furthermore, the
need to fine-tune the similarity is considered to be one of the main contributors
to development costs, but perceivably also maintenance costs.

Other CPLs related to the image recognition, identified in Case 1, concerns
inconsistent ability to find certain bitmap objects, i.e. animated images and
images with similar appearance but with slightly different color. The identifi-
cation of animated images, e.g. blinking or moving images, was required since
the tested system in Case 1 had animated buttons that indicated alarms or
warnings to the user. For instance, in most airports there are nets that can be
raised in order to stop an aircraft in an emergency, e.g. during brake failure.
These nets are situated on opposite ends of the runway and should be raised
dependent on from which direction the aircraft is approaching the runway.
However, in case the wrong net is raised, or both nets are raised at the same
time, the GUI warns the user by periodically switching the background color
of the buttons, used to raise the nets, from red to yellow and back again in

122 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

an interval of roughly one second. Testing this functionality, with confidence,
showed to be problematic for Sikuli that often failed to find the buttons, de-
pending on which state they were in. A conclusion can therefore be drawn that
Sikuli is limited in its capability to interact with animated GUIs, i.e. lowering
the tools usability. However, as mentioned, the tested systems, in both Case 1
and Case 2, were both quite static, i.e. mostly non-animated. Therefore, the
CPL did not affect the overall VGT transition but rather just a few test cases.

In addition, the image recognition was, in some instances, unable to distin-
guish between images with similar but different color and similar appearance.
For instance, the tested system in Case 1 is intended to be used both during
the day and at night, i.e. during different lighting conditions. Hence, in order
to make the GUI more comfortable to use during night, the GUI colors can be
switched to a darker color set, effectively dimming down the brightness of the
GUI. However, due to to limitations of Sikuli’s image recognition algorithm, it
was unable to test that that the GUI colors had been changed. The initial test
was performed by asserting that the GUI with the lighter color set was not
shown after the darker color set had been activated. However, even when the
similarity level of the image of the lighter GUI was raised to 99 percent, the
image recognition algorithm was still unable to differentiate the brighter from
the darker appearance of the GUI. Consequently, the test case could only be
partially implemented by identifying parts of the interface that changed more
substantially, e.g. buttons that changed color from gray to yellow. However,
this test still did not assure, with full confidence, that all aspects of the GUI
were changed. Thus, this lack of confidence in the image recognition’s capabil-
ities lowers the robustness, usability and portability of the scripts. This CPL
may arise when, for instance, a test aims to verify that a button has changed
its graphical state after being clicked, given that the images of the different
states are similar.

Yet another CPL with Sikuli, experienced in both Case 1 and Case 2, con-
cerns the lack of documentation about Sikuli’s scripting language. Sikuli’s
scripting language, called Sikuli script, is based on Python but has been ex-
tended with a set of methods that make use of the image recognition capa-
bilities of the tool. However, as reported by the researcher who did the data
collection in Case 1 and the industrial practitioners in Case 2, there is no
consistent, searchable, API for all of the methods supported by Sikuli script
and what these methods’ properties are. As an example, Sikuli script has a
method called wait, which originates in Python’s sleep function, which delays
the script execution for t number of seconds. The method can take a series
of different input parameters, i.e. wait(image, t), wait(t, image), wait(image)
and wait(t). These input alternatives are not specified in the official Sikuli doc-
umentation but all have different behavior. The first alternative, wait(image,
t), causes Sikuli to pause the execution for a maximum of t seconds or until
it finds the sought image ”image”. However, if the second alternative, wait(t,
image), is used, the script will always pause for t seconds and then try to
find the image ”image”. Both functions are useful in different circumstances,
but since the user generally takes the worst case scenario into account when
setting the wait time, the second alternative will make the script execution
time much longer. This was considered a large CPL in both Case 1 and Case
2 until it was discovered that the wait method had these different capabili-

4.4. RESULTS AND ANALYSIS 123

ties. In addition, this CPL, i.e. the lack of proper documentation for Sikuli
script, can discard companies from using the tool. Especially since some of
Sikuli script’s methods are unintuitive, e.g. the wait method. Hence, this CPL
lowers the usability, learnability, reusability, portability and maintainability of
the scripts. However, as we identified in our previous work [65], Sikuli script,
or Python, is in general an intuitive programming language, even for novice
users with limited programming experience.

Both the tested systems, in Case 1 and Case 2, included input areas that
accepted swedish words as input. Hence, there were manual test cases that
required the user to input swedish words and/or letters, i.e. å, ä, ö. However,
Sikuli only supports an english keyboard for typing, i.e. the supported method
“type” does not support swedish letters. Thus, in order to use the swedish
letters, Sikuli’s “paste” method must be used instead, but this method does
not work in all instances since it uses the operating systems (OS) clipboard
which isn’t available, for instance when typing passwords into Windows OS
login screen. The solution to this CPL, used by the researcher who did the
data collection in Case 1, was to type ascii characters as combinations of
pressing the ALT key followed by the ascii code of the letter. Identifying and
implementing the solution was both time consuming and added frustration to
the researcher. In addition, the fact that Sikuli does not support characters
from other languages was puzzling since the tool’s IDE can be set to a variety
of different languages, including swedish. Consequently, Sikuli scripts have
some CPLs in terms of usability, and portability to systems with GUI’s in
languages other than english.

Similarly, this CPL is present when the tool’s optical character recognition
(OCR) algorithm is used. The OCR algorithm makes it possible to read texts
of bitmap images but, once again, it only supports english letters. Hence, the
swedish letter “ä” is interpreted as an “a”, “ö” interpreted as an “o”, etc.
Thus, once again limiting the usability and portability of the scripts.

Consequently, there are many serious CPLs related to the Sikuli tool, some
of which are related to the tool’s IDE, others to the image recognition algo-
rithm, etc. One cause of these CPLs has been determined to be because of
the tool’s Java implementation, which, through exploratory experimentation
on approximately 50 different computers, was found to be highly dependent
on what version of the Java Runtime Environment (JRE) is installed. In ad-
dition, the current version of Sikuli, at the time of writing this report, requires
Java 6, i.e. JRE 6, and is only stable for certain versions of said JRE. How-
ever, no comprehensive evaluation has been performed to find which versions
of JRE 6 that make Sikuli more stable, but is a subject of future work. In
addition, for users of Java 7, Sikuli’s initialization file has to be modified to
use the exact path to the JRE 6 executable, rather than the path provided by
the operating system’s environmental variables. Thus, many users, especially
users with limited programming and/or OS knowledge, can be discouraged
from using the tool, if they get it to work at all. In addition, our exploratory
experiments could also show that Sikuli is more stable, in general, on MacOs
than on Windows. Consequently, this CPL limits the robustness, usability,
portability and maintainability of the scripts and the tool.

124 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

4.4.2.2 Test application

The VGT suites that were developed in Case 1 and Case 2 were both developed
as 1-to-1 mappings of the manual test cases. However, the manual tests were,
in both cases, designed to be as unambiguous and simple as possible for a
human tester to perform. Hence, the test cases were defined in mutually
exclusive steps that each consisted of setup of the system, through manual
input, to put the system in a specific state before an assertion, i.e. the test,
was performed, followed by another setup, input, etc. Thus, the tester would
start with test step 1 in test case x and then, without requiring any knowledge
of future steps, execute each step of the test case to test step n. The benefit
of this approach is that any tester, or even developer, can perform these tests.
The drawback is that this approach may be time consuming, since the tester
has to jump back and forth between, for instance, a simulator and the tested
system several times, i.e. set up the simulator, do the test, do a new setup,
etc. However, the test steps, in Case 1, were mutually exclusive, meaning that
all the setup of the simulator could have been done in one step rather than
several to save time. Grouping all of the simulator setup steps had however
made the test case more complex and could potentially have added ambiguity
to the test case. However, when executing a test case automatically, ambiguity
in the script becomes less of a concern due to the more structured semantics
of a script compared to natural language. Furthermore, said complexity is
not a problem for the computer, only the human interpreter. Thus, there are
other aspects than ambiguity to consider when performing automated testing,
which are more important such as script performance, quality and reusability.
Consequently, a 1-to-1 mapping between manual tests and VGT scripts is
not necessarily the best approach. On the one hand, the 1-to-1 mapping
approach allows the scripts to be verified through comparison with manual test
execution, but on the other, it can have negative effects on the performance
of the script. An alternative automation approach is therefore to group all
related interactions with similar GUI component in one test step, given that
they are mutually exclusive and do not affect the flow of the test scenario.
The benefit is that the execution time becomes lower, whilst still allowing the
developer to verify the test script outcome with the manual test case. The CPL
lies in identifying these mutually exclusive test steps and group them together,
correctly, in the script. Furthermore, this practice contains a trade-off since it
raises the maintenance costs of the scripts because changes to the manual test
cases become harder to update in the scripts. Another potential automation
approach is to disregard the manual tests all together. Hence, instead of
using the manual tests as a specification use domain expertise to build an
automated test suite for the core functionality of the system. The drawback of
this approach is that it requires domain and system experts to write the scripts,
which might be a CPL due to the associated cost. An alternate, inverted,
approach is to only automate the test suite’s large and complex test cases,
e.g. test cases that are prone to faulty execution by a human, or test cases
that are so long that they become cumbersome for a human to execute. These
alternative automation approaches are supported by information acquired from
the practitioners in Case 2 that in the future will focus on developing a more
generic VGT application to test all the basic functionality of the tested system,

4.4. RESULTS AND ANALYSIS 125

CPL category CPL sub-
category

Nr. of occur-
rences

Percentage
of all CPLs

Support soft-
ware

Third party soft-
ware

10 0.172

Total 10 0.172

Table 4.3: Summary, and distribution, of problems, challenges and limitations
(CPLs) related to the support software, e.g. VNC.

i.e. not following the manual test specification.
Another, more concrete, CPL, related to the VGT suite, which was identi-

fied in Case 1, consisted of a combination of how Sikuli uses the mouse cursor
and the speed of the tool. In order to mark and copy a generic text from an
application, a human can double-click one the text and then copy it using a
keyboard shortcut. This functionality was required in some of the test cases in
Case 1. However, since Sikuli performs the double-click with such high speed,
i.e. much quicker than a human, the operating system did not always register
both of the clicks, which caused the script to fail. This CPL is minor, and can
be solved by changing Sikuli’s settings to lengthen the time between clicks.
However, the CPL is still worth mentioning because even though Sikuli, as
all other VGT tools, interacts with the tested system in the same way as a
human, it is not human. Thus, the developer needs to consider what Sikuli is
actually doing, underneath the hood, when the script is being developed and
executed to avoid CPLs that originate from Sikuli acting “non-human”.

An alternative solution to the text marking CPL, discussed above, which
was found to be more robust, is to search for text using different applications
search functions, e.g. in text editors. The search function was used in Case
1 in test cases that required XML files to be rewritten in order to change the
layout of the tested system’s GUI, since a found match to a search, generally,
automatically marks the found text. The drawback of this approach is that you
have to know what text you are looking for, and it only works in systems that
have a search function. A third alternative solution is to use Sikuli’s Optical
Character Recognition (OCR) algorithm that allows the tool to transform
text in images to strings that can be used for further processing in the script.
However, Sikuli’s OCR algorithm was found to be unreliable in the available
version of the tool, at the time the study was performed, and was therefore
used as sparsely as possible.

4.4.3 Support software related CPLs

As shown in Figure 4.2 the test system in Case 1, included several computers
connected through LAN, which Sikuli interacted with using a third party vir-
tual network connection (VNC) application. A similar setup was used in Case
2, but only between two computers rather than four. The reason for using
VNC was two-fold. First to allow Sikuli to perform distributed test cases, i.e.
test cases that required interaction on different computers. Second to make the
Sikuli’s script execution non-intrusive, i.e. removing the impact of running the
performance intensive image recognition on the same computer as the tested

126 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

system. Non-intrusiveness helps mitigate the CPL that the image recognition
algorithm might steal computational resources from the tested system, which
could potentially change the tested system’s behavior during runtime, i.e. slow
down the execution. Thus, put the system in states that will not occur during
real-world use or cause the test scripts to fail due to failed synchronization
between the scripts the tested system.

However, the use of VNC was also the cause of several CPLs. First, when
Sikuli is executed locally it can remove the mouse-pointer from the screen, mak-
ing the mouse-pointers location irrelevant for the success of an image recogni-
tion. However, when Sikuli is executed over the VNC application, the mouse
pointer cannot be removed since it is rendered remotely on the target com-
puter. The mouse pointer can therefore obstruct buttons, and other sought
bitmaps, thereby causing the image recognition to fail. Furthermore, the use
of VNC had degenerative effects on the success rate of the image recognition
because of network latency. Even when the VNC application was running in
an optimized setup, the frame rate of the viewer caused the image recognition
to fail. This CPL was especially troublesome for test cases that included in-
teraction with animated graphical components, e.g. the emergency nets in the
tested system in Case 1, since the lower frame-rate could cause the buttons
to be distorted as they were toggling color. Hence, on occasion, the buttons
were rendered with the top half of the button in red color, and the button
half in yellow color, or vice versa. In addition, VNC introduced other, less
obvious, faulty behavior. The increased faulty behavior was observed in both
Case 1 and Case 2, but VNC was identified as the source of the CPLs in Case
2. Hence, even though running Sikuli over VNC increases the tool’s usability,
it also lowers the tool’s robustness since this practice increases the chance of
image recognition failure.

In addition, as found in Case 1, the choice of VNC application is a relevant
factor. At the start of the project, a more simplistic VNC application was used,
but it was soon discarded due to poor performance and because it was unable
to send keyboard commands to the tested system. These keyboard commands,
e.g. CTRL+ALT+DELETE and CTRL+V, where used to simplify, and/or,
where required, to perform some of the test cases. Another VNC application
was therefore acquired, which solved the CPL regarding the keyboard com-
mands and also increased the stability and speed of the remote image transfer.
Consequently, even though VGT tools can interact with any third party soft-
ware, the developer should, if there are multiple software options, seek to find
the one most compatible with VGT.

Furthermore, the VNC application sometimes lost its connection, which
made the screen freeze or caused the application to minimize, which caused
the scripts to fail as well. This CPL was experienced in both Case 1 and
2, but no solution was found to resolve it. In addition, as also identified in
both cases, the VNC application sometimes distorted the colors of the SUT’s
GUI, typically during start-up. This CPL was solved in Case 1 by adding
script functionality that restarted the VNC application when the distortion
appeared.

In Case 1 a third party recording software, Camtasia, was, as mentioned,
added to the VGT suite application. The tool was used to capture recordings
of the test suite execution which can help developers to identify the cause of

4.4. RESULTS AND ANALYSIS 127

Tier 1 CPL
category

Tier 2 CPL cate-
gory

Nr. of oc-
currences

Percentage
of all CPLs

Test System Test System version 20 0.344
Test Tool Test tool (Sikuli) 13 0.224
Support soft-
ware

Third party software 10 0.172

Test System Test System (General) 6 0.103
Test System Test System (Defects) 6 0.103
Test System Company specific 1 0.0172
Test System Test System (Environ-

ment)
1 0.0172

Test Tool Test scripts 1 0.0172
Total 58 ∼1 (0.998)

Table 4.4: Summary of distribution of problems, challenges and limitations
(CPLs) that were identified during the automation process ordered according
to occurrence of the Tier 2 CPLs. Tier 1 CPL-categories have been listed for
each sub-category.

faults in the system and recreate the faults. However, during the project, in
several occasions the software could not be started during script execution,
which resulted in the VGT suite terminating before all the test cases had been
executed. This CPL shows that even though VGT is able to interact with any
bitmap component on the screen, precautions still have to be taken that said
interaction is robust, in all aspects of the developed VGT suite.

4.4.4 CPL Summary

58 challenges, problems and limitations (CPLs) where identified during this
project, primarily through analysis of the information collected in Case 1, at
Saab in Gothenburg, corroborated by information provided from Case 2, i.e.
Saab in Järfälla. In the analysis the CPLs were categorized into three tiers,
with the lowest, Tier 3, containing 29 mutually exclusive groups of CPLs, as
shown in Figure 4.4. Table 4.4 summarizes, numerically, how these 29 groups
were divided over the Tier 2 CPL categories, and in turn how the Tier 2 CPLs
were divided over the top three Tier 1 CPLs. The top three CPLs concern
either the tested system itself, the test tool or support software not directly
connected to the tested system itself, e.g. the third party virtual network
control (VNC) software. Analysis of the collected CPLs shows that most
of them relate to the tested system itself, rather than the testing tool, i.e.
Sikuli. However, the most prominent CPLs were determined to concern the
tool and its image recognition algorithm, which sometimes failed unexpectedly,
had limited ability to interact with animated graphical GUI bitmaps, etc. In
Table 4.5, the eight most prominent CPLs have been summarized together
with their impact on VGT’s applicability in industry or the quality of a VGT
suite. These eight CPLs were chosen based on occurrence during the project,
but also more subjective measures such as added frustration, confusion, etc.

128 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

Nr Title Description Q-
attr.

ID.
at

1 Img.
rec.
volatil-
ity

Image recognition randomly fails for reasons
unknown causing failures in scripts that pre-
viously worked. Assumed to be related to
Sikuli’s immaturity.

Rob,
Usa.

C1
and
C2

2 Img.
rec.
limita-
tions

The image recognition algorithm has lim-
ited ability in finding certain animated ob-
jects and differentiating between objects
with similar color, e.g. dark to light gray.

Rob,
Usa.

C1

3 Negative
VNC
effects

Running Sikuli over VNC enables dis-
tributed system testing. However, image
recognition failure increases due to color
changes, mouse cursor placement, etc.

Rob,
Usa,
Port.

C1
and
C2

4 Sikuli
IDE
volatil-
ity

Sikuli is not a finished product and there-
fore has faults that cause it to crash, loose
links to images in scripts, fail to start, etc.
Note that these CPLs do not include image
recognition related CPLs.

Rob,
Usa,
Port,
Reu,
Main,
Mod.

Case
1
and
Case
2

5 1-to-1
map-
ping

Using manual test cases as the specification
for the automated scripts is not always feasi-
ble nor appropriate in terms of performance,
maintainability, etc. Furthermore this doc-
umentation can be faulty.

Usa,
Port,
Reu,
Main.

C1
and
C2

6 Test
system
limita-
tions

Test system CPLs are context dependent. A
reoccurring CPL is however synchronization
between scripts and the tested system. Es-
pecially in web systems.

Rob,
Usa,
Reu,
Port,
Main.

C1
and
C2

7 Hard-
ware
limita-
tions

Image recognition is a performance heavy,
dependent on hardware support. Especially
in real-time systems with animated inter-
faces.

Rob,
Usa,
Reu,
Port.

C1

8 Test
system
matu-
rity

Expected output imagery requires the sys-
tem to have reached a suitable level of ma-
turity.

Rob,
Usa,
Reu,
Port,
Main.

C1
and
C2

Table 4.5: A summary of the eight most prominent identified CPLs from Case 1
(C1) and Case 2 (C2). Prominence is based on occurrence, perceived negative
impact on the transition to, or usage of, VGT, added frustration, etc. Rob -
Robustness, Usa - Usability, Reu - Reusability, Learn - Learnability, Port -
Portability, Main - Maintainability.

4.4. RESULTS AND ANALYSIS 129

4.4.5 Potential CPL solutions

The focus of this work is on the CPLs related to VGT when performed in
industrial practice but four generic solutions were also identified. These so-
lutions have been summarized in Table 4.6 together with the Tier 3 CPLs,
from Table 4.5, that they solve or mitigate. The reason for the low number
of presented solutions, in this report, is because many of the solutions that
were found/used in the study were ad hoc and thereby not generalizable. In
Figure 4.5 the four generic solutions have been mapped to the Tier 3 CPLs.
As can also be seen from Figure 4.5, not all of the CPLs are listed, which is
either because no generic solution was identified to solve them, or because no
solution was found at all. However, as shown in Table 4.6, and Figure 4.5
these generic solutions are applicable for solving or mitigation of more than
50 percent of the CPLs.

The first generic solution, used in both projects, was to ensure that the
scripts were developed with redundant levels of exception handling to miti-
gate CPLs such as tool and image recognition volatility, etc. This exception
handling was achieved by using Python’s inherent exception handling. De-
veloping this exception handling is however quite time consuming and can be
complex since these exceptions are most often caused by unexpected tool or
system behavior. However, the solution, which was used in both Case 1 and
Case 2, was reported as effective.

The failure mitigation in Case 1 consisted of three levels of failure redun-
dancy, i.e. on a method level, on a script level and on a test suite level, as
previously described in Section 4.4.1.2. Hence, if the script would fail, the
failed interaction method would first be rerun, which if failed again would re-
sult in the entire test case be rerun, and finally if that failed as well, the test
system would be restarted and the script rerun a third time. For each rerun
a textual log of the test execution was automatically produced and for every
rerun above the method level, the execution was also recorded. The failure
mitigation in Case 2 was less complex, with only one level of redundancy.
Hence, if a test case failed, the system would roll back the system, and then
continue with the next test case. Rollbacks were in both cases performed with
a teardown method similar to the JUnit test framework [11]. This solution is
perceived as generic given that the VGT tool which is used for the automation
has similar scripting support and solves CPLs such as script failure due to
unexpected behavior of the tested system, the operating system or supporting
software, or image recognition failure, etc. Some VGT tools also have other
types of redundant failure mitigation, for instance several image recognition
algorithms and image repair features.

The second solution that was identified, which mitigates the lack of Sikuli
documentation, is to continuously document the script development, e.g. doc-
ument the test suite architecture, the functionality of help scripts and methods.
Thus, ensuring that new testers, and/or developers, can more easily start work-
ing with the test suite, but more importantly, to mitigate degradation of the
VGT suite over time [16]. This solution shows how VGT testing has common-
alities with traditional software development. However, documentation is only
explicitly required for the test architecture, since the scenario-based scripts
are generally intuitive by themselves. This intuitiveness comes from the com-

130 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

bination of high level of interaction, which is equal to human user usage of
the system, and images in the scripts that define with what these interactions
are performed. In addition, given that the scripts are implemented as 1-to-1
representations of the manual test cases, the manual test case descriptions also
serve as specifications, and documentation, for the test scripts.

The third identified solution regards the removal, or non-usage, of remote
computer control software, e.g. virtual network connection (VNC) applica-
tions. Removal of VNC from the test architecture raises stability of the test
execution by mitigating detrimental effects to the image recognition due to net-
work latency, lowered frame-rate, etc. However, this practice is a double-edged
sword, because, even though it raises robustness, it also restricts the number
of test cases that can be performed on distributed systems. In addition, by
running the test scripts locally, more load is put on the computer running the
tested system. Hence, raising the risk of faulty behavior of the tested system
due to the lack of performance resources, e.g. access to the central process-
ing unit (CPU) or the computers random access memory (RAM). However,
as reported by the practitioners in Case 2, by running the test suite locally,
a success-rate of close to 100 percent could be achieved, whilst with VNC,
in their context, only a success-rate of 70 percent could be achieved. Conse-
quently, the use of VNC allows VGT tools, e.g. Sikuli, to automate manual
test cases for distributed systems, but potentially also lowers the success-rate
of the image recognition algorithm.

The fourth solution aims to solve the CPL that VGT scripts generally
execute quicker than the tested system can update its GUI, i.e. the scripts are
not properly synchronized with the tested system. This CPL was reported,
in both Case 1 and Case 2, to be a huge source of frustration during the
automation and also very time consuming since no explicit pattern could be
identified when and where delays had to be added in the scripts to synchronize
them with the tested system. However, as reported by the researcher who did
the data collection and industrial practitioners, this CPL could be mitigated
through systematic insertion of delays in the scripts at locations which could,
later during the project, be estimated upfront based on experience of working
with the tool. In Case 1, this solution was also supported by the development
of custom methods with an additional time delay parameter. For instance,
the click(img) method from Sikuli’s instruction set, where “img” would be
the sought image, was expanded to create a click(img, delay) method which
delayed the script execution “delay” number of seconds before performing the
click. These custom methods provided additional robustness to the scripts
but also increased execution time since these methods required the sought
image to be found twice, first by Sikuli’s wait for image function and second
by the click function, i.e. doubling the minimum number of required image
recognition sweeps. However, due to the increased robustness, the researcher
who did the data collection in Case 1 reported that it was still beneficial,
especially since the image recognition algorithm in Sikuli is quite fast, i.e.
can perform upwards of 5 complete image recognition sweeps of the computer
monitor per second. This solution is proposed as generic since most VGT tools
provide methods that can wait for the system to reach a stable state before
the execution continues.

Finally, even though several generic solutions and mitigation practices were

4.4. RESULTS AND ANALYSIS 131

Missing SUT functionality

BUG causes SUT crash

incorrect SUT startup

BUG causes SUT freeze
BUG, GUI doesn't react

Windows OS crash SUT

SUT "slower" than Sikuli

Missing GUI components

Img. Rec. failure

Performance intensive

Img. Rec. diffrentiation

Selecting text

VNC shows wrong colors

VNC crashes

Recording SW won't start

Redundant script failure
mitigation

VGT script documentation
and user defined methods

Local/remote script
execution

Systematic SUT
synchronization

Tier 3 CPLs (sorted) Solution or mitigation

Figure 4.5: A visualization of how the identified, potential, solutions and miti-
gation practices, summarized in Table 4.6, connect to the 29 mutually exclusive
Tier 3 CPLs. SUT - System under test, VNC - Virtual Network Connec-
tion, Img. Rec. - Image recognition, GUI - Graphical User Interface, OS -
Operating system, SW - Software, Func. - Functionality.

found for the CPLs, there were still CPLs that required ad hoc solutions.
These solutions were specific to the two projects and could therefore not be
generalized. Some of these solutions have been mentioned in Section 4.4. In
addition, there were some CPLs that could not be solved or mitigated because
they required larger effort to be solved and where therefore out of scope for
this study, e.g. changes to the development company’s documentation process,
and were therefore out of scope for this project. The unsolvable CPLs can be
grouped into two categories. First, CPLs for which potential solutions could
be identified, but which required so much effort that they were out of scope
for the project. Second, CPLs where no solution was identified at all, e.g. how
to ensure alignment between the test specification and the tested system.

4.4.6 Defect finding ability, development cost and return
on investment (ROI)

Thus far, this report has focused on the CPLs related to the transition and
usage of VGT for high system level test automation, and the number of CPLs
have been considerate. However, the industrial practitioners in Case 2, still
stated that VGT, performed with Sikuli, is a valuable and cost effective tech-
nique. They reported that they did not encounter any functionality that they

132 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

Nr Title Description Solves problem
1 Script

failure
mitiga-
tion

Failure mitigation code, e.g. excep-
tion handling, mitigates tool and im-
age recognition volatility and failure
due to unexpected system behavior.

Image recognition
volatility and lim-
itations, Negative
VNC effects, test
system limitations.

2 Script
documen-
tation
and
custom
methods

Script robustness, usability, reusabil-
ity, etc., can be improved by custom
methods and reusable artifacts. Ad-
ditionally, all scripts shall be docu-
mented to ease new development and
maintenance.

Sikuli IDE volatil-
ity, 1-to-1 mapping.

3 Local/
Remote
execution

Mitigated use of VNC raises script ex-
ecution stability but limits use for dis-
tributed systems.

Negative VNC ef-
fects, 1-to-1 map-
ping.

4 Systematic
synchro-
nization

VGT scripts must be synchronized
with the tested system’s execution.
Custom methods with smart usage of
the ”wait for image method” in Sikuli
can facilitate systematic synchroniza-
tion.

1-to-1 mapping,
test system limita-
tions.

5 Other
or no
solution

CPLs often require ad hoc solutions.
Solutions such as: analysis and re-
placement of the manual test speci-
fications, hardware and software re-
boots, change of VNC application,
partially implemented test cases, etc.
For the sake of completeness, we also
state here that there were CPLs that
could not be solved, e.g. the missing
system functionality, stopping Sikuli
from getting corrupted, etc. Hence,
there are CPLs that should be inves-
tigated in future work to be solved
and/or mitigated.

Image recognition
volatility, Image
recognition limi-
tations, Negative
VNC effects, Sikuli
IDE volatility, test
system limitations,
Hardware limi-
tations and test
system maturity.

Table 4.6: A summary of general solutions that were identified for the CPLs
listed in Table 4.5.

4.4. RESULTS AND ANALYSIS 133

could not automate using Sikuli, only that it was more or less challenging.
However, since VGT is a test technique, the primary measure of successful
application is still the defect finding ability of the developed VGT suites. For
the tested system in Case 1, six different defects were identified.

1. Switching between military and civil landing lights did not work.

2. The button to switch military and civil landing lights did not disable as
intended.

3. The button to switch military and civil landing lights did not disappear
as intended.

4. Switching quickly between runways caused the tested system to freeze.

5. Tabs for switching between views would not load.

6. Logging out of Windows caused the tested system to freeze (The main
thread of the tested system would not terminate).

These defects were reported in detail to the company and have since the study
been corrected and are no longer present in any commercial version or variant
of the system.

These defects were identified during implementation or execution of the
VGT suite. Analysis of the found defects found that four of the defects were
previously known to the company and already corrected in later versions of
the system, whilst two were still unknown. Further analysis showed that the
manual test cases could identify all six defects, but since two of the defects were
sporadic it required several tries to force their faulty behavior and therefore
they had not previously been found. Hence, the VGT scripts were able to
identify all the defects that the manual tests cases applicable for the tested
system could identify, i.e. providing the VGT suite with the same level of
confidence, in terms of defect finding ability, as the manual tests.

In Case 2, the industrial practitioners reported similar results, i.e. that
their automated tests could identify all the defects that the manual tests could
identify. Additionally, as mentioned, they reported that the VGT suite could
identify three defects that previously had been unknown to the company. In
the past, the manual test cases had only been run once in sequence every
development iteration, i.e. starting with test case 1 and ending with test case
n. Furthermore, due to budget constraints, not all of the system’s manual
test cases could be applied each iteration. However, by automating the system
tests using VGT, it became possible to run the test cases more often and
therefore not only provide higher quicker feedback to the developers, but also
cover more test cases. In addition, the automation made it possible to run the
test cases in several different orders, which resulted in the VGT suite finding
the previously unknown faults. Hence, these results show the importance of
what order the individual test cases are executed. Furthermore, since the
execution order of the automated test cases is simple to change, VGT allows
the user to quickly and cost-effectively cover more meta-level scenarios, at
almost no additional cost. However, for this practice to work, the test cases
need to be independent, such that they can be run out of order. In addition,

134 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

it is important that the teardown, or rollback, methods of each script are well
defined to put the system back into known states before the next test case is
executed, to mitigate any side-effects of failed tests [11]. Failure to rollback
the system can result in testing of invalid states and thereby reporting defects
that are false negatives.

Table 4.7 summarizes some of the cost metrics that were acquired in Case 1
and Case 2. Worth mentioning, again, is that Case 1 was performed with only
one researcher whilst Case 2 was performed by two industrial practitioners.
In addition, the researcher in Case 1 had limited development and testing
knowledge for the test system whilst the practitioners in Case 2 were domain
experts. Furthermore, only one manual test suite was automated in Case 1,
whilst in Case 2 a total of three suites were automated. Two of the test suites
in Case 2 were considered to be more complex than the average test suites used
at the company, whilst the third was considered equal in complexity compared
to the average. Additionally, the manual test suite that was automated in Case
1 was perceived to be of roughly equal complexity as the more complex test
suites in Case 2. Here, complexity was evaluated based on the number of test
steps of each test case, importance of test case success, complexity of test cases
GUI interactions, etc.

Whilst the test suite in Case 1 was built around tables that defined test
scenarios with defined input and expected output for each test step, defined on
each row of the table, the test cases in Case 2 were built around more loosely
coupled use cases. These use cases, examples shown in the right of Figure 4.6,
were then tied together on a meta-level to form test scenarios, as shown in the
left of Figure 4.6. Figure 4.6, on the left, exemplifies a test chain used in Case 2
which is made up from three different test flows, or scenarios. These scenarios
all start with use case 1 and 2, i.e. UC 1 and UC 2, and are then followed
by one out of three exchangeable use cases, i.e. UC 3A, 3B or 3C (Middle
of Figure 4.6). However, the manual test structure also allowed test scenarios
to be of unequal length, exemplified with UC 3AA, bottom left of Figure 4.6.
The three different test chains are then joined again, and completed, by UC 4
(Bottom of Figure 4.6). This structure perceivably improved the manual test
cases usability, maintainability and reusability since the use cases could simply
be switched out in any part of the chain to test newly added functionality of
the system. The drawback of this approach, for manual testing, is that many
of the test scenarios become very similar and therefore tedious to test, i.e.
the tester has to perform the same interactions over and over. However, once
automated, the tediousness no longer becomes a problem but the benefits, e.g.
reusability and maintainability, are kept intact, since new scripts can easily be
formed by reusing the individual use cases together with a newly developed
scripts.

Table 4.7 shows the development time of the VGT suites in Case 1 and
Case 2. As can be seen from the table, the development time in Case 1 was
considerably lower than the development time in Case 2. However, the time
in Case 1 is based on very precise measurements, performed by the researcher
doing data collection, who reported of the actual time spent on script devel-
opment in rigorous detail. In contrast, in Case 2 the development time was
measured by industrial practitioners in a real-world context where measuring
the exact development time was low priority compared to the development

4.4. RESULTS AND ANALYSIS 135

UC
1

UC
2

UC
3B

UC
3A

UC
3C

UC
3AA

UC
4

UC 3A
User System

Place
Tank-

symbol
to map

Tank-
symbol
appears
on map

UC 3B
User System

Place
Car-

symbol
to map

Car-
symbol
appears
on map

Figure 4.6: Conceptual example of a test case scenario design, used in Case 2,
based on loosely linked use cases (to the right). In the example the test scenario
(to the left) contains three unique test-paths, i.e. test cases, that were, prior to
the VGT transition, executed manually. UC - Use case.

Project Dev.
time
(mh)

Nr.
of
Man.
test
suites

Dev.
time
per
suite
(mh)

Mainte-
nance
(mh)

Manual
suite
Exe.
time
(mh)

VGT
suite
Exe.
time
(h)

Pos.
ROI
after
exe-
cu-
tions

Case 1 213 1 213 - 16 15 14
Case 2 1032 3 344 266 80 2.5 13

Table 4.7: Summary of quantitative metrics collected during the VGT transi-
tion projects in Case 1 and Case 2. mh - man-hour, h - hour

itself. Consequently, the measured time from Case 2 contains more overhead,
i.e. time not spent on development, than the measured time in Case 1. Hence,
the number of implemented test suites, the manual test architectures, expertise
of the script developers, and time measurement methods, all differed between
the two cases. Therefore, the data in Table 4.7 concerning development time
are from two different contexts and should therefore be treated as such, i.e.
not compared directly without taking the context, and measurement methods,
into account.

However, Table 4.7 does show some interesting, and comparable, differ-
ences in terms of improved execution time between the manual suites and the
developed VGT suites. In Case 2, the improved execution time was quite
considerable, i.e. by a factor of 16 2, whilst in Case 1 the improvement was

2Manual test execution time was 80 man hours but performed by two testers, i.e. 40
work hours in total.

136 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

only marginal, i.e. 1.06. The reason for this difference can be found in the
individual test cases, and what they aim to test. The manual test suite used
in Case 1 contains several quite large test cases, test cases that contain loops
and tests to verify the safety requirements of the system, i.e. non-functional
attributes of the system. The looping test cases, for instance, aimed to verify
the functionality of all the buttons of the GUI, i.e. the same test scenario
applied to every button, grouped together into one test case to save space.
Performing these tests manually is very time consuming, and tedious, and are
therefore often only partially performed, i.e. only a few buttons are tested
during test suite execution. However, with the VGT script all of the buttons
can be verified during each execution, providing better coverage, without ad-
ditional cost. However, these tests, even when performed automatically, take
quite some time to execute due to the sheer number of buttons that are tested.
Thus, since each loop is measurable in length with the test suite’s other test
cases but all counted as one single test case, rather than several, it has a large
impact on the over execution time of the test suite. Hence, some of the VGT
scripts had considerably longer test execution time than others, visualized in a
boxplot in Figure 4.7. The boxplot shows that the average execution execution
time of the VGT scripts was roughly 27 minutes, with a standard deviation
of approximately 44. The cause of this deviation can be found in Figure 4.7,
which shows that there were several outliers with much higher execution time,
i.e. at most 198 minutes, which also affected the total execution time of the
VGT suite. In addition, the execution time of the manual test suite in Case
1, 16 hours, is an ideal time, i.e. when performed by an expert tester who
are capable of determining for which buttons it is necessary to repeat all the
steps of these looped test cases. For a junior tester, the manual test suite can
take upwards of 40 hours, as presented in our previous work [65]. Thus, if
the outliers are removed and the calculations are performed with the manual
execution time of a junior tester, i.e. 40 hours, the results from Case 1 show
that the automated scripts execute approximately 4.5 times faster than the
manual tests.

The slow execution time of the automated scripts in Case 1 can also be
contributed to the fact that several of the manual test cases required the
tester to just sit and wait for a number of seconds, or even minutes, for an
event to be triggered. Tests of this nature aim to test, as an example, the
alarm notification service in the tested system, i.e. that an alarm is triggered
if the tested system looses its connection to its hardware interfaces. As a more
concrete example, if the wind measurement service looses its connection to the
airports wind measurement sensors, it should wait for the connection to be
re-established within x number of seconds. If the connection is not established
within that time, an alarm is triggered. Hence, for x seconds, during this
test, the tester is expected to just sit and wait, and since the VGT test cases
were implemented in a 1-to-1 fashion they also have to wait. These tests have
significant impact on the total execution time of the VGT suite and relate
back to the previous statement that the VGT tests are unable to execute tests
quicker than the tested system can respond. In contrast, the test cases that
were automated in Case 2 were more on a functional level and did not consider
timing issues, etc, which made it possible for the VGT suite to gain a larger
performance advantage over the manual test cases.

4.4. RESULTS AND ANALYSIS 137

●● ●●●

0 50 100 150 200

Figure 4.7: Boxplot showing the execution times for individual test scripts from
the VGT suite developed in Case 1. Time, shown on the x-axis, is measured
in minutes.

However, even though the tests were implemented in a 1-to-1 fashion, re-
sults from Case 1 and Case 2 showed that the VGT suites had measurably
improved execution time compared to the manual test suite execution time.
One factor that explains this speedup is that a human tester continuously has
to read the manual test steps in order to know what to input and what output
to expect from the system. This factor also explains why test experts can ex-
ecute the test cases faster, since they are familiar with both the tested system
and tests and therefore do not need to spend as much overhead time consulting
the test specification. However, in contrast to a human tester, the scripts only
needs to execute their commands, i.e. removing the reading overhead com-
pletely. Additional execution time gains are provided by the scripts ability to
quickly paste textual input into the tested system, whilst a human has to write
the input. These gains might seem small, but in the overall perspective, i.e.
during execution of the entire test suite, these small gains add up and become
significant.

Based on the collected metrics, the return on investment (ROI) for the
automation can calculated by comparing the development time of the VGT
suites and the manual execution time. Once again, these calculated results
are not directly comparable between Case 1 and Case 2 if the contexts of
these cases are not taken into account. As shown in Table 4.7, the ROI in
Case 1 would become positive after 14 executions of the VGT suite, i.e. the
cost of executing the manual test suite 14 times equals the implementation
cost of the VGT suite. For Case 2, a positive ROI would be reached after
13 executions. However, since there is no cost related to running the VGT
suites, and because they can be run at night, they can greatly improve the test
frequency and thereby provide daily feedback to the developers [16]. Hence,
both VGT suites would reach a positive ROI within one calendar month, if
executed every night, including weekends, given that they identify defects.

138 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

Cost

Time

VGT

Manual testing

VGT
Transition

Period

tNt1t0 t2 t3 t(N+1)

Figure 4.8: Graph showing a conceptual model of when positive return on in-
vestment (ROI) would be reached after the VGT transition in a generic com-
pany. The model assumes that each manual test suite execution has a linear
cost and that the VGT suite maintenance costs are low.

This ROI calculation is however simplified, since it does not take the number
of found defects into consideration, nor the cost for maintenance of the VGT
suite. In addition, the maintenance costs of a VGT suite, developed in Sikuli,
are still unknown, only initial data has been acquired, and therefore a more
detailed analysis of these costs is an important subject of future work.

A graph visualizing when positive ROI is reached, conceptually, based on
VGT transition cost and cost per manual test suite execution, is shown in
Figure 4.8, supported by the model defined by Berner et al., 2005 [16]. This
model assumes that the cost of the manual test case execution is linear, and
that the maintenance costs are small and almost linear. Thus, positive ROI
would be reached when the two lines cross, i.e. at time tN in Figure 4.8. It
should also be noted that during the VGT transition period, t0 to t1, the VGT
suite is not executed, whilst the manual test suite could be.

4.5 Discussion

The following sections discuss the findings from this study, their implications
for industry, future work, as well as threats to the validity.

4.5.1 Challenges, Problems, Limitations and Solutions

In this report we have presented challenges, problems and limitations (CPLs)
identified in two industrial VGT transitioning projects. 58 CPLs were identi-
fied during the study, corroborated by information from both projects. They
related to different aspects of the transition or usage of VGT, which we divided
into three main groups: problems with the tool itself, the system under test,
and the support software or environment.

4.5. DISCUSSION 139

However, despite the many CPLs, the industrial practitioners from Case
2 reported that they found VGT to be both cost effective and efficient at
finding faults. In addition, they reported that even though the CPLs caused
frustration during the transition project they found ways, e.g. practices or
technical solutions, to mitigate or solve them. The practitioners also reported
that they had not found any manual interaction system interaction in any of
the system test cases that they could not automate using VGT. Similarly, in
Case 1 we found CPLs that were more problematic than others, but reported
that many of them could be solved or mitigated.

Together this indicates that most CPLs are solvable in practice with either
general solutions like the ones proposed in this report, or ad hoc solutions
that solve the CPL in the context where the VGT transition project is per-
formed, e.g. by choosing support software that best fit VGT and the tested
SUT. In addition, even though the CPLs had negative implications for the
transition or later use of VGT; most of the CPLs were perceived as manage-
able, which is an important result for future work regarding VGT’s long-term
industrial applicability. However, before any conclusion can be drawn regard-
ing VGT’s long-term applicability, more work is required to determine other
aspects of VGT, e.g. the maintenance costs related to the technique. High
maintenance costs has been a problem in previous, similar, GUI-based test
techniques. Thus, even though VGT is perceived to be able to mitigate many
of the limitations of previous techniques, it is not certain that the costs related
to VGT are less, which warrants the need for this research.

However, our study also uncovered CPLs that could not be solved because
they required process changes at the studied companies, technical improve-
ments of the tool, etc., which required too great an effort to be applicable in
this study. What the impact of these unsolved CPLs will have on the developed
VGT suites in the future is unknown and therefore a subject for future work.
A hypothesis is however that many of the unsolved CPLs will be resolved as
the tools, companies and tested systems evolve, either through technical or
process development. Furthermore, since several of the unsolved CPLs were
related to the companies processes, e.g. lacking documentation practices, and
the tested system, e.g. defects in the system, they are perceived to affect any
automation technique, i.e. not just VGT. Thus, contributing to the general
body of knowledge regarding automated testing.

Furthermore, several CPLs were identified as VGT tool specific, i.e. related
to Sikuli, but in contrast to the test system related CPLs, the Sikuli CPLs were
reported to be solvable using different practices, e.g. adding redundant failure
mitigation in the scripts or running the scripts from commandline rather than
the tool’s IDE. However, even though most of the tool-related CPLs could be
mitigated, some still need to be addressed in the future by further development
of the tool, for instance to improve the tool’s robustness, make the image
recognition algorithm more deterministic, improve the tool’s documentation,
etc. The tool-related CPLs are of particular importance since they are the most
criticized by industrial practitioners, both at Saab and in other companies that
have tried Sikuli during our research. Examples of CPLs that have been highly
criticized are the tool’s unstable IDE, its requirement of what version of Java
is installed, the unpredictable behavior of the image recognition algorithm, the
limitations of the tool’s API, etc. The implications of these CPLs are therefore

140 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

that many companies, which could have benefited from the technique, are
discouraged from using it. Even though many companies state both a need
and want for the technique [67].

However, Sikuli is not the only available VGT tool. In our previous work
we have compared Sikuli with an anonymous commercial tool and the commer-
cial tool JAutomate [65, 67]. The results showed that the different tools had
different properties that also affect their applicability in different contexts. For
instance, whilst Sikuli uses the Python programming language for its scripts,
JAutomate has a multi-faceted script environment that has been tailored for
both novice and expert users. Thus, Sikuli might be appealing to developers
that perform testing, whilst JAutomate is more appealing for testers without
programming experience. The tool’s different properties also suggests that
there might be different CPLs related to different tools, which therefore war-
rant further studies that replicate the work presented in this report with other
tools and in other contexts.

Furthermore, VGT cannot replace manual testing, because VGT scripts,
like any other scenario-based script technique, can only find faults specified
in said scenarios. Hence, the technique cannot replace an experienced tester’s
knowledge how to provoke failures and detect defects [16,42] In addition, even
though the technique is perceived to be industrially applicable, there are still
several important gaps to cover in the technique’s body of knowledge, e.g. em-
pirical evidence to support that VGT’s maintenance costs are feasible, before
a conclusion can be drawn regarding its long-term applicability.

4.5.2 Defects and performance

In practice, companies are under continuous time-pressure to deliver the soft-
ware to the customer, which has negative effects on development and quality
assurance processes, resulting in software that is likely to contain defects. In
the past, one way to uncover these defects has been to use manual high-level
practices, which are considered tedious, costly and error-prone [2–7]. High-
level automated techniques do exist, e.g. record and replay, but studies have
shown that they suffer from several limitations [3, 4, 12, 13, 16, 52]. VGT has
properties that perceivably mitigate these previous limitations by, for instance,
being robust to GUI layout change, applicable to test applications developed
in different languages, etc. Previous work on VGT has also provided initial
empirical support for the technique’s industrial applicability [65, 121]. How-
ever, in order for VGT to also be of value in industrial practice the technique
has to be able to identify defects in the tested system. In this report we have
presented information, from two projects in industry, which show that a VGT
suite is not only able to identify all the defects the manual test suite can iden-
tify, but also new ones. These new defects were found because VGT scripts can
be executed more cost-effectively compared to manual tests, i.e. potentially
every night at minimal cost, with different order between test cases which ex-
plores more, potentially faulty, states of the tested system. In combination
with the automated high-level interaction the technique can uncover defects
that would otherwise have required manual testing, e.g. with new scenarios or
exploratory testing, to find. In addition, the execution speed of a VGT suite
allows the suite to be executed daily, whilst the industrial norm for manual

4.5. DISCUSSION 141

system tests is once a month to once a year for complex systems. Hence, a
VGT suite can provide feedback to the developers about system-level faults
with much higher frequency, which is a requested feature of any automation
technique [16]. In addition, due to the low cost of running the VGT suite, it
can be rerun several times and execute the individual test cases in different or-
der, thereby cover more meta-level scenarios in the SUT. However, the effects
of randomized test case execution is still a subject of future work.

In our previous work, we automated approximately 10 percent of the test
cases for another version of the tested system used in Case 1 [65]. Based on
the collected data from our previous work, we estimated that all the test cases
would take roughly 160 hours to automate. However, based on this new data
we can refine the estimate for transitioning the full test suite to 426 hours. This
large increase comes from the additional requirements and needs uncovered in
this larger study, for continuously running automated test suites the test cases
needs to be more robust and there needs to be several layers of redundancy
and retries to rule out spurious failures that may not depend on the system
under test but on the tool or improper setup of the test environment etc. The
estimate has also increased due to a skewed distribution in difficulty where
a few unexpectedly problematic test cases was found in Case 1. These prob-
lematic test cases for instance included loops, which required more advanced
script logic than simple scenarios that started with test step 1 and ended with
n. Other problematic test cases required case specific solutions to be found,
for instance how to input the Swedish letters å, ä and ö into the Windows
login prompt without using Sikuli’s type or paste methods. Furthermore, the
estimated improved execution time between manual and automated test cases
was also incorrect in our previous work. This faulty estimation can once again
be contributed to the complex and time consuming test cases that were not
covered in our initial study, e.g. test cases that need extensive looping, and
test cases requiring the user to just sit and wait for several minutes for a ser-
vice to timeout. However, based on information collected in Case 2, we found
a execution speed-up of a factor 16, compared with the marginal speed-up of
1.06 in Case 1. As reported, the manual test suite in Case 2 only contained
smaller test cases, defined in coupled use cases to form longer test scenarios.
A conclusion can therefore be drawn that the overall performance increase of
a VGT suite is not just dependent on the performance of the SUT, mentioned
in Section 4.4.6, but also related to the structure of the manual test specifi-
cation and how they are carried over into an architecture of auomated tests.
Hence, in order to gain the highest performance possible from a VGT suite
for a legacy system, one should be selective of which, and in what order, test
cases are automated, e.g. not automating test cases that require longer waits
or loops first.

Overall we conclude that estimating the time for transitioning a large sys-
tem test suite to VGT is not an easy task, even though it is likely to be a crucial
task in industrial decisions on whether and which test cases to automate. In-
dustrial practitioners should try to sample a diverse set of test cases when
doing prototype transitions to get better input to the cost estimation process.
Our results also indicate that one should consider using a multiplicative factor
of between 2-4 times the bare bone estimates if the test environment cannot
be fully controlled or if there VGT tool being used will have to be adapted to

142 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

the company and their systems.

4.5.3 Threats to validity

This case study is limited in that only two projects are considered, both in
companies working with safety-critical systems of a similar nature and that
have been developed and maintained during several years. This is a threat to
external validity. In particular the results might not hold for smaller systems
or companies that are young or immature in their development practices and
processes. However, the companies use fairly different development processes,
one more plan-driven and one more agile, but we have found no evidence that
this has any large effects on the transitioning to automated test scripts. There
was also a difference in the architecture and structure of the test suite at the
two companies. We have mitigated this threat by analysing and discussing
this difference in detail. Since both projets used the same VGT tool (Sikuli)
the results are likely to depend on the tool. However, in earlier research we
found that Sikuli had comparable properties and capabilities to a commercial
VGT tool [65] so we think this threat is not a major one.

We still caution that the collected quantitative information should not be
compared without considering the context of these transitioning projects since
the projects were performed with different systems, by individuals with differ-
ent experience and with different information acquisition processes. However,
since data collection procedures differed between projects but still corrobo-
rated each other we consider little negative effect from these factors on the
identified CPL’s; apart from the system-specific CPL’s they are likely to be
seen also in other contexts. In particluar, since similar results was seen in the
projects even though the data collection was very different between projects.

The researcher doing data collection in Case 1 and the industrial practi-
tioner in Case 2 were all inexperienced with VGT and the tool at the start of
the projects. We do not consider this a major threat to validity since this is
likely to be typical of these types of transition projects in industry. The more
experienced researcher can be considered as a kind of expert consultants which
would typically be made available in most companies deciding to do large test
suite transitioning. They supported data collection and lead study design in
early stages. Also, the experienced researchers lead interviews and feedback
workshops during the later stages of the project and performed the analysis.
Triangulation was also achieved through independent interviews and inclusion
of different roles.

There is additional threats to validity in Case 2 since it was driven by
industrial pratitioners and the researchers were not on site other than on spe-
cific occasions. However, the researchers had continuous contact with the
pracitioners and focused on setting up good procedures and communication
in early stages, as well as collecting experiences and feedback in later stages.
We argue that the threats to internal validity that comes from using industrial
practitioners in research are unavoidable. If the empirical software engineering
community want data from real, industrial projects a certain lack of control
must be accepted. Furthermore, since the industrial practitioners had been
tasked with doing the transition and evaluating VGT they were highly moti-
vated to do the work and collect relevant data.

4.6. CONCLUSIONS 143

4.6 Conclusions

Software industry is faced with challenges that has created a need for research
into high-level test automation, a need that Visual GUI Testing, even though
it has many challenges, problems and limitations (CPLs), can potentially help
solve.

Many companies in current software industry rely on manual test practices
to perform high-level testing, e.g. system and acceptance testing, even though
these practices are considered costly, tedious and error prone. Automated test
techniques, e.g. unit testing and record and replay, have been proposed as
solutions to these problems. However, even though there is work to support
the usability of these techniques, there is also empirical evidence to suggest
that the techniques have problems that limit their industrial applicability in
different contexts. Because of these limitations there is still a need for further
research into high-level test automation.

Visual GUI Testing is a technique that is emerging in industrial practice
which combines image recognition with scripting to automate high-level tests.
Empirical studies have shown the technique’s industrial applicability but like
any other technique, VGT has challenges, problems and limitations (CPLs).
CPLs that have previously not been explored, leaving a gap in VGT’s body of
knowledge.

In this paper we have presented an empirical study performed in two in-
dustrial projects where researchers and industrial practitioners used VGT to
automate industrial high-level test cases. During the study, 58 CPLs were
identified in total that were categorized into 29 mutually exclusive groups of
CPLs that relate either to the transition to, or usage of, VGT in industrial
practice. The CPLs were further categorized into eight more generic groups
of CPLs that relate to the version of the tested system, the tested system in
general, defects in the tested system, the company’s processes, the test en-
vironment, the VGT tool, the VGT suite or third party software. Further
analysis showed that 34 out of the 58 CPLs related to the tested system, the
company or the simulator environment. CPLs such as lacking system function-
ality, misaligned system and test specifications and missing simulator support.
Furthermore, 10 CPLs were related to third party software, such as the Vir-
tual Network Connection (VNC) application and screen-recorder software, e.g.
VNC lowered the VGT suite success-rate and the recording software wouldn’t
start. However, the CPLs with the largest impact during the study were 14
identified tool-related CPLs, e.g. unstable tool IDE and unpredictable im-
age recognition behavior, which caused both confusion and frustration among
the study participants. The perceived implications of these CPLs are that
industrial practitioners may be discouraged from using, or even trying, the
technique, whilst also posing concerns for the long-term applicability of VGT
in industrial practice, which is still a subject of future work.

Furthermore, the study also identified four generic solutions that would
address about half of the identified CPLs, and mitigate their negative effects.
Corroborating results from the two projects also indicated that context specific
solutions could be found to most CPLs, e.g. development practices or script
logic that mitigated the effects of the tool, test system or support software
related CPLs. However, in terms of more general solutions there is still a need

144 CHAPTER 4. PAPER C: CHALLENGES, PROBLEMS AND LIMITATIONS

for future work, both including technical, e.g. further tool development, and
process-oriented solutions, e.g. coding standards.

In addition, the results showed that the researcher who did the data col-
lection and the industrial practitioners found VGT to be both cost-effective
and efficient at finding faults despite the CPLs. For instance supported by
results from Case 2 where system test frequency was increased from once ev-
ery six months to several times a week at minimal cost whilst also during the
project uncovering three previously unknown faults. Similar results were ac-
quired from Case 1 where four previously known and two unknown faults were
identified and reported to the company and corrected. These statements were
further supported by the quantitative information that was acquired during
the study that indicate that the VGT transition costs are feasible with the
potential to provide positive return on investment within one month after
development, with up to 16 times quicker execution speed compared to man-
ual tests, whilst still providing equal or even better fault finding ability than
manual testsing.

In conclusion, this study has shown that VGT is a valuable and cost-
effective technique for high-level test automation but also that it has many
CPLs that warrant future research.

Acknowledgment

The authors of this paper would like to thank Saab AB for their participation
in these projects and their continued support in answering the question if
Visual GUI Testing is an industrially applicable technique.

Chapter 5

Paper D: Maintenance and
return on investment

Maintenance of Automated Test Suites in Industry: An
Empirical study on Visual GUI Testing

E. Alégroth, R. Feldt, P. Kolström

In submission.

145

Abstract

The cost of verification and validiation (V&V) is typically between 20 to 50
percent of the total development costs of a software system. Automation is
often proposed to lower said cost but there is a lack of empirical data from
industrial practice how maintenance affects the cost, which factors affect test
script maintenance and what are the maintenance costs involved?

To address this gap we conducted an empirical study with two companies,
Siemens and Saab, and evaluate the maintenance costs associated with Visual
GUI Testing. 13 factors are observed that affect maintenance, e.g. tester
knowledge/experience and test case complexity. Further, statistical analysis
shows that developing new test scripts is costlier than maintenance but also
that frequent maintenance is less costly than infrequent, big bang maintenance.

Further, a cost model is created to estimate the time to positive return
on investment (ROI) of test automation compared to manual testing. We
conclude that test automation can lower overall software development costs
while having positive effect on quality. In addition, maintenance costs can
still be considerable and the less time a company currently spends on testing
the longer time they will need to wait for a positive economic ROI of test
automation efforts.

146 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

5.1 Introduction

The cost of testing is a key challenge in the software industry, reported by
both academia and industry to be sometimes upwards of 50 percent of total
development cost and rarely below 20 percent [1,28,29]. In addition, software
industry is moving towards a faster and more agile environment with emphasis
on continuous integration, development and deployment to customers [45].
This environment puts new requirements on the speed of testing and presents
a need for quicker and more frequent feedback on quality. Often this is used
as an argument for more test automation.

Many test automation techniques have been proposed, such as automated
unit testing [14,28,32] , property-/widget-based graphical user interface (GUI)
testing [55, 119, 120], and Visual GUI Testing (VGT) [50, 65, 121]. However,
even though empirical support exists for the techniques use in practice [55,
119–121,131], less information has been provided on the costs associated with
test automation. Further, even if theoretical cost models have been presented,
there is a lack of models grounded in actual, empirical data from industrial
software systems. Related work [12,16,40,132–136], has also reported on what
factors that affect the maintenance of automated testing but not explicitly
what factors that affect automated GUI based testing.

In this work we address these gaps in knowledge through an embedded em-
pirical case study [17] with the goal to identify what costs are associated with
automated GUI-based testing, here represented by VGT, in industrial practice.
First, an interview study at Siemens provides qualitative information regarding
the usage and maintenance of VGT from a longer project perspective (Seven
months). Second, an empirical case study at Saab the in detail identifies the
costs of maintaining VGT suites at different levels of degradation. A heavily
degraded test suite is maintained for an industrial system to acquire (worst
case) cost information. The maintained suite is then migrated (maintained) to
another variant of the industrial system to acquire information about frequent
test maintenance (best case). The case study results show that the frequency
of maintenance affects the maintenance cost but also that maintenance is less
costly than development of the scripts. Statistical analysis on a finer level of
script granularity also showed that maintenance of the GUI components the
scripts interact with is less costly than maintenance of the test case scenario
logic. We also present a correlation analysis that shows that the changes to
the manual test cases is a poor estimator for the maintenance costs of the
automated test cases.

In addition, observations made during the study support related work [16,
133] that there are several factors, both technical and context dependent, which
influence the maintenance. In total, thirteen (13) factors are reported and
discussed in terms of their impact on automated GUI based testing. Further,
the acquired quantitative metrics are modeled using a theoretical cost model
defined in previous work [16, 50]. The model depicts the time spent on VGT
maintenance, best and worst case, to be compared to the cost of manual testing
at Saab as well as a fictional, but realistic, context where 20 percent of the
project development time is spent on testing. From the study we conclude that
VGT maintenance provides positive return on investment in industrial practice
but is still associated with significant cost that should not be underestimated.

5.2. RELATED WORK 147

These results provide an important contribution to the body of knowledge on
automated testing but also decision support for industrial practitioners that
aim to adopt automated GUI based testing.

The continuation of this manuscript is structured as follows. Section 5.2
will present related work, followed by Section 5.1 that will present the re-
search methodology. The paper continues by presenting the acquired results
in Section 5.4, which are then discussed in Section 5.5. Finally the paper is
concluded in Section 5.6.

5.2 Related work

Manual software testing is associated with problems in practice such as high
cost and tediousness and error-proneness [2–7]. Despite these problems, man-
ual testing is still extensively used for system and acceptance testing in indus-
trial practice. One reason is because state-of-practice test automation tech-
niques primarily perform testing on lower levels of system abstraction, e.g.
unit testing with JUnit [11]. Attempts to apply the low level techniques for
high level testing, e.g. system and acceptance tests, have resulted in complex
test cases that are costly and difficult to maintain, presenting a need for high
level test automation techniques [3,4,12,13,16,52,97,117]. Another reason for
the lack of automation is presented in research as the inability to automate all
testing [16, 40, 41, 43, 97]. This inability comes from the inability of scripted
test cases to identify defects that are not explicitly asserted, which infers a
need for, at least some level of, manual or exploratory testing [116].

GUI-level testing can be divided into three chronologically defined genera-
tions. The first and second generation techniques are performed either by cap-
turing the exact coordinates (first generation) where a user interacts with the
system under test (SUT) on the screen or through the GUI components’ prop-
erties (second generation) [6, 106, 107]. However, first generation test scripts
are sensitive to change of the SUT’s GUI layout, even minor changes to the
GUI can make entire test suites inoperable, leading to high maintenance costs.
Second generation based scripts are more robust and therefore used in in-
dustrial practice, e.g. with tools like Selenium [55] or QTP. However, the
technique is still sensitive to changes to GUI components and only has limited
support for automation of distributed systems and systems built from custom
components [12]. These limitations originate in the technique’s approach of
interacting and asserting the GUI model rather than the GUI shown to the
user on the computer monitor. This approach requires the tools’ to have ac-
cess to the SUT’s GUI library or other hooks into the SUT, which limits the
tools use for SUT’s written in certain programming languages and/or certain
GUI libraries. Consequently, second generation tools are considered robust
but unflexible.

The third generation, also referred to as Visual GUI Testing (VGT) [50,
65,121], instead uses image recognition that allows VGT tools, e.g. Sikuli [20]
or JAutomate [67], to interact with any GUI component shown to the user on
the computer monitor. As a consequence, VGT has a high degree of flexibility
and can be used on any system regardless of programming language or even
platform. Combined with scenario-based scripts, the image recognition allows

148 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

the user to write testware applications that can emulate human user interaction
with the SUT. Previous research has shown that VGT is applicable in practice
for the automation of manual system tests [50,65,121]. However, only limited
information has been acquired regarding the maintenance costs associated with
the technique [50,121,131].

Test maintenance is often mentioned in related work on automated testing
but empirical data on maintenance costs from real, industrial projects are lim-
ited. There is also a lack of cost models based on such data and what factors
that affect the maintenance costs. In their systematic review on the benefits
and limitations of automated testing, Rafi et al. only identified four papers
that presented test maintenance costs as a problem [40], yet only one of these
papers addressed cost and then in the form of theoretical models [16]. Empir-
ical papers exits that report maintenance costs but for open source software,
e.g. [58, 131, 136], but the number of papers with maintenance costs of auto-
mated test techniques on industrial systems are limited, e.g. [12, 50, 65, 121].
Whilst our previous work reports that VGT can be applied in practice [65,121]
but that there are challenges [50], Sjösten-Andersson and Pareto reports the
problems of using second generation tests in practice [12]. Instead, main-
tenance is mostly discussed theoretically and presented through qualitative
observations from industrial projects [16,133]. For instance, Karhu et al. [133]
performed an empirical study where they observed factors that affect the use
of test automation in practice, e.g. that maintenance costs must be taken
into account and that human factors must be considered, but the paper does
not present any quantitative support for these observations. The observations
made by Karhu et al. are supported by Berner et al [16] that also proposes
a theoretical cost model for maintenance of automated testing, but yet again
no empirical quantitative data is presented to support the qualitative obser-
vations.

There are many factors that affect the maintenance costs of automated
tests, e.g. test design and strategies used for implementation. As reported by
Berner et al. [16], design of the test architecture is an important factor that is
generally overlooked. Another factor is the lack of architectural documenta-
tion of the testware and that few patterns or guidelines exist that promote the
implementation of reusable and maintainable tests. Additionally, many com-
panies implement test automation with the wrong expectations and therefore
abandon the automation, sometimes after considerable investment [16, 133].
However, not all factors that affect maintenance of automated testing are gen-
eral and it is likely that not all factors have yet been identified. As such, this
work, in association with our previous work [50], contribute to the knowledge
about the factors that should be taken into account to lower maintenance
costs.

5.3 Methodology

The study’s methodology was divided into two phases, as shown in Figure
5.1. VGT maintenance was evaluated at two companies, which were chosen
through convenient sampling due to the limited use of VGT in practice. The
two companies used different VGT tools, i.e. Sikuli [20] and JAutomate [67],

5.3. METHODOLOGY 149

VGT suite
development
for system X

Saab

Interview study

Siemens

VGT suite
Maintenance

Pre-study

VGT suite
Maintenance

Result analysis

Pr
ev

io
us

 w
or

k
Ph

as
e

1
Ph

as
e

2

Time

St
ep

 2
St

ep
 1

VGT
introduction
and usage

D
ec

. 2
01

2-
Ju

ne
 2

01
3

Sp
rin

g
20

12
Ju

ne
 2

01
3

Se
p.

 2
01

3
O

ct
. 2

01
3

LEGEND

Text

Text - Activity performed
by practitioners
- Activity performed
by research team

- Input from
previous activity

Figure 5.1: An overview of the methodology used during this work to acquire
the study results.

but, as presented in previous work [65, 67], there is no significant difference
between the tools and therefore does not affect the validity of the results.

5.3.1 Phase 1: Interview study

In phase 1, an interview study was performed at Siemens Medical, a company
that develops life-critical medical journal systems for nurses and doctors. The
studied project was developed by a group of 15 developers and testers work-
ing according to an agile development process based on Scrum. Verification
of system requirement conformance was performed with unit testing, manual
scenario-based and exploratory testing as well as manual acceptance testing
with end users. Seven months prior to the study the group had introduced
VGT, with the tool JAutomate [67], into their test process in an attempt to
lower test cost and raise quality. JAutomate was introduced through devel-
opment of test scripts as 1-to-1 mappings of existing manual test cases in the
project. At the time of the study, approximately 100 out of 500 manual test
cases had been automated to be used for continuous integration. However,
because of development issues the testers had not been able to make the test
suite run automatically from the build server. The scripts were instead started

150 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

manually and executed several times a week.

The interviews were exploratory in nature and aimed to elicit the testers’
experiences with, and perceptions about, VGT in general and maintenance
in particular. Three semi-structured interviews were performed following an
interview guide consisting of 35 questions. Each interview was recorded and
then manually transcribed and analyzed using a qualitative approach where
the answers from each of respondent were triangulated against the other. Dis-
cussions were also held with the interviewees after the interviews to clarify and
verify the interview results.

5.3.2 Phase 2: Case study Setting

In phase 2, an empirical study was performed at Saab where a VGT test suite
for an air-traffic management system, developed in the open-source VGT tool
Sikuli [54], was maintained in several steps.

Saab is a developer of safety-critical software with roughly 80 employees
in Sweden, split between two development sites, one in Gothenburg and one
in Växjö. The study was performed in Växjö where a reference system was
made available for the research team for the study. The company develops
a set of products using both plan-driven and agile development processes for
both domestic and international airports. Most of the company’s testing is
performed through rigorous manual scenario-based system testing but also
automated unit-testing in some projects. The rigorous test process is required
for the company’s products to be compliant with the RTCA DO-278 quality
assurance standard [137].

VGT has been sparsely used at the company through the use of the VGT
suite that was created in previous work [50]. The sparse use had however, at
the time of the current study, degraded the test suite [16] to a point where it
was no longer executable on the SUT. The VGT suite was initially developed
as a 1-to-1 mapping of the manual test suite for an older version of the SUT,
in the continuation of this work referred to as System X version 1.0. System
X was chosen in our previous work due to its complexity, airport runway and
radar control, and size, in the order of 100k lines of code. In addition, System
X has a shallow graphical user interface (GUI), meaning that interaction with
one element of the GUI does not hinder the interaction with any other GUI
element on the screen. This GUI property is beneficial for GUI based testing
since it reduces the script’s logical complexity by, for instance, mitigating
the need for synchronization between script and SUT required when opening
menus or changing between GUI states to reach the expected output.

System X’s VGT suite included 31 test cases, with an average of 306 lines
of code per test script (Standard deviation 185) of Python code. Each test
case was divided into an average of eight test steps (standard deviation 5)
that each contained interactions to set the system in the specific state for
verification. As such, the test steps could in another context be considered
separate test cases and each test case a test suite due to their size and relative
complexity. We emphasize this property of the studied test suite since test case
size and structure differs significantly in related work on GUI based testing.
For instance, in the work of Leotta et al. [136], where the development and
maintenance cost of written and recorded Selenium scripts were compared

5.3. METHODOLOGY 151

for six web systems, each test suite had an average of 32 test cases with a
total average of 523 Selenese or 2390 Java lines of code per test suite. To be
compared to the approximately 9500 Python lines of code in the studied VGT
test suite (not including support scripts) at Saab. The studied VGT suite
was developed in a custom test framework, also written in Python, which was
created in previous work since Sikuli does not have built in test suite support.
A detailed description of the test suite architecture and the framework can be
found in [50].

Phase 2 was divided into two steps, as shown in Figure 5.1. In the first
step, the manual test specification used to develop the VGT suite for System
X version 1.0 was analyzed and compared to the manual test specification of
System X version 2.0. In addition, version 1.0 was compared to another variant
of the system, meaning another version of the system intended for another
customer, we will refer to as System Y, version 2.0. Hence, the study included
three VGT suites and three systems, i.e. System X version 1.0, System X
version 2.0 and System Y version 2.0, as shown in Figure 5.2. These three
systems and test suites were included since they allow to study two different
maintenance tasks; one smaller and one larger.

The analysis in step 1 gave insight into the required effort for the mainte-
nance and let us estimate the feasibility of performing the study, as visualized
in Figure 5.2. Step 2 then covered a period of two calendar weeks in which
the actual VGT maintenance was done for both the smaller and larger mainte-
nance tasks. The two weeks was the amount of time that Saab gave us access
to the reference system and Saab personnel.

The analysis in step 1 was performed through manual inspection of each
test step by comparing them for all textual test case descriptions between the
different test specifications of the three systems. Identified discrepancies were
then evaluated to estimate the amount of effort that would be required to
maintain/migrate the script. The estimations were performed by a member
of the research team with knowledge about both System X, the manual test
specifications and the Sikuli testing tool. The required maintenance effort was
estimated on a scale from 1 to 10 where 1 was low effort and 10 was high
effort. No correctional actions were taken to mitigate estimation bias but the
estimations were discussed with practitioners at Saab prior to step 2.

Based on the analysis results, 15 representative test cases were chosen to
be maintained in the study. Representativeness was judged based on required
effort to ensure that both test cases that required low and high effort were
chosen. In addition, the properties of individual test cases were taken into
account, for instance if they included loops, branches, required interaction
with animated and non-animated GUI components, required support of one
or several airport simulators, etc. Basically, the 15 selected test cases were
judged to cover the diverse aspects of the test cases and properties while still
being possible to maintain in the allotted two-week period.

After the study, the estimated efforts were correlated against the recorded
maintenance effort (measured as time) to test the hypothesis:

H01: It is possible to estimate the effort required to maintain a VGT script
through analysis of the changes made to the manual test specification.

Note that this hypothesis assumes that the VGT scripts are created as 1-to-1

152 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

System X
 version 1.0

System X
 version 2.0

System Y
 version 2.0

Pr
ev

io
us

 w
or

k
C

as
e

st
ud

y

Development costs
and

Challenges, problems
and limitations

Maintenance cost
(images and logic),

Execution time,
Found defects and

Affecting factors
15+1 Test cases

(1 week)
15+1 Test cases

(1 week)

Measured:

31 Test cases
(6 months)

Figure 5.2: An illustration of the methodology used during the maintenance of
the VGT test suite. The Figure shows that the maintenance was first performed
in a big bang fashion between System X version 1.0 to 2.0 of the system.
Second, System X version 2.0 was maintained for System Y

mappings of the manual test cases, share test steps, interactions and/or at least
have comparable test objectives. Hence, that the automated test architecture
is comparable to the scenario specified by the manual test case.

The second step of phase 2 was performed on site at Saab over a period
of two calendar weeks (80 work-hours) through hands-on maintenance of the
15 representative test cases that were chosen in step 1. Maintenance is in
this context defined as, the practice of refactoring a test script to ensure its
compliance with a new version of its manual test specification and/or to make
it executable on a new version of the system under test.

The maintenance process used during the study followed a structured ap-
proach visualized in Figure 5.3. This process was developed for the study
since it was observed during previous work that maintenance of a VGT script
scenario is error-prone due to the dependencies between different test steps,
i.e. test step X is required for test step X+1 to be successful. In longer scripts
it therefore becomes difficult for a tester/developer to keep track of all the
scenario’s steps and the order in which they are executed. The proposed/used
process mitigates this problem by breaking the maintenance effort down into
smaller pieces that can be individually verified for correctness. However, script
verification can require multiple test runs which is tedious and therefore, as
we will discuss later, scripts should be kept as short and linear as possible.

The VGT suite maintenance was performed, using pair programming, by
one member of the research team and a resource from Saab with expert knowl-
edge about the domain and System X. Pair programming was used because
a secondary objective of the study was to further transfer VGT knowledge to
Saab.

The maintenance was performed in two parts, as visualized in Figure 5.2.
Observant readers will notice that the figure states that there were 15+1 test
cases in the test suite. This additional test case was developed during the
study based on domain knowledge, rather than the manual test specification,
to evaluate if such test cases would be more or less costly to maintain. The

5.3. METHODOLOGY 153

Analysis of test
script structure

and functionality

Compare test
script to updated

manual test

Maintain obviously
faulty images and

logic

Execute updated
script against SUT

Maintenance of
steps that failed

Maintain test
steps similar to

failed test step(s)

Successful
test script

execution?

Analyze test
failures (if any)

Start

End

Yes

No

Figure 5.3: Visualization of the structured maintenance process that was used
during the study.

test case was written early during the maintenance process by the industrial
practitioner that was part of the maintenance team and aimed to test each
button of a controller for airport TAXI lighting.

5.3.3 Phase 2: Case study Procedure

The first part of phase 2 began by maintaining the 15 chosen test cases from
System X version 1.0 to System X version 2.0. In addition, due to changes
of System X’s functionality and operational environment, substantial effort
was required to maintain the VGT test framework itself. Framework changes
included refactoring of support scripts and methods, such as fine-tuning of
visual toggling between subsystems, support for new simulators, etc. In addi-
tion, the tests were refactored by replacing direct image paths in the scripts
with variables that were stored in a single support script. Because the support
script were of equivalent functionality, complexity and behavior as the test
scripts, all qualitative and quantitative metrics were recorded equivalently for
all scripts regardless of type, with the exception of execution time. The total

154 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

set of maintained scripts were as such 21+1 scripts of which 15+1 were test
cases and six were support-related.

In the second part of phase 2, System X was replaced by System Y which
was another variant of System X for another airport with another GUI but
with minor functional differences. The maintained VGT suite for System X
version 2.0 was then maintained for System Y with the purpose of identifying
indicative costs associated with regular maintenance of a VGT suite. Hence,
a context where the VGT suite had been used and maintained for frequent, or
near frequent, integration due to the closer similarities between the different
variants of the SUT. The acquired information was used to test the hypothesis:

H02: There is no significant difference in cost to maintain the VGT suite
from version 1.0 to version 2.0 of System X compared to migrating
the VGT suite from System X version 2.0 to System Y version 2.0.

The result of this hypothesis evaluation provides support to the claim that the
cost of frequent maintenance, with smaller deltas in terms of changed system
functionality, is less costly than big-bang maintenance efforts [16].

The same metrics were collected in both parts of phase 2, results shown in
Table 5.2. More explicitly, the metrics that were measured were maintenance
cost (time), time spent on maintaining script logic and images, execution time
for running the resulting test case, number of found defects as well as qualita-
tive observations, e.g. tool limitations and missing system functionality.

The maintenance cost metric was measured from the start of the mainte-
nance of a new script until it could be executed successfully against System
X/Y. Hence, the measured time includes both the time spent on refactoring
the script and the time required to verify that the script executed correctly
against the SUT. Cost was measured this way to mirror the effort required in
a realistic context where test script maintenance has to be followed by verifi-
cation of test script correctness.

However, the development costs of the VGT suite for System X, version 1.0,
collected in our previous work [50], only included the time spent on developing
script code. As such, in order to be able to compare the maintenance costs with
the development costs, the maintenance costs had to be transformed by remov-
ing the average number of test executions for verification during maintenance
multiplied with the script execution time. Hence, comparative maintenance
time (TX.maint.corrected) of a test case was evaluated according the formula,

TX.maint.corrected = TX.maint.measured − (n̄T.exe ∗ TX.exe)

where TX.maint.measured is the true maintenance time including execution time
for verification, n̄T.exe is the observed number of average verification runs
per test case (constant) and TX.exe is the execution time of the test case.
Note that TX.maint.corrected is used for all comparisons between development
and maintenance cost in this work but that TX.mait.measured is used in fa-
vor of TX.maint.corrected whenever possible. Our reason for limiting the use
of TX.maint.corrected is because the number of reruns required to verify the
correctness of a script during development or maintenance, n̄T.exe, fluctuated
between scripts. As such, the constant n̄T.exe, equal to the average of required
reruns of all scripts, introduces a marginal error in the comparative mainte-
nance value, TX.maint.corrected. Since this error presents a threat to validity,

5.4. RESULTS AND ANALYSIS 155

the reader will be informed when TX.maint.corrected has been used in favor of
TX.maint.measured and what impact its use might have had on the presented
result. Furthermore, since the support scripts were invoked by test scripts dur-
ing runtime, their execution time could not be measured, as shown in Table
5.2. Therefore, in order to calculate TX.maint.measured for said scripts, TX.exe

was set to the average execution time of the scripts in respective VGT suites.
Thus introducing an additional error for these scripts.

The quantitative information was then analyzed statistically to test the
previously stated hypothesis, H02, and the following null hypotheses.

H03: There is no significant difference between the cost to maintain images
and logic in a script.

H04: emphThere is no significant difference between the cost to develop
and the cost to maintain a VGT suite.

Hypothesis H03 was analyzed to evaluate the maintenance costs on a finer
level of granularity and is perceived important for GUI based test techniques
that use scenario-based scripts that interact with GUI components. GUI com-
ponents that can be defined as bitmaps as in VGT or as constructs based
on the properties of the GUI components as in second generation GUI based
test tools. In turn, hypothesis H04 aims to investigate if the costs of main-
taining the automated scripts are less than the development cost. Since the
development costs of the test cases has been shown to be feasible but signif-
icant [50, 121], acceptance of H04 would infer that automated testing is not
feasible.

The collected quantitative metrics were also used as input to a theoret-
ical cost model from previous work [16, 50] to model the total cost of VGT
maintenance in comparison to the cost of manual testing performed at Saab.
Manual testing that in Saab’s context represents seven (7) percent of the total
time spent in a software development project. However, as stated, the costs of
verification and validation (V&V) in general software engineering practice lies
in the bound of 20-50 percent of the total time. The model therefore also in-
cludes a plot from a hypothetical but realistic context where the lower bound
of 20 percent is spent on V&V. This context is modeled in order to visual-
ize its effects on the time required to reach positive return on investment of
test automation. However, it is important to note that decisions to automate
are not taken only from a cost perspective; there might be other benefits of
automation than its effects on cost.

5.4 Results and Analysis

This section will present the results that were acquired in the embedded study,
starting with the quantitative results from Phase 2 that will then be discussed
in relation with the qualitative results from Phase 1 and 2. The reason for pre-
senting the results in this order is because the qualitative results help explain
the quantitative results, e.g. what factors affected the maintenance effort.
Also, note that we in the following section present maintenance cost as time.

156 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

5.4.1 Quantitative results

The quantitative results collected during the second phase of the study have
been summarized in table 5.2. The table has been divided into three blocks,
where the first block (rows 1 to 16) of rows present the data acquired during
maintenance of test scripts. In the second block (rows 17-22) the acquired
data for the maintenance of support scripts are presented. Finally, the last
block (rows 23-24) summarizes the mean values and standard deviation of
each column. We once again stress that the development time presented in
this table does not take the time required to verify script correctness into
account, whilst the maintenance times do.

Analysis of the presented results in table 5.2 show that the maintenance
costs for transitioning the VGT suite from System X version 1.0 to System X
version 2.0 was higher (mean 110) than the maintenance costs associated with
transitioning the VGT suite from System X version 2.0 to System Y version
2.0 (mean 23). Worth noting is that the standard deviation in the first case
is almost as high as the average and in the second case almost twice as large.
This large deviation is attributed to many factors, such as script size, number
of images, number of used simulators, etc. In addition, the deviation is also
influenced by the sample being right-skewed above 0. We will return to these
factors and their impact in Section 5.4.2.3.

Correlation analysis was used to evaluate H01, i.e. to evaluate if the re-
quired maintenance effort can be estimated based on changes to the system’s
specification. The analysis showed that the correlation between estimated and
actual effort between System X 1.0 and System X 2.0 was 0.165 and for System
X 2.0 to System Y 2.0 was 0.072. Hence, we reject our hypothesis, H01, that it
is possible to estimate the required maintenance effort based on the differences
in the manual test specifications for VGT scripts based on said specifications.
The reason for the poor estimates relate to the many factors that affect the
maintenance cost, which will be presented in Section 5.4.2.3, but which could
not be foreseen prior to the study. However, the 15 chosen test cases were still
considered a representative sample, supported by the distribution of measured
maintenance costs, script functionality, etc.

Further, H02 stated that the cost of maintaining the VGT suite for Sys-
tem X version 2.0 would not be statistically significantly different from the
cost of maintaining for System Y. Hypothesis testing with the non-parametric
Wilcoxon test resulted in a p-value result of 7.735e-05. Hence, we must reject
the null hypothesis, H02, at a 0.05 significance level. Analysis of the collected
data, shown in Table 5.2, shows that the transition between System X ver-
sion 2.0 and System Y is lower than the cost for System X 1.0 to System X
2.0. Consequently, since System X version 2.0 and System Y were more similar
than System X version 1.0 to System X version 2.0, judged by experts at Saab,
this result implies that the maintenance effort is lower if the maintenance is
performed frequently rather than big bang. This conclusion also supports pre-
vious research into automated testing that stipulate that maintenance should
be performed with high frequency to mitigate maintenance cost [16].

H03 test if there is any statistically significant difference between the cost
of maintaining images and logic in a VGT script. The p-value result from the
Wilcoxon test for the maintenance from System X 1.0 to System X 2.0 was

5.4. RESULTS AND ANALYSIS 157

Test
script

Orig.
dev.
time
(min)

Maint.
1.0X-
2.0X
(min)

Maint.
2.0X-
2.0Y
(min)

(logic/
img.)
1.0X-
2.0X
(min)

(logic/
img.)
2.0X-
2.0Y
(min)

Exe.
2.0
X
(min)

Exe.
2.0
Y
(min)

1 t0016 130 100 30 20/80 0/30 3.2 3.25
2 t0017 110 100 35 70/30 0/35 3.167 2.816
3 t0018 265 70 35 35/35 0/35 3.417 3.05
4 t0019 250 230 20 138/92 0/20 3.083 3.067
5 t0014 225 195 15 136.5/

58.5
7.8/5.2 0.95 4.633

6 t0003 245 120 10 0/120 0/10 0.75 0.783
7 t0024 641 320 65 224/96 19.5/

45.5
10.5 11.783

8 t0005 705 215 10 107.5/
107.5

0/10 1.85 2.067

9 t0023 145 315 150 220.5/
94.5

45/105 9.233 19.4

10 t0007 370 10 5 9/1 0/0 1.783 1.8
11 tS0001 20 20 10 12/8 0/10 1.416 1.416
12 t0026 155 20 5 4/16 0/0 0.333 0.45
13 t0009 40 50 10 10/40 1/9 2.05 1.5
14 t0008 180 35 5 10.5/

24.5
0/0 4.483 4.5

15 t0041 140 35 20 10.5/
24.5

0/20 4.617 4.517

16 t0037 140 120 20 84/36 0/20 7.183 7.617

17 vncS. 415 250 50 175/75 35/15 N/A N/A
18 SimS. 30 40 0 28/12 0/0 N/A N/A
19 sysS. 370 15 0 6/9 0/0 N/A N/A
20 winS. 600 15 0 15/0 0/0 N/A N/A
21 SimS.

t2
70 105 45 84/21 40.5/4.5 N/A N/A

22 windS. 300 110 0 55/55 0/0 N/A N/A

23 Ave. 252 110 23 66.1/
47.1

6.763/
17.009

3.626 4.541

24 Std.
Dev.

195 105 37 71.634/
37.485

14.353/
23.838

2.989 4.866

Table 5.1: Summary of the collected metrics for the scripts that were main-
tained during the case study. The test cases have been listed in the chronological
order they were maintained in (denoted tXXXX), whilst support scripts have
been listed out of order in the bottom of the list.

158 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

0.8972. Hence, we must accept the null hypothesis, H03, that there was no
statistical significance difference between the maintenance required of images
and logic at the 0.05 confidence level. This result shows that degraded VGT
test suites require maintenance of images to the degree that it is equivalent to
the maintenance of script logic. However, for the maintenance of System X
version 2.0 to System Y the p-value result of the Wilcoxon test was 0.01439.
Hence, we must reject the null hypothesis, H03, that the maintenance cost of
logic is not significantly different from the cost of maintaining images. Analysis
of the average maintenance costs of images and logic for the two maintenance
efforts shows that more effort was spent on updating logic in the maintenance
from System X version 1.0 to version 2.0 (66.1 minutes for logic and 47.1 for
images) compared to System X version 2.0 to System Y (6.7 minutes for logic
and 17 for images). An indication supported by empirical observations from
the study where images were found to be easier to update than analysis and
refactoring of script code. These observations also support that maintenance
should be performed frequently to lower the need to maintain both images and
logic at the same time since it is assumed that GUI graphics are changed more
often than the underlying functionality of safety-critical software.

Finally, H04 test if the cost of maintaining the VGT suites was signifi-
cantly different from the development cost of the suite. The p-value result of
the Wilcoxon test for the maintenance costs for System X version 1.0 to 2.0
compared to the development cost was 0.001868 and for System X version 2.0
to System Y 7.075e-081. Consequently we must reject the null hypothesis, H04,
in both cases showing that there is statistical significant difference between the
development costs and the maintenance costs. Hence, this result shows that
the maintenance costs are lower than the development costs. Furthermore,
analysis of the costs, shown in Table 5.2, shows that the average costs are
lower than the development cost, in both cases, even when the verification
time is included in the maintenance cost. However, the transition between
System X version 1.0 and 2.0 was 61.5 percent of the development cost and
between System X version 2.0 and System Y 17.5 percent of the development
cost of the VGT suite. As such, the maintenance costs of a VGT suite are still
significant. We will return to a more detailed discussion about the impact of
these results in Sections 5.4.1.1 and 5.5.

VGT is first and foremost a testing technique and as such, in addition to
cost, its effectiveness must be judged based on its defect finding ability. During
the study, eight defects were found, either during execution or maintenance
of the VGT scripts. These defects were found through test cases that were
divided evenly across the test suite, i.e. no specific test case found more de-
fects. In addition, these defects were of different type, such as GUI defects,
e.g. buttons not working as expected, simulator defects, e.g. misalignment
between simulator and system behavior, manual test documentation discrep-
ancies, e.g. faulty test steps, etc. As such providing support to previous work
on VGT regarding the technique’s defect finding ability [50,121]. In addition,
the spectrum of identified defects indicate that VGT is suitable for system
level testing rather than pure GUI testing.

1Tested using the approximative value TX.maint.corrected.

5.4. RESULTS AND ANALYSIS 159

0 100 200 300 400 500 600

0
50

0
10

00
15

00

Approximated total Development, Maintenance or Execution cost over time

Calendar weeks (60 week project iterations)

C
os

t (
H

ou
rs

)
Legend

Fict. Proj. 20 percent testing
Frequent (Best case) VGT maint. cost
Big bang (Worst case) VGT maint. cost
Manual testing cost
Pos. ROI (Fict. proj.)
Pos. ROI (Best case)
Pos. ROI (Worst case)

Figure 5.4: Plot showing the total cost of development and maintenance in
the best and worst case based on the measurements acquired in the study. The
graph also shows the cost of manual system testing at Saab and the point where
the VGT testing reaches positive return on investment compared to manual
testing.

5.4.1.1 Modeling the cost

In our previous work we presented a theoretical return on investment (ROI)
model for the development and maintenance of automated tests [50]. The
model depicted that the linearly increasing cost of manual testing would sur-
pass the combined cost of VGT script development and continuous mainte-
nance after a period of time.

In Figure 5.4, the actual, numerical results from phase 2 have been visual-
ized in the proposed model, which shows how the total cost of script develop-
ment and maintenance grows over time (calendar weeks) for a test suite with
70 test cases, equal to the number of manual scenario based test cases avail-
able for the system. Four cost plots have been included in the model with the
colors cyan, blue, black and purple. First, the blue line (Short dashes) shows
the total cost of development and maintenance if maintenance is performed
only once every development iteration (60 weeks) in a big-bang fashion where
all test scripts are maintained at once. Second, the purple line (Long dashes
with dots) shows the cost of development and regular maintenance of the VGT
suite. The line was calculated using the average best case maintenance cost
identified in the study with the assumption that at most two scripts would
require maintenance each week. This assumption was verified with three prac-

160 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

titioners at Saab, at different occasions, who all stated that two tests would be
an upper bound due to the slow development rate of their system. Third, the
black line (Long dashes) shows the cost of manual testing of System X/System
Y at Saab and is based on data from previous development iterations of the
system, which is calculated to roughly seven (7) percent of the total project
time. The cost of manual testing was developed together with, and verified by,
three different practitioners at Saab that had been and/or were responsible for
the quality assurance of System X/Y and depicts/assumes the following,

1. Each development iteration includes two complete regression tests of the
manual test specification/suite, one at the start and one at the end.

2. Each development iteration includes delta tests based on the manual
test specification/suite.

3. It assumes that there is no down period between development iterations
where the system is not being developed.

These assumptions, and previous approximations, adds error to the model but
based on the verification made by Saab’s experts and validity analysis, based on
the collected metrics from the study, it is perceived as a valid approximation.
Detailed and exact cost data is almost never reliably found in actual, industrial
development projects and these types of estimations should be expected even
if a detailed time logging system is in place. Finally, the cyan line (Solid)
represents the costs of testing in a fictional project where 20 percent of the time
is spent on testing. Unlike in the Saab case, the fictional project’s testing is
the total cost of all test activities, i.e. unit testing, system testing, acceptance
testing, etc.

In addition to the costs, the graph also contains three vertical lines that
depict the points in time when the automation provides positive return on
investment (ROI) compared to manual testing. First, the yellow line (Furthest
to the left) Figure 5.4 shows when VGT adoption would provide positive ROI
in the fictional project, which is after roughly 45 weeks (approximately 11
months). Second, the orange line (Middle) shows when the adoption of VGT
provides positive ROI compared to the manual test costs at Saab if the test
suite is maintained regularly, which is after 180 weeks (3.5 years) or 3 iterations
of System X/Y. Third, the red line (Furthest to the right) shows when positive
ROI would be achieved at Saab if the maintenance is performed in a big-
bang fashion, which is after 532 weeks (Approximately 10 years) or roughly 9
iterations.

Note that Figure 5.4 only presents ROI as a measure of cost. However, there
are other factors that affect ROI as well, such as the frequency of feedback on
system quality to the developers and defect finding ability of the different
techniques. As such, the figure only presents a partial ROI model that and
does not consider the overall cost benefits for the project such as shortened
defect analysis time, raised software quality, etc. These factors are required to
acquire a holistic model on the ROI of automated testing but are not further
explored in this work.

5.4. RESULTS AND ANALYSIS 161

5.4.2 Qualitative results

This section will present the qualitative results that were acquired in phase 1
and 2 of the study and discuss them in relation to the previously presented
quantitative results. We decided to present the results in this order since the
qualitative results can more easily be understood when read in light of the
quantitative data of phase 2, as reported above.

5.4.2.1 Phase 1: Interview results

In phase 1 an interview study was performed at one division within Siemens
Medical that seven months prior to the study introduced VGT with the tool
JAutomate. Prior to the introduction of JAutomate all system and accep-
tance testing had been performed manually by testers or the company’s end
customers, i.e. nurses and doctors. These tests were performed during a ded-
icated test phase. “There is something here at Siemens called a system test
phase, the system is tested as a whole when all of the development is com-
pleted.” In addition to the manual testing the company also used automated
unit and performance testing for lower levels of system abstraction testing.
“For the system, we had unit tests for as much as possible to test the code”.
The main reasons for the introduction of JAutomate were to lower test cost
and to create a test harness for continuous system testing. “We just got three
machines to run automatic builds on where we are now installing JAutomate”.
“We will run this at night, JAutomate, after an installation or new build. Then
we don’t have to run the boring tests that otherwise are manual”. Thus miti-
gating the need for frequent, costly and tedious manual system testing [2,118].

The tested system was composed of a server and a client application where
the server side was covered by a rigorous unit test suite. However, the client
side had proved to be difficult to test with unit tests due to its GUI focus,
which left a need for another automated test approach. An attempt had been
made to cover the GUI testing with the tool Coded test UI but had been
unsuccessful because the tool was too costly to work with. “It took roughly the
same time to automate a couple of hundred test cases (with JAutomate) as it
took to start building tests in Coded UI (after creating a Coded UI framework)”.

The introduction of JAutomate, including the transition from manual tests
to automated JAutomate test cases, took roughly 4 calendar months, following
a three month evaluation period. During this time, 100 out of the available
500 manual test cases had been automated and were reported to have a total
execution time of roughly four to five hours. Whenever a JAutomate test case
was created from a manual test case the company had chosen to remove the
manual test from the test plan. “Yes, we did (remove the manual test cases),
but we also wrote many new tests when manual tests didn’t exist. Then we
only created a JAutomate test”. However, the interviewees still stated that
JAutomate should not be considered a replacement for manual testing but
rather a complement. “Complement, because manual tests test other things
than a strict script does”. Therefore they still ran the manual test cases dur-
ing release testing of the system but much less frequently than prior to the
adoption of VGT.

When asked about the return on investment (ROI) of the JAutomate adop-
tion, the interviewees were uncertain but they perceived it to have been bene-

162 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

ficial for the developed system. “Hard to say, but we could cut the system test
part a great deal which is the important part in this case”.

Furthermore, the interviewees stated that they found the technique benefi-
cial because the VGT tests are more similar to human testing and because the
technique is very strict in terms of execution, which contributes to its defect-
finding-ability. “It has the benefit that it repeats it (tests) in the same way.
It is powerful that way...a human can not always see the whole picture and
react on a discrepancy in that picture. For instance that something is fussy
or a discrepant”. In addition, the interviewees found VGT with JAutomate
easy to learn and perceived that others could learn it easily given that the
user was not technically awkward. To support this claim, the interviewees
stated that the company had performed experiments with the system’s end
users, e.g. nurses, that were asked to write test scripts with JAutomate. How-
ever, due to their lack of computer knowledge the experiment had not been
successful and a conclusion was drawn that the quality gains in comparison
to cost of teaching the end users to use JAutomate were less than having the
end users execute the tests manually. “Maybe they (end user) can learn,...,
everyone can learn but they have a longer way to go”. This result partially
contradicts the result from our previous work where it was found that techni-
cally unsophisticated users could write suitable VGT scripts after one hour of
tutoring [65]. However, these results was based on VGT with Sikuli and not
JAutomate. Further research is therefore required to evaluate the learnability
of the different techniques.

In addition, the interviewees reported that the main problem with JAu-
tomate was the tool’s robustness. ‘It’s the robustness, to get everything to
work, to get it to go green (pass) 100 times out of a 100. Also to check that
it works here, it is pretty slow”. A problem they reported to be primarily
related to timing issues rather than the tool’s image recognition. “You have
to spend a large amount of time to handle the programs updates and wait for
things and similar, which causes things that worked three weeks ago to stop
working.” Timing is a common problem for GUI testing tools, especially for
web-based systems where network latency has to be taken into account. The
problem originates in how to determine when the tested system has reached
a stable state such that it is ready to receive new input. Other issues that
were presented were that the script development was slow in comparison to
the development of new functionality in the system that made it difficult to
get system coverage, tester education to create good tests, structuring the test
cases, etc. “We (the development team) changed quite a lot in a day, but we
still feel that their tests worked. It has to be the toughest task there is. To
create UI tests to something under development, agile development. We really
made changes to everything”.

One of the interviewees also reported that the maintenance could take up
to 60 percent of the time spent on JAutomate testing each week, whilst the
retaining 40 percent consisted of transition or development of new test cases.
Hence, more effort was spent each week on maintaining existing test cases than
to write new ones. However, when asked if the amount of required maintenance
was feasible, two of the interviewees said yes and the third said no. “Yes, it
(maintenance) is (feasible) since you can get it to run, hopefully, during nightly
runs and such, which makes you more secure in the quality of the product and

5.4. RESULTS AND ANALYSIS 163

development.” Furthermore, when asked if the interviewees trusted the tool,
one interviewee said no, one said to 95 percent and the last said yes. However,
when asked if the interviewees would recommend the tool to other project
teams at Siemens, all of them said that they would. In addition all of the
interviewees stated that they found the tool very fun to work with and that
it was beneficial to the company. However, when asked about JAutomate’s
worst features the interviewees stated that the robustness, as reported, is low,
the tool is slow, that there are logistic problems with large test suites and that
the symbiosis with Microsoft testing software could be better.

In summary, the interview results showed that VGT with JAutomate re-
quires a lot of time to be spent on test script maintenance, i.e. up towards 60
percent of the time spent each week with the tool. Furthermore the tool suffers
from robustness problems in terms of timing and technical issues when it comes
to integration in a build process for continuous integration. However, the tool
and the technique are still considered beneficial, valuable, fun and mostly fea-
sible by the practitioners. As such, the interviewees still regarded the benefits
of the tool and the technique to outweigh the drawbacks. Hence supporting
the results from our previous work with Sikuli at Saab in Järfälla [121]. The
acquired results on positive ROI after roughly seven months of working with
the technique also support the results from Saab and previous work [50] since
the maintenance was still perceived as feasible after this time.

5.4.2.2 Phase 2: Observations

Previous research into VGT has reported that verifying script correctness is
frustrating, costly and tedious [50, 121]. Especially for long test cases since
verification requires the script developer to observe the script execution and
for each failed execution update the script and then rerun it. This observation
was also made for maintenance of the scripts, which infers that test scripts
should be kept as short and modular as possible. How long a test case should
optimally be was not analyzed during this work and is therefore a subject of
future research but it is perceived that it is dependent on context.

Furthermore, it was observed that lengthy test cases were also harder to un-
derstand and more complex because of lack of overview of the script’s behavior.
Higher complexity was especially observed in test scripts that contained loops
and/or several execution branches. This observation lead us to the conclusion
that not only should test cases be kept short but also as linear as possible, a
practice that also make the scripts more readable by other developers. Test
cases that tested multiple features in one script were also observed as more
complex to analyze and therefore more costly to maintain. Hence, the num-
ber of features verified per test script should be kept as few as contextually
possible. These observations lead us to the conclusion that 1-to-1 mapped
test cases, despite the benefit of allowing verification against the manual test
specification, are not necessarily the most suitable automation scheme. Es-
pecially for scenario-based system and acceptance tests that generally verify
many requirements at once, instead 1-to-1 mappings between test cases and
requirements are perceived as a better alternative.

To facilitate these best practice, more requirements are put on the test suite
architecture to support modular test case design and test partitioning. Reuse

164 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

of modular scripts is perceived beneficial to creating several test scripts with
incrementally longer test chains since changes to the behavior of the SUT will
require all affected scripts to be maintained. Furthermore, script code reuse,
as opposed to linking reusable scripts together, makes it tempting to copy and
paste script code. Copy and paste was observed as an error-prone practice
during the study since the scripts are dependent both on the GUI images
as well as the synchronization between script and SUT behavior and should
therefore be avoided.

Further it was observed that the correctness of the meta-level/support
scripts had direct influence on the success and cost of maintenance due to the
reuse of these scripts in the test scripts. Thus, placing more stringent require-
ments on the robustness of the support scripts. However, script robustness
assurance requires additional code that in addition to raising cost also raises
script execution time [50]. Thus, supporting the need for frequent maintenance
to ensure that the support scripts up to date.

5.4.2.3 Phase 2: Factors that affect the maintenance of VGT scripts

Based on observations from the second phase of the study, triangulated with
the interviews from phase 1 and literature, we found 13 factors that impact
test script maintenance, summarized in Table 5.4.2.3. Impact was classified
into four degrees, which are low, average, high and total. Low impact means
that the presence of this factor will lengthen the maintenance time with a
maximum of a few minutes, average impact factors will add several minutes
up to one hour, high impact factors more than one hour and finally total
impact will prevent the test case to be maintained. Each of the factors have
been discussed from the context of VGT but generalized to other automated
test practices where applicable or perceived applicable.

Number of images: Image maintenance is associated with low cost
and is therefore considered low impact. However, the cost increases with the
number of images in the script and can therefore become substantial for long
scripts since broken images are only found during test script execution. A good
practice is therefore to always check if a broken image is reused more than once
in the script and/or replace duplicate images with variables if supported by the
VGT tool. This factor implies that script maintenance is split into test logic
(test scenario) and interaction components (images). Consequently, this factor
is perceived common to second generation tools where images are replaced with
interaction components that are instead GUI component properties.

Knowledge/Experience: VGT has average/high learnability, as shown
in this and previous research [65], due to the high level of interaction that the
scripts work with. The knowledge and experience of the user therefore has low
impact on script maintenance. However, it is a good practice to have a domain
expert perform VGT development and/or maintenance to ease analysis and
implementation of domain specific knowledge in the scripts. Knowledge/ex-
perience is considered to have a larger impact on automated test techniques
that operate on a lower level of system abstraction since they require more
technical and domain knowledge.

Mindset: VGT script development/maintenance requires a sequential
mindset that differs from traditional programming since the scripted scenarios

5.4. RESULTS AND ANALYSIS 165

Nr Factor Description Impact
1 Nr. of images Each image that requires maintenance

raises cost.
Low

2 Knowledge/
Experience

A VGT script expert can maintain a
script quicker than a novice.

Low

3 Mindset VGT scripting requires a sequential
mindset that differs from traditional
programming.

Average

4 Variable
names and
script logic

Common to traditional programming.
Better code structure improves read-
ability.

Average

5 Test case simi-
larity

Difference between the system and/or
test specification compared to old ver-
sion.

Average

6 Meta level
script

Meta level script functionality adds
complexity and is costly to maintain.

Average

7 Test case
length

Long test cases are more complex and
less readable.

High

8 Loops and
flows in the
test case

Loops and alternative test flows affect
the test scripts’ complexity and read-
ability.

High

9 Simulator(s) Simulators can require special interac-
tion code.

High

10 System func-
tionality

Missing system functionality can hinder
test script maintenance.

Total

11 Simulator sup-
port

Lacking simulator support can hinder
test script maintenance.

Total

12 Defects Defects in the tested system case hinder
test script maintenance.

Total

13 VGT tool Limitations in the test tool can hinder
test script maintenance.

Total

Table 5.2: Summary of the main factors that were identified that affect the
required maintenance effort of a VGT suite. The impact of each factor has
been categorized from Low to Total. Low impact is defined as a required extra
cost to develop a script of a few minutes maximum. Average is defined as an
increased cost (time) of a few minutes up to an hour. High is defined as an
increased cost (in time) more than an hour. Total means that this factor can
completely prevent the script from being maintained.

166 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

Test case

Tier 1
meta script

Tier 2
meta script

Tier n
meta script

...

Sequence
1

Meta A1 Meta A2

Meta B1

Meta X1

Sequence
1

Sequence
1

Test flow

Figure 5.5: Abstract model of the GUI interaction sequences within a test
script, visualizing the complexity of understanding test cases including meta-
level scripts.

need to be synchronized with the timing of the tested system. This factor is
considered to have average impact since it is sometimes difficult even for a
VGT expert to anticipate when synchronization points are required to align
script execution with the tested system’s state transitions, which can cause
frustration. This factor has been presented in previous work both on VGT
and automated testing in general [16,50,133], and to the best of our knowledge
there is no mitigation practice. Further, synchronization has been identified
as a common problem for automated GUI level test techniques and this factor
is therefore considered common to other GUI based test techniques as well.

Variable names and script logic: Common to traditional software de-
velopment, VGT script complexity impairs script code readability, reusability
and maintainability [16] and therefore has average impact on maintenance
costs. To mitigate the impact, a good practice is to up front define a clear and
consistent test script architecture and define naming conventions for variables
and methods. This factor is perceived to be general to all automated testing
tools that use more advanced script logic.

Test case similarity: Previous work has shown that test suites degrade
if not frequently used and maintained [16], resulting in higher maintenance
costs due to increased failure analysis complexity. Degradation is caused by
development/maintenance of the tested system and/or changes to the system
requirements or manual test cases if the VGT scripts are developed in a 1-to-1
mapping fashion. The impact of this factor is considered average but also
general to all automated test techniques. A practice to mitigate the impact of
this factor is to frequently maintain the test scripts.

Meta level script: Meta level scripts facilitate test script operation by
performing interactions with the tested system’s environment that are not part
of the test scenario, e.g. start and modify simulators or modify the test sys-
tem’s configuration. Meta level interactions is common in system level tests
which put more stringent requirements on the meta level scripts’ robustness.
Their common use in a test case also lowers test scenario readability, as illus-
trated in Figure 5.5. As such, this factor is associated with average impact on

5.4. RESULTS AND ANALYSIS 167

maintenance but can be mitigated through up front investment on meta script
robustness, e.g. through implementation of additional failure mitigation and
exception handling in core scripts. The factor is also considered common to
other test techniques and tools that support modular test design where meta
level scripts are generally reused to set the system state for certain assertions.

Test case length: Long test scripts are less readable and more complex
to maintain because of lack of overview. In addition, longer scripts take longer
to execute and verify, which can cause frustration in the case of heavy script
degradation. A good practice is therefore to keep test scripts short. Alterna-
tively the scripts should have a modular architecture that allows for subsets of
the script to be maintained individually from the rest of the script. Because
long scripts are common and not always possible to avoid, the impact of this
factor is considered high and also general to other automated test techniques,
especially GUI based test automation.

Loops and flows in the test case: Loops and branching test flows
should be avoided in VGT scripts because they lower readability and make
script failure analysis more complex. As such, a good practice is to keep scripts
as linear as possible and break loops and/or branches into individual scripts.
Because alternative script flows cannot always be avoided the impact of this
factor is considered high and also general to other automated test techniques
that support more advanced script logic.

Simulator(s): The purpose of simulators is to emulate software or hard-
ware that will be part of the system’s operational environment. Simulators are
often crude in terms of GUI design and can be developed in other program-
ming languages than the tested system itself. As such, the impact of having
simulators is high for VGT. However, for other automated test techniques it
is total due to restrictions of the tools’ applicability for certain programming
languages and distributed systems, e.g. second generation tools. Hence, this
factor is general to automated testing but with varying impact that depends
on the the other techniques’/tools’ capabilities. The factor can be mitigated
for other techniques if the simulators can be operated through simulator APIs.

System functionality: VGT scripts are used for system regression test-
ing and therefore require the tested system to have reached a certain level of
implementation to be applicable. Missing or changed functionality can there-
fore lead to unmaintainable or partially maintained test scripts. As such,
the impact of this factor can be total and considered general for techniques
that support automated system and acceptance testing. Previous research has
shown that the lack of system functionality will limit how much of the test
case can be implemented [50]. This factor is considered low for lower level
automated test techniques such as unit testing.

Simulator support: Added or changed functionality in the tested system
can cause simulators to stop working completely or partially. Partially working
simulators can lead to test script failure and inability, or only partial ability, to
maintain said test scripts until the simulator itself has been maintained. Thus,
the impact of this factor can be total but can be mitigated through frequent
maintenance of the tested system’s environment. This factor is considered
general to all test automation techniques as well as manual testing.

Defects: Defects in the system limits the ability to maintain a test script
beyond the test step that finds said defect because further interaction with the

168 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

tested system would be in a defective system state that would never appear
in practice. Thus, this factor can have total impact on the script maintenance
and a good practice is therefore to not execute and only maintain the affect test
scripts once the defect in the SUT has been resolved. This factor is considered
general for both manual and automated testing.

VGT tool: Different VGT tools have different functionality which make
them more or less suitable in different contexts. For instance, only some VGT
tools have support to verify that the system can play sound, others have script
recording functionality or support for testing of distributed systems. Failure
to pick the right tool for the right context can cause this factor to have total
impact on both the development and maintenance of test cases. Previous work
has compared different VGT tools against each other [65, 67] but how to pick
the most suitable VGT tool for a certain context is still a subject of future
work. This factor is also perceived to be common to all automated test tools
since they all have different capabilities.

5.5 Discussion

The main conclusion of this work is that automated testing, represented by
VGT, can provide positive ROI over time when applied in industrial practice
despite requiring considerable maintenance. In particular, the results show
that the maintenance costs associated with automated test scripts are lower
than the development cost of the scripts, shown with statistical significance,
independent of if worst or best case maintenance practices are used. Worst
case data was acquired empirically through measurement of the costs of main-
taining a heavily degraded test suite between two versions of a system at Saab.
This was followed by the migration of the maintained test suite to a similar
variant of the studied system to acquire approximate but valid data of best
case maintenance costs of a VGT suite.

Average maintenance cost in the best case was found to be 23 minutes
per test script and 110 minutes in the worst case, whilst the cost of manual
execution of a test case was 29 minutes. Plotting the acquired results over
time, in a theoretical cost model defined in previous work [16, 50], Figure 5.4
shows that test automation would provide positive ROI at Saab in 180 weeks
in the best case and 532 weeks in the worst case compared to manual testing.
However, even 180 weeks represent a considerable, long-term, investment to
reach positive ROI and the maintenance costs of the acquired test suite would
still be significant, upwards of 60 percent of the time spent on test automation
each week as reported by Siemens. These results are however placed in Saab’s
context where approximately seven (7) percent of the total project time is spent
on manual testing. Therefore, Figure 5.4 also includes a plot of the verification
and validation (V&V) costs in a fictional context where 20 percent of the
project time is spent on V&V, which shows that positive ROI is reached in 45
weeks. However, 20 percent is still a lower bound, according to research, of the
time spent on V&V in practice that generally spans between 20-50 percent of
the total development time of a project [1,28,29]. These related results imply
that ROI in another context could be reached even faster. Consequently, the
time to positive ROI of test automation is directly dependent on the time

5.5. DISCUSSION 169

spent on V&V at the company prior to automation.

Further, observations from the study show that maintenance of automated
tests are dependent on several factors, of which thirteen (13) were identified
and presented in this work. These factors include technical factors, e.g. test
case length, organizational factors, e.g. the tester’s knowledge and experience,
environmental factors, e.g. simulator support, etc. Whilst these factors were
identified for VGT it is perceived that they are common to other automated
test techniques as well, but especially other GUI based test techniques since
they, as discussed in previous work, have many commonalities [50]. However,
future work is required to verify this statement.

The implications of the presented results and observations are that there
are many aspects to consider when adopting test automation in practice. First,
test maintenance costs are significant and continuous due to the identified need
for frequent test case maintenance to mitigate cost. As such, automated testing
will necessarily not lower the time spent on V&V in a project but perceivably
lowers the overall project development time by providing frequent feedback
regarding the quality of the SUT. This feedback allows the developers to iden-
tify defects quicker and thereby mitigate synergy effects between defects that
is perceived to lower defect root cause analysis time. Thus, the primary benefit
of test automation is raised software quality rather than lowered test related
costs. Further, the factors identified in this work that affect test maintenance
imply that the technical aspects of the automation, e.g. the test architecture,
are key to ensure maintainability of the test scripts. This conclusion in turn
implies that best practice of traditional software development should be ap-
plied when creating an automated test suite, for instance the test architecture
should be modular, there should be code standards for scripting, interfaces to
the SUT’s environment must be well defined, etc. However, it is not enough to
consider the technical aspects, one also needs to consider organizational and
human factors such as the knowledge and experience of the tester (tool and
domain knowledge), that the tester has a sequential mindset to fulfill the need
to synchronize the script execution with the SUT execution, etc. Further sup-
port for that these factors’ impact on automated testing has been presented in
previous work [16, 133] but as the factors presented in this work complement
previous work it is uncertain if all factors have been identified. As such, fur-
ther work is required to identify more factors, what the impact of the different
factors are in relation to each other and ways to mitigate the negative effects
of said factors.

More specifically, this work also implies that VGT can be applied in in-
dustrial practice and provide positive ROI compared to manual testing. Thus
partially bridging the gap for a technique for automated system and accep-
tance testing [50, 65, 121]. It should be noted that the cost data presented in
this work does not take the perceived software quality gains provided by more
frequent testing and faster feedback to the developers compared to manual
regression testing into account. As reported in Section 5.4.1, eight defects
were identified during the study either during maintenance or execution of
the test suite. The identified defects provide support to previous work re-
garding VGT’s defect finding ability [50, 121]. In addition, the found defects
indicate that additional cost savings can be made with VGT through faster
defect identification and identification of defects that cannot be found feasi-

170 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

bly through manual testing, e.g. defects that appear seldom during runtime.
All of the identified defects were reported to the company and has since the
study been maintained. However, explicitly how the technique’s defect finding
ability affects the time to positive ROI is still a subject of future research.

Finally, this work provides a general contribution to the body of knowledge
on test automation. Previous work has contributed with empirical results [12,
16,40,132–136] but more is required, especially for GUI based test automation
techniques, e.g. VGT, which currently only has limited cost support from
industrial practice [121]. Additional empirical support is required to gain a
more holistic view on the maintenance costs associated with general automated
testing in industry, which requires more studies, in more companies and with
different techniques and/or tools.

5.5.1 Threats to validity

One threat to the external validity of this study is that the quantitative data
was only acquired for one system and with one VGT tool. Furthermore, the
study only evaluated frequent maintenance of the suite in a cross-sectional
manner rather than longitudinal. As such, even though the results support
that more frequent maintenance is associated with lower cost than big-bang
maintenance, more work is required to analyze the costs associated with main-
tenance in a longitudinal perspective. The results from Siemens indicate that
such maintenance is feasible, but more quantitative data is required.

Another threat, related to the internal validity of the results, is that only
21+1 data points could be acquired during the study. However, as stated,
the test cases in this work more comprehensive than test cases presented in
related work on GUI test automation [136]. Analysis of the test cases indicate
that, in terms of size and complexity, each of the test cases could according
to previous research be classified as test suites. The average number of test
steps per script was seven (7), meaning that the results of this work could be
generalized to a context where 147 test cases had been maintained rather than
147 test steps as classified in this work.

Yet another internal validity threat was that only three people were inter-
viewed at Siemens. However, conclusions have only been made on data that
could be triangulated from all three sources. Furthermore, since the inter-
viewees were the leading developers on the VGT implementation project it is
considered that their statements are credible.

One threat to the construct validity of the study is that the two mainte-
nance efforts were performed on two variants of the same system rather than
versions. However, analysis of the system’s specifications, supported by state-
ments by the system’s developers, show that the differences between System X
and System Y are few and therefore our use of the system to measure frequent
maintenance is valid.

Another threat was that the VGT maintenance costs had to be measured
in a different manner, including test execution time for verification, than the
development costs reported in previous work [50]. However, since it was pos-
sible to calculate reasonable estimations of the time spent on maintenance
programming using the equation in section 5.3.2, this threat is considered low.
To verify the output from the equation, the calculated values were discussed

5.6. CONCLUSIONS 171

and validated with the leading researcher from the previous study. In addi-
tion, the execution time of the scripts is small compared to development and
maintenance time of the scripts and as such the observed maintenance costs
are still comparable to the development costs without augmentation. Addi-
tionally, the augmented data was only used to verify the hypothesis that the
development time was not significantly different from the maintenance time,
whilst all other statistical analysis was done with the true observations. The
reader has also been notified whenever the augmented data has been used in
the manuscript.

These threats can partially be explained by being performed in industry
under both cost and time constraints that limited the amount of empirical
work that could be performed.

5.6 Conclusions

The main conclusion of this work is that automated testing, represented by
VGT, will provide positive return on investment (ROI) compared to manual
testing in industrial practice. This conclusion was drawn based on data from
two different companies, Siemens and Saab. The results show, with signif-
icance, that the development costs are greater than the maintenance costs
and that the costs of frequent script maintenance are lower than big-bang
maintenance. However, the costs of test script maintenance are still substan-
tial, identified at Siemens to constitute upwards of 60 percent of the time
spent on test automation each week. A cost that can be compared to the
academically reported costs that companies spend on verification and valida-
tion (V&V), which range between 20-50 percent of the total time spent in a
project [1,28,29]. Thus, the magnitude of required time spent on maintenance
is equal to the costs of V&V in general, which infers that test automation may
not lower time spent on V&V. However, automated testing can raise the trust
in the quality of a system due to more frequent quality feedback that could
lower overall project development time. As such, the study shows that the
time to reach positive ROI is dependent on the amount of V&V performed by
the company prior to automation.

Additionally, thirteen (13) qualitative factors were observed during the
study that affect the maintenance costs of VGT scripts but also automated
testing in general, e.g. developer knowledge/experience, developer mindset,
test case length and test case linearity. The identified factors infer that main-
tenance of test scripts, but also development, depend on an intricate balance
of technical an non-technical aspects in order to reach qualitative tests. Whilst
these factors provide a general contribution to the body of knowledge on auto-
mated testing, further research is required to identify complementary factors
and to measure their impact.

Additionally, this work provides explicit support for the use of VGT in
practice by showing that positive ROI can be reached and by providing fur-
ther support to previous work regarding VGT’s defect finding ability. Eight
(8) defects were identified during the study, spread among the SUT and its
operational environment, e.g. the SUT’s simulators. In combination with
related work [50, 65, 121], these results show that VGT is a feasible comple-

172 CHAPTER 5. PAPER D: MAINTENANCE AND RETURN ON INVESTMENT

ment to other manual and automated test techniques in practice to facilitate
automated system and acceptance testing.

Chapter 6

Paper E: Long-term use

On the Long-term Use of Visual GUI Testing in Industrial
Practice: A Case Study

E. Alégroth, R. Feldt

In submission.

173

Abstract

Visual GUI Testing (VGT) is a tool-driven technique that uses image recog-
nition to interact with and assert the behavior of a system under test through
its pictorial GUI as it is shown to the user. The technique’s applicability,
e.g. defect-finding ability, and feasibility, e.g. time to positive return on in-
vestment, have been studied in previous work. However, there is a lack of
studies that evaluate the usefulness and challenges associated with VGT when
in long-term use (years) in industrial practice. Such a long-term perspective
is generally missing for research in software engineering but in particular for
automated testing.

This study bridges this gap through a case study of the company Spo-
tify’s experiences of using VGT for several years. Results, acquired through
Grounded Theory analysis, show that VGT can be used long-term and has
several benefits compared to other test techniques. But it is also associated
with several challenges that need to be addressed with organizational changes
as well as engineering best practices. In addition, the paper presents a com-
parison between the benefits and drawbacks of VGT and a custom GUI test
approach used at Spotify driven by hooks in the application’s source code.
The comparison shows that there are several key differences between the two
approaches but that they are ultimately complementary for GUI-based testing.

Finally, the paper presents a synthesis of results from the presented, pre-
vious and related work that defines a set of guidelines to aid practitioners to
adopt and use VGT in industrial practice.

174 CHAPTER 6. PAPER E: LONG-TERM USE

6.1 Introduction

Automated testing has become a de facto standard in software engineering
practice, most commonly performed with automated unit tests [14]. Unit test-
ing is performed on a low level of system abstraction to verify that software
components adhere to the system under test’s (SUT) low level requirements.
But unit testing is rarely enough on its own for automated testing in industrial
practice; companies also need to continuously verify high-level system prop-
erties. The reason is because market advantage is determined by a product’s
time-to-market in many software engineering domains, which has resulted in
a trend that software needs to be developed, tested and delivered as often
and quickly as possible. Companies thus want to get human testers out of
the loop and automate testing on many levels of system abstraction to reduce
costs and increase test frequency. However, the support for automated testing
on the GUI level of abstraction is limited, and companies typically comple-
ment their low-level, automated test activities with costly manual GUI-based
testing [2–4].

We have classified the currently available GUI-level test automation tech-
niques into three chronologically delineated generations [51]. The 1st genera-
tion relies on exact screen coordinates, the 2nd on access to the SUT’s GUI
library or hooks into the SUT and the 3rd on image recognition to stimulate
and assert the SUT’s behavior. Whilst the 1st generation was deemed unstable
and is rarely used anymore, the 2nd generation is commonly used in industrial
practice with tool’s such as Selenium [55] and QTP [56]. However, the 3rd

generation, also referred to as Visual GUI testing (VGT) [64], is currently
emerging in industrial practice with tools such as Sikuli [20], JAutomate [67]
and EggPlant [68]. Academic research has shown VGT’s applicability and
some support for its feasibility in practice [64]. However, knowledge from the
perspective of long-term use, i.e. use over several years, and what challenges
that are associated with the long-term use of the technique, are still missing.
The key reason for this lack of knowledge is because VGT has only recently
gained a foothold in industrial practice and the number of early adopters that
have used the technique for a longer period of time, which can be studied, are
therefore few.

However, studies on the long-term perspective of the use of research in
industrial practice are generally missing in software engineering [138]. This
lack of studies can be contributed to several factors. For instance, such research
requires years of investment by a case company, which they are reluctant to
invest in areas which have not already been proven. Additional factors include
that processes and organizations change over time that cause resources for the
research to be diverted. Further, key individuals, e.g. champions, sometimes
leave the case companies that cause the research to be abandoned or replaced
before the long-term perspective can be analyzed. Thus, research into the long-
term effects of a new technique or solution is difficult to achieve. Nevertheless
it is important to identify impediments with the research topic to improve its
efficacy, efficiency and longevity in practice.

In this paper we address the lack of knowledge on the long-term use of
VGT through a single, embedded, case study [71] at the Swedish company

6.1. INTRODUCTION 175

CompanyX1. CompanyX is a good candidate given our goals since they have
used VGT for several years. They are one of few companies that can provide
insights into the entire VGT life-cycle; from adoption to use to long-term
use in industrial practice. Here, long-term use also includes the feasibility of
maintenance and challenges associated with the long-term use of VGT scripts.

CompanyX develops music streaming applications, for a large number of
different platforms and operating systems. These are also continuously up-
dated with new features and functionality that requires frequent regression
testing of the application. This regression testing is facilitated by a mature
test process which includes automated testing from low-level unit testing to
integration testing to GUI-level system testing performed with multiple ap-
proaches one of which is VGT. This gives us the opportunity to both study
the adoption and long-term use of VGT, its alternatives as well as the devel-
opment and test context in which it is used.

The study was performed with four (4) interviews with five (5) employees
at the company that were carefully chosen to provide a representative view of
how automated testing and VGT is used at CompanyX. These interviews were
chosen through snowball sampling [98] and analyzed with Grounded Theory
analysis. Results were further refined and complemented based on two work-
shops. Taken together this gives a rich overview of CompanyX’s context and
answers (1) how CompanyX adopted VGT, (2) what benefits and (3) chal-
lenges the company has experienced with the technique, (4) and finally what
alternative techniques the company use for automated GUI-based testing.

Results of the study show that VGT can be used long-term with several
benefits over other test techniques. But there are also many challenges that
require both organizational, architectural and process considerations for the
technique to be feasible. Because of these challenges, VGT had been aban-
doned at several projects at CompanyX in favor of a 2nd generation technique.
The paper reports the benefits and challenges of the new technique and also
compares the technique to VGT based on a set of different properties, including
robustness, maintenance costs and flexibility.

The acquired results, together with previous work [50,121], were then syn-
thesized to create a set of practitioner guidelines for the adoption and use of
VGT in practice. These guidelines serve to provide practitioners with decision
support for VGT adoption and to prevent practitioners from falling into the
pitfalls associated with VGT.

Consequently, this study contributes to the limited body of knowledge on
VGT with evidence regarding the technique’s long-term applicability as well as
much needed practitioner guidelines for adoption, use and long-term use of the
technique. In addition, the study provides a concrete, yet limited, contribution
to the body of knowledge on software engineering regarding the possibility of
long-term use of an academically defined test technique.

The continuation of this paper is structured as follows. Section 6.2 presents
related work followed in Section 6.3 of a description of the research process.
Section 6.4 then presents the research result, followed by practitioner guidelines
for VGT adoption and use in Section 6.5. The results are then discussed in
Section 6.6 followed by the paper’s conclusion in Section 6.7.

1The company’s name can not be disclosed due to a non-disclosure agreement.

176 CHAPTER 6. PAPER E: LONG-TERM USE

6.2 Related work

VGT is a tool driven automated test technique where image recognition is used
to interact with, and assert, a system’s behavior through its pictorial GUI as
it is shown to the user in user-emulated system or acceptance tests [64]. Pre-
vious empirical work has shown the technique’s applicability in practice with
improved test frequency compared to manual tests, equal or even greater de-
fect finding ability compared to manual tests, ability to identify infrequent and
non-deterministic defects, etc [51, 121, 139]. These studies have also provided
initial support regarding the feasibility and maintenance costs associated with
the technique, for instance, the maintenance costs of frequent maintenance
is lower than infrequent maintenance, positive return of investment can be
achieved in reasonable time, the technique can feasibly be used over months
at a time, etc. However, several challenges, problems and limitations have
also been associated with the use of the technique in practice [50], e.g. lack
of script robustness, maintenance related problems, immature tooling and ad-
verse effects caused by the test environment.

Hence, the body of knowledge on VGT covers many perspectives of its use
in industrial practice but it still lacks results regarding the technique’s long-
term use, benefits, drawbacks and challenges, i.e. results that are important
to determine the technique’s efficacy [138]. However, results on long-term use
are difficult to acquire due to VGT’s immaturity and limited use in practice
that also limits the number of case companies that have used the technique
for several years. Thus presenting the need, and importance, of the study
reported in this paper.

Related work has evaluated the industrial applicability and feasibility of
other GUI-based testing approaches [55,120]. However, the body of knowledge
on automated GUI-based testing is lacking empirical results regarding the
long-term use of these techniques in practice since most studies only focus
on maintenance costs. Maintenance costs that are discussed theoretically and
presented through qualitative observations from industrial projects [16, 133].
Some empirical research on maintenance costs have been reported but for
open source software [58, 131, 136] whilst the number of papers that include
industrial systems are limited [12].

Further, the long-term, empirical, perspective is missing in general in the
software engineering body of knowledge, as shown by Höfer and Tichy that
conducted a survey of all refereed papers in the Empirical Software Engineer-
ing Journal between 1996 and 2006 [138]. Whilst this study is almost a decade
old, there is, to the authors’ best knowledge, little support to the contrary of
this situation today. In their survey, Höfer and Tichy found that empirical
research with practitioners is common in software engineering research but
that studies that focus on the long-term perspective were missing. A similar
observation was made by Marchenko et al. during a three year study with 9
interviews at Nokia Siemens regarding the long-term use of test-driven devel-
opment (TDD) [140].

A more recent systematic literature review by Rafi et al. also identified
that there is a lack of research that focus on the challenges and solutions
of automated software testing [97]. In the review, 24,706 papers were sur-
veyed but only 25 reports were found with empirical evidence on benefits and

6.3. METHODOLOGY 177

drawbacks with automated testing. As such, more research is required on
the challenges, and further the solutions, with automated testing to improve
its adoption and use in practice. [16, 99]. Further research is also required
to explore the challenges and solutions from several perspectives that include
process and organizational aspects, e.g. how maintenance is performed by
testers in practice, and architecture, e.g. how test cases and test architectures
are designed [16,99].

Consequently, this paper addresses several important gaps in the software
engineering body of knowledge by supplying empirical evidence of the long-
term use of automated testing as well as what challenges, problems and limi-
tations that are associated with the adoption, use and long-term use of auto-
mated testing in practice.

6.3 Methodology

The methodology used in this study is based on the guidelines for perform-
ing empirical case studies in software engineering defined by Runeson and
Höst [17]. These guidelines were used to perform a single, embedded, industrial
case study [71] at the software application development company CompanyX.

Objective: The study had two primary objectives. First, to evaluate the
long term use and feasibility of VGT at CompanyX, including what benefits
and challenges the company had experienced during the adoption and use of
the technique. Second, to evaluate the alternative automated techniques used
at CompanyX for GUI-based testing.

Unit of Analysis: As such, the unit of analysis in the study was Compa-
nyX’s test process with focus on their test automation.

Research questions: The research objectives were broken down into the
following research questions:

RQ1: How was VGT adopted and used at CompanyX for automated GUI-
based testing?

RQ2: What are the benefits associated with the short and long-term use
of VGT for automated GUI-based testing in practice?

RQ3: What are the challenges associated with short and long-term use of
VGT for automated GUI-based testing in practice?

RQ4: What, if any, alternatives are there to VGT for automated GUI-
based testing in practice?

Research questions 1-3 aim to support the first research objective whilst re-
search questions 4 aims to support the second objective.

6.3.1 Case company: CompanyX

CompanyX is an application software developer that develops and maintains a
product line of applications that share features and backend functionality for
streaming music for both desktop and mobile devices. The company’s organi-
zation consists of 80 loosely coupled development teams located in Gothenburg,
Stockholm and New York. Each team is called an autonomous Squad that

178 CHAPTER 6. PAPER E: LONG-TERM USE

consists of maximum ten (10) cross-functional team members [141]. Cross-
functionality is needed at CompanyX because each Squad is responsible for
the complete development of a feature that is either suggested from manage-
ment or by the Squads themselves. Each Squad is therefore referred to as
its own start-up company that gets to choose what practices, processes and
tools they use. A set of standard processes, e.g. Scrum, practices, e.g. Daily
Stand-up meeting, and tools, e.g. Sikuli [20], are proposed but teams choose
if they wish to use them. The Squads are also grouped into Tribes in related
competence areas, for instance the music player, backend functionality, etc. In
a Tribe, a squad can still operate with a high degree of independence but is
supposed to collaborate with other Squads in the Tribe to implement a certain
function or feature, supported by a Tribe lead responsible for ensuring a good
environment within the Tribe.

Finally, CompanyX has Chapters and Guilds which are familiarities [141]
or interest groups with developers and testers across the different squads. Each
developer or tester is associated with a Chapter dependent on his/her skills
and competence area within a Tribe. In turn, Guilds are interest groups with
specific topics that anyone can create, for instance on the topic of automated
GUI-based testing, and anyone interested in the topic can join. A visualization
of the organizational structure is shown in Figure 6.1.

PO

Squad

PO

Squad

PO

Squad

PO

Squad

PO

Squad

PO

Squad

Chapter Chapter

Tribe Tribe

ChapterChapter

Guild

Squad Tribe Chapter Guild

Tribe lead Tribe lead

Figure 6.1: Visualization of the organizational structure used at CompanyX
[141].

The company’s core application is divided into a front-end and a back-end
where the front-end refers to the GUI and features the user interacts with.
Back-end development instead refers to server development and maintenance,
i.e. how to stream audio in a scalable manner to the application’s millions of
users in real-time.

CompanyX’s test process includes several automated test activities that are

6.3. METHODOLOGY 179

well integrated into the company’s organization. One reason is because the
individual teams are responsible for ensuring that each new feature is covered
by tests, which endorses collaboration between testers and developers. This
collaboration is also required for the company’s model-based testing with the
open source tool Graphwalker [142] that in some projects requires test code to
be embedded in the application’s source code.

The automated tests are used for continuous integration but they are not
executed on commit, instead the tests are executed automatically from a build
server according to a pre-defined schedule. However, no code is allowed to be
committed before it has been tested with, for instance, unit, integration or
GUI-based tests. These tests are executed on virtual machines to improve test
execution time and are designed to be mutually exclusive to enable them to
be executed out of order. This practice has been identified as a best practice
for VGT in previous work [121] and also allows CompanyX to run subsets of
tests to test a specific part of the application.

However, the main purpose of the automated testing is to mitigate repeti-
tive manual testing to allow the manual testers to focus on exploratory testing.
CompanyX’s test process thereby relies on tight collaboration between devel-
opers and different types of testers, supported by a plethora of well integrated
test techniques. This process allows the company to release a high-quality
application every three weeks on the company’s website, Android market or
AppStore. However, worth noting is that due to the company’s organizational
structure, the test practices and test tools differ between different development
teams.

Consequently, CompanyX is a highly flexible company with a mixed orga-
nization where a multitude of processes and practices are used. The company
is therefore representative of both small and medium sized software develop-
ment companies that use agile processes and practices to develop applications
for desktop or mobile devices. They therefore offer a unique opportunity to
study the many factors that lead to the successful long-term use of a test
automation technique such as VGT.

6.3.2 Research design

The case study was performed in three (3) steps as shown in Figure 6.2.

Introductory
presentation/

workshop
Interview study
(4 interviews)

Interview
Workshop Result analysis

Step 1: Pre-study Step 2: Data
collection Step 3: Data

analysis

Figure 6.2: Visualization of the research design.

Step 1: Pre-study : The first step was a pre-study where an introductory
workshop was held at CompanyX to elicit information about the company’s

180 CHAPTER 6. PAPER E: LONG-TERM USE

use of VGT, its context, organization, and willingness to participate in the
study. The workshop was held at CompanyX’s Gothenburg office but was
observed over video-link by a group of developers and testers at the office
in Stockholm, roughly 50 individuals in total. This workshop began with
a 40 minute presentation on testing and VGT, followed by a group discus-
sion (semi-structured interview) with testers, developers and managers at the
Gothenburg office. The workshop served to transfer some of the nomenclature
that would later be used during interviews and to explain the study’s research
objectives. Additionally, the workshop participants were used as a seed for
snowball sampling [98] to identify suitable interviewees for the study. Hence,
interviewees that could provide representative answers regarding how Compa-
nyX works with automated testing, and VGT, to answer the study’s research
questions. Further snowball sampling was used during each interview to iden-
tify the most suitable individuals to interview given the study’s limited time
and budget constraints. The samplings resulted in six (6) individuals, all pro-
posed by CompanyX, out of which five (5) were interviewed. Triangulation of
the sampling results showed that most of the individuals were recommended at
all sampling instances that indicate that they were the most knowledgable and
suitable people to interview to answer the study’s research questions. Further,
the sampled individuals had different roles, e.g. testers and test managers2,
and worked in different projects with different platforms, e.g. desktop and
iOS. As such, they could provide a representative view of how VGT and GUI
test automation is performed at CompanyX.

Step 2: Data collection: The second step of the study served to collect
the study’s results and was divided into two parts. Part one consisted of
semi-structured interviews with the sampled individuals. These interviews
gave insight to the success and failure of VGT’s use in different contexts, e.g.
for different variants of the application developed with different practices and
processes, and gave a broad view of what factors that affect the long-term use
of VGT in industrial practice.

Four (4) interviews were conducted, where the first interview was held
in person with two individuals in a 90 minute session followed by three (3)
interviews that were performed over video-link in 60 minute sessions. All
interviews followed an interview protocol with 20 questions (See Appendix
A) divided into four categories related to the adoption (RQ1-2), use (RQ2-3),
maintenance RQ2-3) and abandonment of VGT in some projects at CompanyX
(RQ2, 4). The abandonment was studied to identify its cause and to acquire
information about the alternative GUI-test approach, i.e. “the Test interface”,
which replaced VGT. All interviews were recorded and then transcribed prior
to analysis.

The interview questions were selected from an initial interview protocol of
36 interview questions that was developed prior to the study. However, due
to the interviews’ time constraints, the interview protocol was scaled down to
20 questions in a review after the pre-study had been performed.

The second part of step 2 was a 180 minute workshop with one of the
lead testers at CompanyX responsible for much of the adoption of current
test automation tools and practices at the company. This workshop served to

2The ratios between roles, gender, or experience of the employees cannot be disclosed
without breaking anonymity agreements with the interviewees.

6.3. METHODOLOGY 181

verify previously gathered results and to acquire information about the current
and future use of VGT at the company, in particular how to combine the Test
interface with VGT for future use. Hence, the results presented in this paper
were extracted from 8 and a half hours (510 minutes) of data elicitation in
total.

Step 3: Data analysis: The analysis was performed with a Grounded The-
ory approach [77, 143] where the qualitative interview results were quanti-
fied through open coding [144]. Coding was performed in the TAMSAnalyzer
tool [145], which is an open source research tool where the user can define codes
and relations to sub-codes. A total of 40 codes were used in the analysis, nine
(9) primary codes, presented in Table 6.1, and 31 additional and secondary
codes. These codes were defined either before or during the coding procedure
to tag specific statements that could support the study’s research questions.
For instance, to capture statements about CompanyX’s test tools, the codes
Graphwalker, Sikuli, TestAutomation and TestInterface were defined. The
large set of codes enabled deeper analysis if required, e.g. by combining codes
to search for specific statements in the TAMSAnalyzer tool, and was required
to saturate the interview transcripts with codes [146].

Code Description
1 DevelopmentProcess Statements related to CompanyX’s develop-

ment process that influenced the testing
2 Graphwalker Statements about the model-based testing

tool Graphwalker that was combined with
Sikuli

3 Organization Statements relating to CompanyX’s organiza-
tion and how it supports their test process

4 Problems Statements about challenges, problems and
limitations with CompanyX’s automated
GUI-based testing

5 Process Statements about CompanyX’s overall process
from requirements engineering to testing

6 Sikuli Statements about the Sikuli tool, its use, ben-
efits and drawbacks

7 TestAutomation Statements about the automated testing per-
formed at CompanyX, including processes,
tools, etc.

8 TestInterface Statements about CompanyX’s 2nd Genera-
tion test tool the “Test Interface”

9 Testprocess Statements about CompanyX’s general test
process, including manual and automated
practices

Table 6.1: Summary of the nine primary codes and what types of statements
were associated with each code during the interview analysis.

Coding was performed by going through the interviews and assigning codes
to individual statements. A statement could be given more than one code if
it was assumed important for several concepts. For instance, the statement;

182 CHAPTER 6. PAPER E: LONG-TERM USE

Code
Int.
1

Int.
2

Int.
3

Int.
4

Sum:

1 Sikuli/Drawbacks 15 10 13 1 39
2 Test interface/Drawbacks 4 4 8 13 29
3 Organization 8 2 3 11 24
4 Test interface/Benefits 6 3 4 7 20
5 Sikuli/Benefits 4 6 8 1 19
6 Sikuli/Adoption 2 5 6 0 13
6 Graphwalker 7 4 1 0 12
7 Sikuli/Abandonment 2 2 3 0 7
8 Testprocess/Manual testing 2 2 2 0 6

Sum: 50 38 48 33 169

Table 6.2: Summary of the main tags used during synthesis and the quantities
of each tag.

“It (test automation) can of course be more integrated (in the process)... Test
automation is still quite new”, was tagged with both the “Process” and “Tes-
tAutomation” codes. In cases where a larger statement was tagged with one
code tag, sub-statements in said statement could be tagged with more specific
code tags. Using this approach, 475 code tags were administered in the four
transcribed interviews. However, this does not equal 475 unique statements
since some statements were tagged with more than one code.

After tagging the interviews, each code was analyzed to synthesize state-
ments connected to individual code tags and draw conclusions. Nine (9) codes
were analyzed more rigorously that regarded the use of VGT with Sikuli,
manual and automated testing, the organization for the test automation and
observed benefits and drawbacks of the different test approaches. These codes
have been summarized in Table 6.2 that also shows how many times each code
tag was associated with a statement from each interview, and in total, during
the analysis. Remaining codes, e.g. “Developmentprocess” were analyzed less
rigorously since they did not provide direct support for the study’s research
questions. However, statements associated with these remaining codes were
used to put the main conclusions into context and to define CompanyX’s pro-
cesses, organization, etc. A visualization of the presented coding procedure
can be found in Figure 6.3.

The synthesis resulted in 93 low level conclusions from rigorous analysis
of 204 statements associated with 169 administered code tags of the analysis
nine (9) primary codes. These 204 statements were then grouped to form the
main results to answer the study’s research questions. As such, each low level
conclusion was supported by at least one (1) up to eight (8) statements stored
in an excel file to achieve traceability to the main conclusions and preserve the
study’s chain of evidence [17]. Additionally, several hundred more statements
were used to define contextual information to the study’s main results.

This analysis procedure was inspired by previous Grounded Theory re-
search based on interviews, for instance Marchenko et al. [140] that used a
similar analysis to evaluate the long-term use of TDD at Nokia Siemens.

6.3. METHODOLOGY 183

Interview X

Interviewer: question 1
Interviewee: statement A,
 statement B
Interviewer: follow up question 1A
Interviewee: statement C

Interviewer: question 2
Interviewee: statement D

Interviewer question 3
Interviewee: statement E,
 statement F,
 statement G.

Interviewer: question 4
Interviewee: statement H
Interviewer: follow up question 4A
Interviewee: statement I
Interviewer: follow up question 4B
Interviewee: statement J

Code X

Code X

Code X

Code Y

Code Y
Code Z

Code Z

Code Z

Low level
Conclusion X

Low level
Conclusion Y

Low level
Conclusion Z

Conclusion Alpha
to support RQ X

Conclusion Beta
to support RQ Y

Step 1:
Assign codes
to statements

Step 2:
Group codes

Step 3:
Synthesize

statements to
low level

conclusions

Step 4:
Draw final

conclusions

Chain of evidence

Figure 6.3: Visualization of the coding procedure used during the analysis,
where (1) codes were assigned to statements, (2) codes were grouped, (3)
groups were synthesized to draw low level conclusions from which (4) final
conclusions were drawn. Thus, ensuring a clear chain of evidence from final
conclusion to statements given by interviewees.

184 CHAPTER 6. PAPER E: LONG-TERM USE

6.4 Results and Analysis

This section will present the results of the synthesis divided according to the
study’s research questions. Quotes from the interviews have been added in
the text to enrich the results where all quotes are written as: “Italic text
surrounded by quotation marks”.

6.4.1 Results for RQ1: VGT adoption

VGT, with the open-source tool Sikuli, was adopted at CompanyX in 2011
because of a need for more automated testing of the company’s application.
Initially the plan had been to add interfaces in the application to support a
myriad of different test frameworks. However, due to cost constraints these
interfaces could not be achieved. “We had to create a test interface and knew
from the beginning what it should look like. What we did not have, to solve the
problem, was resources and possibility to dedicate time to create requirements
for the development team (to implement the interfaces)”. Thus, VGT became
the only option for CompanyX since their application lacked the prerequisites
required by most other GUI-based test frameworks. The reason why Sikuli
was chosen over other available VGT tools was because one of the company’s
developers had tried it previously and therefore recommended it. “We were
looking for ways to solve the problem (with automated testing), and it was a
developer here at CompanyX...that had previously tested Sikuli... that was why
it (Sikuli) came to be”.

The adoption process began with the development of a proof of concept
where Sikuli was combined with the model-based testing (MBT) tool Graph-
walker [142]. Graphwalker allows the user to create state-based models that
can be exported as executable Java programs. Initially all states in the models
are empty and therefore require the user to write code that allows the model
code to interact with the SUT, e.g. through technical interfaces or by using
image recognition technology. These interactions drive transitions between
different states in the model that, in this context, represent the GUI state in
the SUT. Because Graphwalker models consist of Java code it became natural
for CompanyX to adopt Sikuli’s Java API in favor of its Python API. “No, it
(the Python API) did not map at all against what we wanted to do, we wanted
it in Java”.

However, the first proof of concept solution was poorly implemented, cre-
ated by a single developer, as one big script. It was only later that VGT
became useful after the script had been broken down into small, reusable,
modules through the use of engineering best practices. The use of engineering
best practices was one reason for VGT’s successful adoption at CompanyX
but the main reason was because the adoption was performed by a tight team
of engineers that were dedicated to making VGT work. “A lot of the success
relied on engineering solutions and communication because we were developers
from both Gothenburg and Stockholm who also worked in different teams with
different features. However, we were probably the tightest group at CompanyX
because we were adement to develop it (VGT) and continuously make it bet-
ter”. Communication during the adoption process served to spread knowledge
of best practices and to share reusable components among the adoption team.

6.4. RESULTS AND ANALYSIS 185

Additionally, test scripts were shared and reviewed to ensure their quality.
No explicit changes were made to the tool or the API during the adoption

but additional help methods were developed and most of the scripts followed
the Page view pattern. “That we had (Additional methods). We had our own
classes with help methods,...I think they were developed straight from the user
API”.

The main challenge during the adoption was to parallelize the test execu-
tion and to set up the test environment. “In the beginning you had to install
Sikuli to run it...That was a problem in the beginning when we wanted to set
it up on machines for nightly test runs”. This problem was solved by running
Sikuli on virtual machines (VM), but it was still problematic to install every-
thing, Java, Sikuli, etc., on each VM. “If you have Java on the machine the
tests should run. Then it is just important to package our test-jars, the jar
that contained the tests, and that it includes all resources that were required
(to run the tests)”. These resources included the Graphwalker Java models,
the Sikuli Java API and Sikuli scripts used to interact with the application.

In summary we conclude that for VGT adoption to be successful it requires:

1. An incremental adoption process,

2. Good engineering practices, e.g. patterns and help classes,

3. A dedicated adoption team with good communication, and

4. Virtual environments to run the tests on.

6.4.2 Results for RQ2: VGT benefits

The first observed benefit was the robustness of the Sikuli tool. “We have
actualy not had any stability problems with Sikuli as such, it is actually really
good”. “Over a whole day, 24 hours, maybe 10.000 pass (Image recognition
sweeps) and maybe 8 that fail”. However, despite the high level of robustness
the tool was still reported in two interviews not to be robust enough. “It
depends on the purpose of the tests, if you want to run tests that always go
green and pass, then it can be a problem, even if it (failures) happens only then
and again”. “If you look at it from a positive point of view there was a lot that
worked but what failed was in a way annoying enough.”.

The interviewees’ perceptions of robustness could however have been af-
fected by the application’s high frequency of change, which also required fre-
quent maintenance of the test scripts. For the desktop application this mainte-
nance was considered feasible but for the mobile platforms it was a large issue.
“In our case (Mobile applications) it was not feasible. At one point all I did
was to update the images for the Facebook scenario. The desktop application
worked better because it was more stabile so there it (the scripts) worked over
a longer period of time”.

However, very few false results had been observed during the use of Sikuli,
neither false positives or negatives. False positives were primarily caused by
changes to the SUT or due to synchronization problems. “The main false-
positives that we had, they were more in the tests, caused by us not having
enough time-outs.”. Further, false negatives were determined to be caused by
incomplete scripts rather than challenges with the tool. “It is possible (That

186 CHAPTER 6. PAPER E: LONG-TERM USE

a False-negative was reported), but... no, maybe not. Not because of Sikuli,
rather because we didn’t test it (the defective state)”.

Additionally, Sikuli test cases were reported to be reusable between differ-
ent variants of the application as long as the images used for interaction were
updated accordingly. This result implies that maintenance of images can be
separated from maintenance of script logic. “Our fonts are rendered differently
between OSX and Windows, we can reuse the tests but we need to change the
images”.

The primary reported benefit was however Sikuli’s flexibility of use on
any platform regardless of implementation which also made it applicable on
production ready software. In addition it allowed the testers to incorporate ex-
ternal applications, e.g. Facebook, into the test scenarios which was required
since CompanyX supports user login through the user’s Facebook account.
“The benefit is that we can use the SUT as a black box. We can use a produc-
tion grade client, which we have not instrumented or added (test) functionality
to. That is... (only) if you can see it you can automate it”. “If you want to
test things in Facebook, for instance, or kill the app and restart it, ..., then
you need to do something outside the app. Then we use Sikuli.”. GUI inter-
action also made it possible to test the appearance of the GUI, not only its
functionality. “(Sikuli ensures) that you didn’t (just) test a button which then
turned out to have the wrong color or something like that”.

Sikuli’s Java API was also reported as a benefit since it made it possible
to, in a flexible way, code additional functionality into the test cases or the
test framework when required. As such, workarounds could be created when
conventional use of the API was not enough. “What (test functioanlity) is
missing we can simply code. You can find workarounds for most things in
Sikuli, but it (the test) becomes more complex”.

Another benefit with the Java API was that it integrated well with Graph-
walker [142] for MBT based VGT. “Then (for Graphwalker) Sikuli fit well since
it provides a Java API...It fit like a hand in a glove so there were absolutely
no problems”. Graphwalker’s will be described in more detail in Section 6.4.4.

Sikuli was also reported as a useful and valuable tool for finding system
regression defects, especially during periods when CompanyX’s client has been
unstable. However the client instability had also resulted in additional main-
tenance of the test scripts that was not considered feasible at that time. “Yes,
we did (find defects), primarily because our client broke continuously. So the
defects we found were often that the client crashed when you entered the artist-
view, or similar. In that way it was a positive thing, even if it felt as, or
actually was, unfeasible to maintain, it still contributed to the defects in the
system being found”.

In summary we conclude that the benefits with Sikuli, and VGT, are that:

1. Test scripts are robust both in terms of execution and number of false
test results,

2. Test script maintenance is considered feasible for desktop applications,

3. Test script logic can be reused between different variants of an applica-
tion,

6.4. RESULTS AND ANALYSIS 187

4. Test scripts are flexible and can be used to test the actual product as
well as incorporate external applications with limited access to the test
cases,

5. Sikuli integrates well with Graphwalker for MBT based VGT, and

6. Test scripts find regression defects with equal ability as manual system
tests.

6.4.3 Results for RQ3: VGT challenges

The main drawback with Sikuli reported by CompanyX is its limited use for
GUIs that present dynamic data, i.e. non-deterministic data from, for instance,
a database. Whilst all VGT tools can verify that non-deterministic data is
rendered by checking that a GUI transition has occurred, the tools require a
specific expected output image to assert if what is being rendered is correct.
In CompanyX’s case this presented a problem since much of the application
consists of dynamically rendered lists of songs, artists and albums. Whilst
tests could be performed on a stable database, with specific search terms, the
company wanted to run the tests in the real production environment where
a search for a set of songs does not always return the same list. Thereby
impeding Sikuli’s usefulness. “The test data we have includes a lot of songs,
albums and artists and such. They have different names, cover arts... it is
very hard to verify that it is the correct image for each artists name”. “It is
difficult to work with them (tests) in Sikuli, they need to scroll (in lists) and
it is difficult to distinguish different rows, they look the same. Big buttons are
very easy.”.

Attempts to solve this problem included using Sikuli’s optical character
recognition algorithm (OCR) and to copy the entire list to the clipboard and
then importing the clipboard to the scripts for analysis. However, both solu-
tions were found unreliable. Sikuli’s OCR has until recently had a very low
hit rate and copying text often failed because the key commands did not work
properly in the application. “We have verified which songs are in a playlist.
We selected all songs, copied them to the clipboard but sometimes this process
failed...ctrl A and ctrl C did not work. This is a fault that is not relevant for
CompanyX”. “Then I need to extract that information (song list) dynamically
somehow. You could use the OCR functionality in Sikuli, but it is way too
unstable”.

Another large drawback was the amount of image maintenance that was
required. CompanyX’s application is developed for a myriad of different plat-
forms that all render the GUI slightly differently and have different, operating
system specific, images. Thus, each time the GUI was changed, the images
for that change had to be maintained in each test suite for each variant of the
application. Further, since CompanyX interacts with external applications,
like Facebook, the test suites also had to be maintained for changes made to
software outside CompanyX’s control, i.e. maintenance that could not be fore-
seen. “It could be both (images and test logic), but it was probably most often
the images.”. “Even if we remove everything that has to do with Facebook and
what is outside our control, even if we would use Sikuli entirely for our own
app, we would have problems (with image maintenace)”. “But the problem

188 CHAPTER 6. PAPER E: LONG-TERM USE

with Facebook was that they change as much as we do. The difference is that
we have no idea when and what they change.”. As such, much of the image
maintenance problem came from automation of external software applications,
which was also where Sikuli was the most beneficial since there was no other
way to access and/or stimulate those applications automatically.

Yet another drawback was that Sikuli was experienced to have limited
applicability to test applications on mobile devices. However, several of the
interviewees stated that they did not know the current status of the mobile
VGT, which, for instance, is support by the VGT tool EggPlant [68]. “On
mobile phones, if you want to run on an actual device, it doesn’t work. I
havn’t check the last year, maybe they have worked on adding such support?”.

Further, when Sikuli scripts execute, they take over the mouse and key-
board from the user. This implies that the user cannot use the computer at
the same time as a script is running. “It is according to me a problem that has
to be solved. It is way to ineffective otherwise. If you write a script that takes
fifteen minutes to run, then you don’t want to lock up the computer for fifteen
minutes, you want to debug other tests at the same time”. Additionally, Sikuli
scripts were perceived to execute slowly, especially for larger test scenarios.
“Yes, I guess it is a problem (Slow test execution). On the other hand the
tests are system tests, so the actual problem is maybe not Sikuli’s fault”. This
problem was assumed to be solvable by distributing the test execution over
several virual machines (VMs) and/or reference systems with physical devices,
i.e. parallel test execution. However, CompanyX had experienced problems
with running the test cases this way because they would not execute if there
was no physical screen connected to the computer. This problem originates in
Sikuli’s use of the AWT Robot framework that only initiates if a physical screen
is connected. “In our test lab we don’t have monitors for all machines that we
have and there is something strange with that. The desktop tests worked fine
but for the mobile application tests something strange happened if it (Sikuli)
did not detect a screen, then it was not possible to run Sikuli-stuff.”.

In summary we conclude that the challenges with Sikuli, and VGT, are
that:

1. Test scripts have limited use for applications with dynamic/non-determi-
nistic output,

2. Test scripts require significant amounts of image maintenance,

3. Sikuli scripts have limited applicability for mobile applications at Com-
panyX, and

4. Sikuli locks up the user’s computer during test execution.

These challenges have resulted in CompanyX’s abandonment of Sikuli in
many projects in favor of a 2nd generation test approach that will be discussed
in Section 6.4.4. The main reasons for the abandonment were the high costs
associated with maintaining images and the tool’s lacking applicability for
mobile applications. These challenges were as such the main long-term, con-
tinuous, challenges that CompanyX experienced with VGT. Thus, answering
research question 3. However, it should be noted that, at the time of writing
this report, Sikuli is still used at CompanyX for testing of the Desktop and

6.4. RESULTS AND ANALYSIS 189

Web applications in combination with other automated and manual test ap-
proaches. One reason is because these projects require less variants of the test
suite that also mitigates the amount of image maintenance after change. In
contrast, the mobile applications required individual test suites for different
devices, screen resolutions, etc.

Results from the the workshop in phase 3 also indicate that the adoption of
VGT at CompanyX was instrumental for the current test automation culture
at CompanyX. Hence, when developers saw the benefits of test automation
with VGT, several developers took it upon themselves to do the necessary
refactoring required to make additional automation techniques applicable.

6.4.4 Results for RQ4: VGT alternatives

This section provides an overview of two of the main tools that CompanyX
use for automated GUI-based testing.

Graphwalker: As mentioned, CompanyX’s automated GUI-based testing
is based on a model-based testing framework called Graphwalker. Graphwalker
models are created graphically in a tool called Wired and then exported to a
Graph ML format. These models can then be used to create executable Java
class stubs, i.e. empty methods, in which the user defines the interactions with
the SUT.

Each model defines a linear test scenario but several models can be linked
together through a meta-model to create more complex test scenarios. This
ability also allows the user to reuse scenarios, e.g. a login scenario, to lower
development costs. “If you have general scenarios (that run) in several views,
you can make that scenario into a model and simply switch to it every time..
you get an overview model and you can reuse the scenario in other scenarios. It
(Graphwalker) also has support for conditions (for branching scenarios), which
are usually states. For instance if we have a login scenario, then we set that if
Login=True then it knows that state in the model and may not go to another
state before the condition is True (in the application)”. Thus providing some
parameter based programming support in the models themselves.

In addition, Graphwalker supports random, real-time, traversal of models
for automated random testing, with traversal algorithms such as A* [147] and
random. “Yes, you get many permutations of the model and a lot of interesting
things happen when you run the tests this way (automated traversal). However,
we traverse our models with so called on-line generation, which means that we
don’t generate a path from the model that we then use. Instead we always ask
Graphwalker to generate the path in run-time. Mostly we used the random
generator, which gives us different permutations. What we want to ensure is
that we have full coverage (node coverage) of the model. So, the generators
are what makes it possible for us to traverse the model in different ways. Stop
conditions make it possible to express when we are done. We don’t have any
stop nodes in the model”.

Test interface: As mentioned in Section 6.4.1, CompanyX’s intention
was originally to add test interfaces to the application for automated testing.
However, the test interfaces had not been achievable due to resource constrains.
When Sikuli was abandoned, the need for automated GUI-based testing once
again presented itself but due to the cultural changes in the company, with a

190 CHAPTER 6. PAPER E: LONG-TERM USE

greater focus on automated testing, CompanyX’s initial plan could be realized.

The solution, simply called the Test interface, is a 2nd generation GUI
based testing approach where hooks (test methods), are embedded into the
source code. These methods are designed ad hoc to provide the tester with the
state information (s)he needs to write a test. The Test interface is accessed by
test case scenarios that are defined in Graphwalker, some reused from previous
Sikuli testing.

Benefits: Several benefits, but also drawbacks, were reported with the
Test interface solution. The primary benefit is the flexibility the Test interface
provides CompanyX to perform, for instance, tests with dynamic data, e.g.
playlists, and other test objectives not fully supported by Sikuli. “There is
support for anything really, but it requires that you write it (the test support)
yourself. Hence, if you, for instance, want swipes then you have to add a
method in the interface that actually does that...if you have a tabel, a playlist,
where there are songs, then there is for each table, playlist, methods to scroll
to an item at an index... you don’t do that on the real UI layer”.

Further, the execution speed and stability of the Test interface is perceived
higher than for the Sikuli tests. “(The benefits are) Time, it is faster with
the new (Test interface). Stability (Robustness)”. In addition, the execution
time can be improved since the Test interface can modify how the application
behaves, e.g. it can remove animations between state transitions. “The differ-
ence (to Sikuli) is that with the Test interface we can remove animations, so
when you open “Playing view”, the player, then we set the test interface not to
animate but instead render (the output) instantly”. Further, the Test interface
runs in the background without locking up the computer, unlike Sikuli, which
allows the user to continue work whilst the tests are running. This approach
is also more stable since it allows extraction of different types of data directly
from the application, which make interactions and assertions more exact. “The
benefit is that you can read the unique identifiers that each song has...I can
go to an album and read which songs are there and save them. Then I can go
to “Add to your music”. Then I can go to “Your music” and assert if they
are there (The unique identifiers)”. Thus solving the dynamic data assertion
problem that CompanyX experienced with Sikuli, presented in Section 6.4.3
whilst also improving the tests’ robustness. “I would blindly ship this (The
application) to employees being sure that 90 percent of the application would
work”.

However, the Test interface flexibility and robustness comes at the expense
of opening the application up to explicit internal access to its functions and
features, which also presents a threat of user misuse. “We have full insight
into the client code...this Test interface is very open, you open up the client
to do what you want”. This threat is removed by a test architecture, abstract
model shown in Figure 6.4, where each loosely coupled Test interface method
is coordinated by an orchestrator class within the application. Before the
product is released, the orchestrator class is removed from the application
which turns all the test interface methods into “dead code”, i.e. code that is
unreachable in the application. A tool called ProGuard is then applied which
removes all dead code, effectively removing all the test interfaces. “ProGuard
is a tool in which... will remove those endpoints (methods) because they are
not in use anymore.”.

6.4. RESULTS AND ANALYSIS 191

Application architecture

Component 1
Software
methods

Test
interface

method(s)

Component 2
Software
methods

Test
interface

method(s)

Component n
Software
methods

Test
interface

method(s)

...

Application

Test scenario

Test
interface

orchestrator

Figure 6.4: Visualization of the Test interface architecture within CompanyX.
All Test interface methods are accessed through a test orchestrator, which con-
nects test case nodes to specific Test interface methods.

Another benefit of this architecture is that if changes are made to the
application’s source code that breaks the coupling to a Test interface method(s)
the developer will receive a compilation error. As such, the developer gets an
instant notice when, and what, Test interface methods requires maintenance.
“The plan is that the Test interface is part of the code such that if you change
a feature you should get a compilation error... and you never get unstable
tests.”.

The transition to the Test interface has required a huge investment and
organizational change but is assumed to have lowered test maintenance costs
compared to Sikuli. “Yes, I would claim that (Perceived lower maintenance
costs). However, it is difficult to say because we have also improved our process.
We have hired people that are dedicated to each platform, before we (Small
test team) had to do these parts (Test maintenance)”. Thus, the lowered
maintenance costs are caused by a combination of factors but the previous
image maintenance costs have been removed since images are no longer used
for interaction and assertion of the applications correctness.

Drawbacks: However, this leads to the test interface first drawback, it
does not verify that the rendered, pictorial, GUI is correct. “We can miss
bugs now, for instance... we do not notice if the client is upside down (GUI
rendered incorrectly)”. “What we miss now when we run the Test interface
is the UI part. We see if the functionality works but we don’t know if it (the
GUI) looks right. We could see that with Sikuli, at least partially”.

Further, interactions with the application during testing is not performed
in the same way as a user interacts with the software. Hence, instead of
clicking on components, these interactions are invoked from layers underneath
the pictorial GUI. “But when we build our own interfaces, then we are clicking,
in a way, from beneath”. “We create events that essentially do the same thing
but without the physical click”. Further, because the test interface code is
removed in the release ready version of CompanyX, the tested version of the
application is not the same as what is delivered to customers. “The main
drawback, which we knew from the beginning, is that we’re not testing the real
products, we’re testing something else, more or less”.

192 CHAPTER 6. PAPER E: LONG-TERM USE

Synchronization between the test cases and the SUT was presented as a
challenge with Sikuli. However, the same challenge has been observed with
the Test interface. “In that regard it (Synchronization) is the same. It looks
reasonably the same independent of if it is Sikuli or the Test interface. You
have to solve it in different ways, but the core problem is the same. One part
of the challenge with test automation is how to deal with asynchronous test
execution”.

Another common problem for both Sikuli and the Test interface is that
none of them actually verifies that CompanyX plays music, i.e. auditorial
output. “We have manual testers that go through stuff (e.g. that music is
playing), so we capture those things. It is not a big risk that a version of the
application reaches the customer without sound”.

In summary we conclude that CompanyX use Test interfaces embedded in
the source code, driven by a model based testing solution, i.e. Graphwalker,
for GUI-based testing with the benefits that:

1. The Test interface provides more flexibility of use to test specific parts
of the CompanyX application, e.g. lists, than Sikuli,

2. Test interface tests execute quicker and more robustly than Sikuli tests,
and

3. Broken test cases are instantly identified by coupling to the software
components that generate a compilation error if a test interface method
requires maintenance, ensuring that they are continuously up to date.

However, the Test interface still has drawbacks, for instance that:

1. Test interface test cases do not verify that the pictorial GUI is correct,
only the functionality,

2. Test interface interaction with the application differs from human inter-
action, i.e. interactions are invoked rather than performed through the
user’s means of interaction,

3. Synchronization between Test interface test cases and the application is
still a challenge, similar to Sikuli, and

4. Neither Sikuli or the Test interface are able to verify that the application
actually plays music.

6.4.5 Quantification of the Qualitative Results

The study reported many benefits and challenges with both Sikuli and the Test
interface. To provide an overview of the qualitative results they were quantified
based on a set of properties observed for both techniques. Quantification was
done on a five (5) point scale from low (1) to high (5) as shown in Table 6.3.
The table implies that, for instance for the robustness property, VGT was
considered less robust than the Test interface.

The quantification was made based on the amount of support for and
against each property for both techniques, taking all interview and workshop
results into account. We do however stress that this quantification is based on

6.4. RESULTS AND ANALYSIS 193

Property VGT Test
interface

Ease of Graphwalker integration 5 5
Robustness 3 5
Frequency of correct test results
(No false positives or negatives)

4 4

Defect finding ability 4 3
Migratability of tests between SUT variants 3 3
Feasibility/Maintainability of scripts 2 5
Support for Parallel test execution 3 4
Ease of Synchronization between tests
and SUT

3 4

Speed 2 5

Flexibility of integration with different
plattforms

4 4

Desktop 5 5
Android 3 4
iOS 3 3
Web 5 3

Flexibility of use for different testing 3 4
Dynamic data 2 5
Work in parallell to test execution 2 5
Test of external software 5 1
Test o auditory output 1 1
MBT support 5 5

Support for different types of tests 5 3
Acceptance test 5 3
System test 4 5
GUI-based testing 5 1

Table 6.3: Quantification of the interviewees’ perceptions of the VGT solution
compared to the Test Interface. Each property is ranked on a scale from 1
to 5 where 1 is low and 5 is high. Example: A Robustness of 5 implies high
Robustness.

194 CHAPTER 6. PAPER E: LONG-TERM USE

data from CompanyX’s context and are only estimates based on the qualitative
results. The quantification was however performed by an expert that took pre-
vious work and experience with both 2nd and 3rd generation GUI-based testing
into account.

The quantified results were then analyzed statistically with the non-parametric
Mann-Whitney U test to test if there was any statistical significant difference
between the two techniques. A non-parametric test was used since normal-
ity analysis with the Shapiro-Wilks normality test showed that the samples
were not normally distributed, with p-values 0.0069 and 0.00039 for the VGT
sample and Test interface sample respectively. The result of the comparison
showed that we can not reject the null hypothesis, p-value of 0.473, and there-
fore we conclude that there is no statistical significant difference between the
two techniques in terms of their properties. However, analysis of the statistical
power of the two samples showed that it was only 0.109. Hence, well below
0.8 which implies a chance of Type II error, i.e. that we failed to reject the
null hypothesis despite it being false. These results are further discussed in
Section 6.6.

6.5 Guidelines for adoption and use of VGT in
industrial practice

In this section we present a set of practitioner oriented guidelines for the adop-
tion, use and long-term use of VGT. These guidelines, summarized in Table
6.4, were created through qualitative synthesis and triangulation of solutions,
guidelines, factors, etc., for best practice VGT and automated GUI-based test-
ing presented in previous [50, 121] and related work [99]. The purpose of the
guidelines is to provide practitioners with decision making support as well as
guidance to avoid common pitfalls with VGT. However, it should be noted
that future work is required to expand this set of guidelines and verify their
validity and impact in other companies and domains.

6
.5
.

G
U
ID

E
L
IN

E
S
F
O
R

A
D
O
P
T
IO

N
A
N
D

U
S
E

O
F

V
G
T

IN
IN

D
U
S
T
R
IA

L
P
R
A
C
T
IC

E
195

Phase # Guideline Description Support
Adoption 1 Manage exectations It is not suitable/possible to automate anything and everything with VGT,

consider what is automated and why?
A, B, C,
D

2 Incremental adoption A staged adoption process that incrementally evaluates the value of VGT is
suitable to minimize cost if the technique is found unsuitable.

A, B, C

3 Dedicated team Dedicated teams do not give up easily and identify how/when to use VGT. A, B, C
4 Good engineering VGT costs depend on the architecture of tests/test suites and engineering

best practices should therefore be used, e.g. modularization.
A, B, C,
D

5 Software Different software solutions, e.g. VGT tools and third party software, should
be evaluated to find the best solution for the company’s needs.

B, C, D

Use 6 Roles VGT requires training of new roles, which is associated with additional cost. A, B
7 Development process VGT should be integrated into the development process, e.g. definition of

done, and the SUT’s build process, i.e. automatic execution.
A

8 Organization Organizational change disrupts development until new ways of working settle. B
9 Code conventions Code conventions improve script readability and maintainability. B
10 Remote test execution For distributed systems, VGT scripts should be run locally or use VGT tools

with built in remote test execution support
B, C

Long-term 11 Frequent maintenance The test process needs to prevent test cases degradation to keep VGT main-
tenance costs feasible long-term.

D

12 Measure The costs and value of VGT should be measured to identify improvement
possibilities, e.g. new ways of writing scripts.

D

13 Version control When the number of SUT variants grow, so do the test suites and they should
therefore be version controlled to ensure SUT compatibility.

D

14 Life-cycle Positive return on investment of VGT adoption occurs after at least one
iteration, so how long will the SUT live?

B, C

Table 6.4: Summary of guidelines to consider during the adoption, use or long-term use of VGT in industrial practice. Column “Support”
shows if this study (A) or which previous work, B [121] and C [50] and related work D [99] that supports the presented guideline.

196 CHAPTER 6. PAPER E: LONG-TERM USE

6.5.1 Adoption of VGT in practice

Manage expectations: VGT is associated with high learnability and ease-
of-use that makes it tempting to use it for automation of all types of test cases.
However, VGT is primarily a regression test technique for system and accep-
tance tests and is therefore not suitable for testing of immature or frequently
changing functionality in the SUT since the maintenance costs of such scripts
will be high. Test cases that are developed in early stages of VGT adoption
should therefore be removed after exploring what types of SUT functionality
they can test.

Another common expectation is that VGT can completely replace manual
testing in an organization but this is not the case since VGT scripts can only
find defects in system states that are explicitly asserted. In contrast, a human
can observe faulty SUT behavior regardless of where or how it manifests on the
SUT’s GUI and VGT scripts therefore need to be complemented with manual
test practices, e.g. exploratory testing [116].

Use incremental adoption : Large scale adoption is seldom recom-
mended for any new technique or practice, and the same applies to VGT.
Instead, VGT should be adopted in a staged/incremental adoption process
with one or several pilot projects to evaluate the technique with several dif-
ferent VGT tools. The reason is because these tools have different capabilities
that make them more or less suitable based on contextual factors such as
the test automation culture of the company, if the system is distributed, if
the testers have programming knowledge, etc. Additionally, the pilot projects
should strive to find suitable test cases to automate and take maintenance costs
into consideration. Hence, these projects need to span over a longer period
of time, at least a few months, to evaluate as many aspects of the develop-
ment and maintenance of scripts as possible. Thereby ensuring that a correct
decision can be taken for the technique’s full scale adoption or abandonment.

Use a dedicated team : VGT is easy to use but it is associated with many
challenges that can stifle a team’s progress and lead to developer frustration.
A team of dedicated individuals should therefore drive the adoption process
such that the technique is not abandoned prematurely, i.e. before all aspects
of the technique have been evaluated.

Use good engineering : VGT scripts, especially in the open source tool
Sikuli [20], require a deal of engineering to be as usable and maintainable as
possible. For instance, VGT scripts should not be adopted as 1-to-1 mappings
of manual test cases if these test cases include loops or branches since this will
make the scripts more difficult to read and maintain. Instead, test cases of this
type should be broken down into as short and linear test scripts as possible.
These scripts should also be written in a modular way where script logic is
separated from images to make the logic and images reusable between all test
scripts in the test suite [99]. This practice supports maintenance since changes
to the SUT only require script logic, or images, to be maintained in one place
for the entire suite. Further, VGT scripts must be synchronized with the SUT’s
execution, synchronization that should be added systematically to the scripts,
preferably in a way that makes it possible for the user to change script timing
globally for the entire test suite simultaneously. Additionally, it is a good
practice to add failure mitigating code in the scripts, for instance by having

6.5. GUIDELINES FOR ADOPTION AND USE OF VGT IN INDUSTRIAL PRACTICE 197

assertions rerun if they fail, to ensure script robustness. However, care should
be taken with this practice since emphasis on robustness has negative effects
on the scripts’ readability and execution time. Finally, VGT scripts should be
documented to improve readability and to ensure that reusable script modules
are easily accessible.

Consider used software : An automated test environment often consists
of more than the tool and the SUT, it also contains simulators, third party
software, build systems, etc. Different VGT tools have different built in ca-
pabilities to integrate with this environment that further stresses the need to
evaluate different VGT tools during a pilot project. Additionally, if environ-
mental software components are interchangeable, e.g. remote desktop or VM
clients, several options should be tested to find the best possible solution for
the company’s context.

6.5.2 Use of VGT in practice

Change roles: Adoption of a new technique can require new roles to be
formulated, e.g. a role dedicate to the development and maintenance of scripts.
However, an individual placed in such a role needs training and/or time to
familiarize themselves with the new technique which also adds to the adoption
costs of the technique. Additionally, the new role’s responsibilities will change
that must bee accounted for when planning the individual’s workload.

Consider the development process: VGT should be integrated into
the development process to be effective. This implies adding the technique
to the normal routines at the company for instance by adding VGT to the
definition of done (If such is available) of a feature or task. Additionally, the
scripts should be added to the company’s build and test process to allow them
to be executed automatically and frequently, e.g. every night. Further, it has
been found that changing the order of the test scripts between test executions
can have a positive effect on the scripts’ failure-finding ability [121].

In addition, the company needs to consider for what purpose VGT is used
and cover other test related needs with other techniques. VGT is primarily a
regression test technique but it can also be used to provide stimuli to a SUT
during long-term tests to make these tests more representative of use of the
SUT in practice. Hence, it is perceived that VGT can be used for more than
regression testing, but, as stated, it cannot replace manual testing. Therefore,
the adopting company needs to redefine their test process to make use of all
the company’s test techniques’ benefits in the best way possible.

Change the organization : With changes to roles and the development
process comes also changes to the company’s organization, e.g. diversion of
responsibilities between individuals, new co-workers, etc. These changes can
disrupt development for a time, which will have monetary impact before the
new processes and organization settles. The impact of this organizational
change can vary dependent on how VGT is adopted but it is suggested that
VGT knowledge is spread across the organization but primarily handled by
dedicated individuals, as reported in this study and previous work [121].

Define code conventions: Code conventions keep scripts consistent that
make them easier to read and maintain. Additionally, these conventions can
be used to convey how specific VGT related practices, e.g. systematic syn-

198 CHAPTER 6. PAPER E: LONG-TERM USE

chronization, should be performed by the developers or how the code should
be structured to promote modularization, reuse and maintainability.

Minimize remote test execution : VGT tools can be executed on top
of remote desktop or VNC clients to facilitate testing of distributed systems.
However, results from previous work [121] indicate that this practice has ad-
verse effects on some VGT tools’ image recognition success-rate. Therefore,
for distributed systems, it is recommended that the company uses a VGT tool
with built in VNC functionality, e.g. EggPlant [68], to mitigate these adverse
effects. Another practice, recommended in previous work, is to minimize the
use of VNC and run the scripts locally to the greatest extent possible. This
practice implies that certain test cases become out of scope for VGT, the
impact of which should be evaluated during the pilot study.

6.5.3 Long-term use of VGT in practice

Adopt frequent maintenance : To avoid test script degradation it is impor-
tant to frequently maintain and improve the test scripts [99]. Frequent mainte-
nance also helps lower test maintenance costs since it avoids, to a larger extent,
simultaneous maintenance of both logic and images that is more complex than
logic or images separately. As such, a maintenance process should be inte-
grated into the company’s overall development process to ensure that changes
to the SUT have not caused scripts to break. Dependent on how VGT has been
adopted, this maintenance process either requires common knowledge among
all developers of how and when to update the scripts or clear communication
channels to the individual(s) responsible for test script maintenance. Regard-
less, frequent maintenance is an important activity to ensure the long-term
feasibility of VGT scripts in practice.

Measure for improvement : Measuring the status of the VGT process
is important to gauge its value contra the costs of performing it, for two
main reasons. First, to evaluate if VGT is beneficial for the evolving SUT,
i.e. is the technique equally suited to test new features of SUT as it was
when the technique was adopted? For instance, is it suitable to test the new
features through the pictorial GUI or is a lower level automated test technique
more suitable? Second, VGT scripts are large and slow in comparison to
many other lower level test techniques. This implies that a VGT test suite
becomes saturated quickly if a dedicated time slot is allocated for the test
suite’s execution. Especially since VGT scripts execute in the order of minutes
and test suites in the order of hours. Hence, if VGT is used for continuous
integration it may quickly become necessary to do test prioritization and test
suite pruning [99], which is non-trivial without proper measures to identify
what test cases to change, remove or execute for a specific test objective. Such
a measurement scheme should therefore be put in place as soon as possible
after the technique’s adoption.

Version control scripts: As reported from CompanyX, it is possible to
reuse test script logic between variants of a SUT but not the images. However,
the variants of CompanyX’s applications share a lot of functionality which is
not generally the case in practice. Further, the features and functionalities of
variants of a SUT can diverge over time, which implies that the script logic
cannot be reused. However, in some cases it may be required to migrate or

6.6. DISCUSSION 199

reset old test cases to an old variant of the SUT, which implies that VGT
scripts should be version controlled together with the SUT’s source code to
ensure script compatibility with different variants and versions of the SUT.

Consider SUT life-cycle : VGT scripts are associated with a develop-
ment cost that requires the scripts to be executed several times before they
provide positive return on investment. Further, the test scripts are used for
system and acceptance testing that implies that they can not be created be-
fore the SUT has reached a certain level of maturity. As such, they need to be
formulated later in the development cycle and are therefore better suited for
SUTs that will go through more than one development iteration or be main-
tained for a longer time period. Hence, for small projects where the product
will be discontinued after the project, e.g. development of a one-off or a pro-
totype, it may not be feasible, even suitable, to adopt VGT. Instead, manual
regression and exploratory testing should be used.

6.6 Discussion

The main implication of the results presented in this work is that VGT can be
used long-term in industrial practice. However, care must be taken how the
technique is adopted and used for it to be feasible and to mitigate its challenges.
This implication stresses the need for best practice guidelines regarding the
adoption and use of VGT in practice, i.e. guidelines such as those presented in
Section 6.5. The guidelines presented in this work are however not considered
comprehensive and further work is therefore required to expand this set and
evaluate their usefulness and impact in different companies and domains. As
input to such research, best practices for traditional software development
could be analyzed and migrated for use in VGT scripting.

However, despite following such best practices, the challenges associated
with VGT proved too much for the technique’s continued use in several projects
at CompanyX. Primarily this was due to high maintenance costs and because
of Sikuli’s limited ability to test mobile applications, i.e. run tests in the mo-
bile device. It is possible that these challenges could have been mitigated by,
for instance, pruning the test suites to focus only on stable SUT functionality
and GUI elements, a statement supported by the result that the technique
was feasibly used for CompanyX’s desktop and web applications. Additional
mitigation could have been achieved by adopting another VGT tool, e.g. Egg-
plant [68], which has better support for mobile testing. However these chal-
lenges can not be ignored and they, image maintenance in particular, should
therefore be studied further to find means of mitigation, both through process
improvements and technical support.

Further, Section 6.4.5 presented a comparison between Sikuli and Com-
panyX’s Test interface solution that showed no significant difference between
the techniques. For instance, both techniques were found equally easy to inte-
grate with the Graphwalker MBT framework that improved both techniques’
applicability and feasibility, e.g. by supporting migration of scripts between
applications, improved maintainability of scripts, etc. The presented analysis
did however not cover the costs of the techniques’ adoption, where the Test
interface approach was considered significantly more costly than VGT, which

200 CHAPTER 6. PAPER E: LONG-TERM USE

is also the reason why CompanyX adopted Sikuli in the first place rather than
the envisioned Test interface solution. However, the most significant differ-
ence between the approaches was the maintenance costs, where maintenance
of images for the Sikuli scripts were considered significantly more costly than
maintenance of the Test interfaces in some projects. Further, the Test in-
terface could be tailored to fulfill test objectives not supported by Sikuli, for
instance testing of non-deterministic outputs. However, the Test interface had
its own limitations, the primary being that it, common to all 2nd generation
GUI-based tools, lacks the ability to emulate user behavior, i.e. stimulation
and assertion of the SUT through the same interfaces as the human user. In-
stead, the Test interface invokes interactions from beneath the GUI that is
suitable to test the application’s functionality but does not verify if a user can
access this functionality or that the SUT’s GUI appearance is correct. This
implies that the Test interface requires more complementary manual testing
than VGT, which also limits the technique’s use for continuous delivery where
a new feature should be built, verified and validated, shipped and installed at
the customer automatically on each commit [45].

As such there are several tradeoffs between the properties of the two tech-
niques in terms of speed, robustness, flexibility, cost, etc. However, many of
these properties are complementary, which implies that a combination of both
techniques could provide additional benefits, a sentiment also shared by Com-
panyX. “That would get rid of those parts (test tasks cumbersome in Sikuli)...
a combination with Sikuli and this (the Test interface) would then be a solu-
tion”. This sentiment also supports the conclusion drawn in previous work
that, in an experimental setting, showed the value of combining VGT testing
with 2nd generation GUI-based testing to mitigate false test results [51]. This
previous work also evaluated automated model-based GUI-testing for test case
generation and execution, work that is also supported by this study since Com-
panyX’s Graphwalker solution supports automated random testing of the GUI.
Hence, technology that theoretically could be advanced to support automated
exploratory GUI-based testing to further mitigate the need of manual testing
of software applications. Thus, another topic that warrants future research.

Another interesting observation from this study was that the Test interface
fruition was caused by the adoption of VGT that changed the automation cul-
ture at CompanyX. The implication of this observation is that VGT could be
a suitable first step for a company to improve their test automation practices.
Especially in contexts where software legacy or lack of test interfaces prevent
the use of other test automation frameworks.

Consequently, this study provides valuable insights regarding the long-term
perspective of using automated GUI-based testing in industrial practice, in-
cluding challenges for the long-term use of these techniques. Based on these
results it was possible to synthesize practitioner oriented guidelines, which
shows the value and need for this type of research This study thereby provides
a concrete contribution to the limited body of knowledge on VGT but also a
general contribution to the body of knowledge on software engineering that
currently includes very few studies that focus on the long-term perspective
of industrially adopted research solutions [138, 140]. Hence, studies that are
required to draw conclusions regarding the impediments of such research solu-
tions and improve their efficacy, efficiency and longevity in industrial practice.

6.6. DISCUSSION 201

6.6.1 Threats to Validity

Internal validity: Several measures were taken to ensure the internal validity
of the study’s results. First, the interviewees were carefully chosen through
snowball sampling based on expert knowledge from within the case company’s
organization to ensure that the sample could provide representative results
to answer the study’s research questions. The study’s time and budget con-
straints also made it possible to interview all but one of the interview candi-
dates, which were spread across the organization and different projects. Ad-
ditionally, the interviews were triangulated with results from two workshops
that were attended by experts and individuals from all over CompanyX’s or-
ganization and provided results that also supported the interviews.

Second, to ensure a clear chain of evidence, the interviews were fully tran-
scribed, coded and analyzed with a Grounded Theory approach [77] that was
modeled on previous research on the long-term use of TDD [140]. This allowed
low level conclusions to be drawn that were supported by one (1) to eight (8)
statements each. These low level conclusions were then grouped further to
draw the study’s final conclusions, thereby ensuring that each conclusion was
well grounded in the representative interview sample’s statements.

Third, the guidelines presented in this work were triangulated with third
degree data from both previous and related work. These guidelines were
thereby supported both by the rigorous analysis in this study but also tri-
angulated with external sources of evidence. The use of related work also
helps mitigate bias in the guidelines fruition.

External validity: Only one case company was used for this study, chosen
through convenience sampling, since there are few companies available that
have used VGT for a longer period of time, i.e. companies that meet the
prerequisites of this type of study. However, CompanyX’s organization is based
on self organizing teams, called Squads, which are treated as their own startup
companies that choose their own processes, practices and tools. Squads, which
consist of maximum 10 individuals, are also grouped into feature teams, called
Tribes, which consist of several Squads. The interviewees chosen in the study
came from different Squads and Tribes that raises the external validity of
study’s results to both small and medium sized companies where a medium
sized company would be in excess of 50 employees but less than 100 employees.

Further, the VGT guidelines presented in this work were triangulated with
third degree data that was acquired in other companies and domains, including
larger safety-critical software development companies. Thereby ensuring that
the guidelines are generalizable for both small agile companies as well as large
safety-critical software developers. Additionally, the related work was based
on research with other types of automated GUI-based testing, which implies
that the reported guidelines can be generalized beyond VGT.

However, future research is required to build on this work and expand it
to other companies and domains to verify its results. This study is therefore
fundamental for such research since the reported results can help more compa-
nies avoid the pitfalls associated with automated GUI-based testing and only
then reach a state of maturity where this type of research can be performed.

Construct validity: The study was performed with interviews and work-
shops with industrial experts with years of experience and knowledge about

202 CHAPTER 6. PAPER E: LONG-TERM USE

VGT and automated testing in industrial practice. One interviewee was also
part of the team that adopted VGT at CompanyX. As such, these subjects
could provide in depth answers regarding VGT’s life-cycle in their context and
valid support to answer the study’s research questions.

Further, the guidelines presented in this work were primarily triangulated
with empirical research on VGT performed in industrial practice, thereby en-
suring the guidelines validity to help practitioners.

Conclusion validity/Reliability: To improve the reliability of this study,
as much detail as possible has been presented regarding the case company, the
research process as well as how analysis was performed. These measures should
make it possible to judge the validity of this work as well as to replicate the
study in similar contexts to the one described. Additionally, references have
been added to clarify the methods used in this work, e.g. case study de-
sign [17,71], Grounded theory [77], open coding [144], snowball sampling [98],
etc., to endorse the study’s replication.

6.7 Conclusions

This paper presents the results of a single, embedded, case study focused on
the long-term use of Visual GUI Testing and automated GUI-based testing at
the software application development company CompanyX. The case study’s
results were acquired from two workshops and four (4) interviews with five (5)
carefully chosen individuals from different parts of CompanyX’s organization
to provide a representative view of the company’s use of automated GUI-based
testing. These results were then analyzed using Grounded theory to acquire
the study’s main conclusions.

Based on the study’s results it was concluded that VGT, with Sikuli, can
be used long-term in industrial practice but that there are many challenges
associated with the technique, e.g. high maintenance costs of images, that
some VGT tools have limited applicability for mobile application testing, etc.
Because of these challenges CompanyX had in several projects abandoned
VGT in favor of a 2nd generation approach referred to as the Test interface.
The Test interface had several beneficial traits, including higher flexibility in
CompanyX’s context than Sikuli as well as lower maintenance costs. However,
the Test interface approach does not verify that the pictorial GUI conforms
to the system’s requirements and still suffers from the same synchronization
problems as other automated test techniques, including VGT.

Further, it was determined that CompanyX’s test process is well integrated
into the company’s organization, which, together with engineering best prac-
tices, were instrumental to VGT’s successful adoption at the company. Based
on a synthesis of these results, combined with results from previous and related
work, 14 practitioner oriented guidelines could be defined for the adoption, use
and long-term use of VGT in industrial practice.

This study thereby provides an explicit contribution to the body of knowl-
edge of VGT about the long-term industrial use of the technique. Additionally,
the study provides a general contribution to the body of knowledge of soft-
ware engineering that is currently missing studies that focus on the long-term
perspective of research solution’s use and challenges in industrial practice.

6.8. APPENDIX A: INTERVIEW QUESTIONS 203

6.8 Appendix A: Interview Questions

Table 6.5 presents the interview questions used during the four interviews at
CompanyX.

Phase # Interview question
Adoption 1 What was the reason why CompanyX choose to adopt

Sikuli?
2 What did the adoption process look like for the adoption

of Sikuli?
3 What barriers/challenges were observed during the

adoption of Sikuli?
4 How was Sikuli’s Java API adopted to fit CompanyX’s

test process?
5 Why was Graphwalker chosen as suitable for the test

architecture?
6 What types of tests were performed with Sikuli?

Usage 7 What benefits were observed with Sikuli compared to
other types of testing?

8 What drawbacks were observed with Sikuli compared to
other types of testing?

9 How often were/could the Sikuli scripts executed?
10 What was used as specifications for the Sikuli scripts?
11 What types of defects could be identified with Sikuli?

Maint. 12 What was the need for maintenance of the Sikuli scripts?
13 What was the need to maintain logic contra images in

the scripts?
14 How much tim was required to maintain the test scripts?
15 What did the maintenance process for the Sikuli scripts

look like?
16 What challenges were identified with maintaining the

Sikuli scripts?
17 What was the main cause why the Sikuli scripts required

maintenance?
Aband. 18 What caused the abandonment of Sikuli for the Test

Interface?
19 What was the timespan from adoption to abandonment

of Sikuli?
20 Has the abandonment of Sikuli caused any new chal-

lenges for CompanyX?

Table 6.5: Interview protocol used during the interviews at CompanyX. Maint.
- Maintenance, Aband. - Abandonment.

204 CHAPTER 6. PAPER E: LONG-TERM USE

Chapter 7

Paper F: VGT-GUITAR

Conceptualization and Evaluation of Component-based Test-
ing Unified with Visual GUI Testing: An Empirical Study

E. Alégroth, G. Zebao, R. Oliveira, A. Memon

Accepted at the 8th International Conference on Software Testing
Verification and Validation (ICST’2015), Graz, April 13-17, 2015.

205

Abstract

In this paper we present the results of a two-phase empirical study where we
evaluate and compare the applicability of automated component-based Graph-
ical User Interface (GUI) testing and Visual GUI Testing (VGT) in the tools
GUITAR and a prototype tool we refer to as VGT GUITAR. First, GUI mu-
tation operators are defined to create 18 faulty versions of an application on
which both tools are then applied in an experiment. Results from 456 test case
executions in each tool show, with statistical significance, that the component-
based approach reports more false negatives than VGT for acceptance tests
but that the VGT approach reports more false positives for system tests. Sec-
ond, a case study is performed with larger open source applications, ranging
from 8,803-55,006 lines of code. Results show that GUITAR is applicable in
practice but has some challenges related to GUI component states. The re-
sults also show that VGT GUITAR is currently not applicable in practice and
therefore requires further research and development.

Based on the study’s results we present areas of future work for both test
approaches and conclude that the approaches have different benefits and draw-
backs. The component-based approach is robust and executes tests faster than
the VGT approach, with a factor of 3. However, the VGT approach can per-
form visual assertions and is perceived more flexible than the component-based
approach. These conclusions let us hypothesize that a combination of the two
approaches is the most suitable in practice and therefore warrants future re-
search.

206 CHAPTER 7. PAPER F: VGT-GUITAR

7.1 Introduction

Today’s Graphical User Interface (GUI) applications are complex, run on mul-
tiple devices (with different output capabilities), are multi-language, and use
a combination of native (e.g., buttons, menus) and advanced (custom) wid-
gets. The modes of interaction with these applications are also evolving, from
button clicks to gestures. All of these advances in technology combined with
the need for flexibility create challenges for GUI testing (or system testing via
the GUI). The oldest tools (harnesses) are based on screen coordinates from
Applications Under Test’s (AUT) GUI and they have multiple problems for
replay (regression testing), especially when screen resolutions change.

Newer test harnesses use direct widget/component access to instrument
and assert GUI correctness through the underlying GUI model based on Wid-
gets, properties of widgets and their values. This approach greatly improves
test robustness to AUT change and also facilitates automatic record and re-
play as well as GUI ripping, test case generation and replay with tools such
as GUITAR (a GUI Testing FrAmewoRk) [58]. However, this approach re-
quires GUI component access, e.g. through GUI library access, which limits
the usability of these tools to certain programing languages, standard GUI
components, non-distributed systems, etc.

An alternative harness type is referred to as Visual GUI Testing (VGT),
which uses image recognition of what is shown to the user on the computer
monitor for AUT interaction [65, 121]. Image recognition makes VGT appli-
cable to any GUI driven AUT regardless of implementation language, type of
components, etc. However, this approach is immature and several challenges
have been identified with state-of-practice tools and their image recognition al-
gorithms [50]. Thus, even though the industrial applicability of VGT is shown,
evidence for the costs associated with the technique are still limited [64,131].

Because of these listed advantages and disadvantages, we hypothesize that
there are characteristics of applications (containing custom widgets) and test-
ing needs (e.g., multi-platform, multi-language) that lend themselves to a com-
bined component-based and VGT based solution. Characteristics that connect
to different types of defects on different layers of AUT abstraction, from the
GUI rendered on the screen, to the GUI model, to lower system layers. In this
paper, we provide support for the above stated hypothesis from an experiment
and a single, holistic, empirical case study [17].

In the experiment, two instances, i.e. tools, of the two test approaches
were applied on 18 faulty versions [148] of a GUI driven AUT to evaluate the
approaches’ fault finding ability and false result frequency. Analysis of the
results show, with statistical significance, that the component-based approach
reports more false negatives for acceptance tests than the VGT approach, but
that the VGT approach reports more false positives during system testing.
Supporting the hypothesis that a hybrid tool is the most suitable for different
industrial contexts and test purposes.

In the case study, the two tools are applied on three larger, open source,
AUTs to evaluate the tools’ current applicability in practice. Results show that
test cases generated for the component-based approach execute successfully
roughly two thirds of the time and the VGT approach, due to the current
implementation of the prototype tool, had a success rate of zero percent on

7.2. BACKGROUND AND MOTIVATION 207

GUI
Widget
Layer

User
GUI

Layer
GUITAR
RIPPER

GUITAR
TC GEN

GUITAR
REPLAYER

Event
SShots

Event
Analyzer

output
Sshot

VGT TC
Filter

VGT
TCs

SShot Plugin

Sshot Plugin

VGT
GUITAR
DRIVER

eX1_eY1_..._eN1.tst
eX2_eY2_..._eN2.tst
eXn_eYn_..._eNn.tst

...
eX1_eY1_..._eN1.DIR eX1_eY1_..._eN1.DIR:

eX1_diff.png
eY1_diff.png

...
eN1_diff.png

eX1.png
eY1.png

...
eN1.png

Test
Results

output.txt

Widget
Sshots

Bitmap
Ripper For TC in Applicable_TCs:

 For Tstep in TC:
 Assert Widget_Sshot X.png
 If True:
 Click Widget_Sshot X.png
 Assert Event_output_Sshot X_diff.png
 If True:
 Report Pass
 Else:
 Report Fail
 Break

VGT GUITAR DRIVER

Figure 7.1: Visualization of VGT GUITAR’s architecture.

the three applications. Based on these results we outline areas of future work
for the approach.

The specific contributions of this work are as such:

C1: Comparative, empirical, results regarding the applicability and via-
bility of component-based and VGT based automated testing; and

C2: Support for the need and areas of future work of combining the
component-based and VGT approach.

Consequently this study provides a general contribution to the body of
knowledge on automated GUI based testing regarding the comparison and
unison of the component-based and VGT approaches that currently only has
limited support [131]. Further, the study provides an explicit contribution to
the body of knowledge on VGT regarding model-based VGT test case gener-
ation and replay, which has previously only been evaluated based on random
test generation [149].

The continuation of this paper will be structured as follows. First, in
Section 7.2 we present a background an extended motivation to the necessity
and importance of this work. The research methodology for the two case
studies is then described in Section 7.3 followed by the research results and
analysis in Section 7.4. These results and analysis are then discussed in Section
7.5, followed by related work in Section 7.6 and finally we conclude the paper
in Section 7.7.

7.2 Background and Motivation

Market demands on software developers to rapidly produce new software and
add new features to existing software create new challenges for software qual-
ity assurance. Challenges that have been proposed as solvable with automated
testing [7, 31]. However, software is becoming more GUI intensive with in-
novative means of interaction, functionality and components. Consequently
challenging the capabilities of current GUI test harnesses and presents a need
for new automated GUI based testing approaches.

Alégroth et al. [64] classify the existing approaches to GUI-based testing
in three chronological generations. The first generation uses exact coordinates

208 CHAPTER 7. PAPER F: VGT-GUITAR

that are recorded during manual interaction with the AUT and automatically
replayed for regression testing [8,9]. However, this approach is associated with
high maintenance costs due to lack of robustness to GUI change, dependence
on screen resolution, etc., and has therefore been abandoned.

Second generation GUI based testing operate directly against GUI com-
ponent properties, which makes the approach more robust to AUT change,
has high performance and stable test execution, supports test recording but
also GUI ripping and automated test case generation with tools such as GUI-
TAR [58]. However, to access the components, second generation tools re-
quire access to the AUT’s underlying GUI model, i.e. through GUI libraries.
Thereby restricting the tools’ applicability to AUTs with known GUI APIs,
local systems, etc [64].

Third generation GUI based testing, also referred to as Visual GUI Testing
(VGT), uses image recognition in order to interact and assert AUT correctness
through the bitmaps rendered on the user’s monitor. However, even though
the industrial applicability of the technique has been shown [64], there are
still gaps in knowledge regarding the approach long-term viability in prac-
tice. Furthermore, only pivotal research has been performed on VGT test case
generation [149].

These benefits and drawbacks let us hypothesize that there are potential
synergy effects between the second and third generation approaches. To the
authors’ best knowledge, Unified Functional Testing (UFT) is the only cur-
rently available tool with this capability [56]. However, UFT does not support
automatic test case generation and is therefore associated with development
and maintenance costs. Thus, presenting an industrial need for our research
that is also supported by related work [67].

This paper presents a comparative study where we evaluate contextual dif-
ferences that make the component-based approach beneficial to the VGT ap-
proach and vice versa. The data was acquired with GUITAR and a prototype
tool, referred here to VGT GUITAR, which combines the two test approaches
to facilitate automated image recognition based GUI testing, supported by a
script engine written in Python and the Sikuli API [54]. VGT GUITAR’s ar-
chitecture is shown in Figure 7.1. The prototype primarily uses an extension
of GUITAR’s ripper that takes screenshots of the AUT’s components comple-
mentary to the components’ properties. In addition, the tool includes a purely
bitmap based ripper that extract component bitmaps from screenshots of the
AUT’s GUI taken during replay of the GUITAR test cases. Further, the tool
relies on GUITAR’s test case generator that in turn has been extended with
a filter function that removes all test cases that cannot be executed by VGT
GUITAR. Filtering is performed by comparing the pool of captured bitmaps
from the AUT’s GUI against the bitmaps explicitly required to drive each test
case. If a test case includes a test step for which no bitmap was identified
during ripping, the test case is removed. Filtering is required since the current
tool prototype only captures bitmaps for basic Java components, e.g. JButton,
JTextField, etc. GUITAR on the other hand can interact with a larger set of
components. The filtered test cases are then executed through the VGT script
engine that produces test results that for each test step present if the inter-
action and assertion of the GUI component passed or failed. As such, VGT
GUITAR performs an implicit assertion if the component exists on the screen

7.3. METHODOLOGY 209

before it interacts with it, followed by an assertion of the AUT’s behavior in
the output assertion.

7.3 Methodology

The methodology used in this work was divided into one experiment and one
single holistic case study with two units of analysis, i.e. component-based
and VGT testing, as described by Runeson and Höst [17]. The experiment
was designed to evaluate the two approaches ability to find different types of
defects. These defects were seeded into a small, yet representative, application
created by the research team. Furthermore, a case study was performed where
the two tools were applied on three open source applications to evaluate the
tools’ current applicability in practice. The following subsections will present
the research design in more detail.

7.3.1 Experiment: Fault detection and False results

In order to compare the defect finding ability of the two GUI based test ap-
proaches we used the concepts of mutation testing to create 18 GUI level
mutant operators. Mutation testing approaches [150] uses mutation operators
to change the AUT to create slightly different versions, called mutants. For
each mutant operator, shown in Table 7.1, hypotheses were created regarding
the expected behavior of GUITAR and VGT GUITAR when applied for regres-
sion testing on a mutant created using said operator. Hence, these hypotheses,
stated in columns four and five of Table 7.1, represent the test outcome we
expected prior to the study based on the tools’ individual capabilities. As an
example, Mutant Operator 1 specifies the removal of a component from the
GUI, which is a common occurrence when software evolves. The hypothe-
sized correct behavior of both tools in this instance is that any test case that
interacted with the removed component would fail.

Further, in order to identify if a reported failure was correct, a false positive
or a false negative result, we also hypothesized how the mutant operator would
impact system and acceptance testing of the AUT. System testing was defined
as assertion of the correctness of the AUT’s functionality/behavior, i.e. input
and output, and acceptance testing was defined as an assertion of correct
functionality/behavior also as executed and accepted by a human user. As
such, these hypotheses present what a human tester’s test result would be if
an instance of the mutant operator occurred in the AUT. Note that this infers
that the mutation occurred unintentionally since some of these operators could
occur during maintenance of the AUT. As an example, for mutant operator
one, if a GUI component is not rendered during testing we expect both a
system test case of the AUT’s behavior as well as an acceptance test case,
which also takes the usability, appearance, etc., of the AUT into account, to
fail. The hypotheses are stated in the two last columns of Table 7.1.

To test the hypotheses, the research team created a custom Java applica-
tion, referred to as AppX, with a simple, modifiable, design but with intricate
enough functionality to host all the mutants. AppX has an MVC (Model-
View-Controller) architecture with two input buttons and two output fields
that displayed the output, as shown in Figure 7.2. The top output field was a

210 CHAPTER 7. PAPER F: VGT-GUITAR

textfield that is accessible through component properties but the lower output
field is a custom panel that rendered the output with green letters on a black
background that can only be accessed visually. This GUI design was chosen to
make the comparison of the two approaches’ capabilities fair by ensuring that
both techniques could assert the correctness of the AUT. Hence, GUITAR
can perform assertions through the top output field’s GUI component data
and VGT can visually asserts the rendered output in both the top and lower
output fields. The rationale behind using AppX rather than an open source
AUT for the experiment is to limit confiding factors and to have control of
the mutant creation. We also claim that the external validity of the acquired
results are high, despite the AUT’s lesser size, since the compared test ap-
proaches operate on the highest levels of system abstraction which effectively
transforms the AUT’s business logic into a black box that we stimulate with
GUI input to acquire specific GUI output. As such, the size and complexity of
the AUT’s business logic is irrelevant for the comparison of the two approaches
ability to find GUI level regression defects.

To provide further support for our claim about the external validity the
reader is referred to Figure 7.3. In the figure, box size represent the depth
of business logic in an AUT. At the top of the figure, the business logic of
an application with a deterministic implementation of the traveling salesman
problem is shown. The theoretical application takes a list of graph nodes,
Xs, as input through the GUI and then displays an ordered list, Ys, with the
nodes sorted the way they should be optimally traversed. Since the algorithm
is deterministic it will always return the same ordered list, Ys, for a given
input Xs. In the bottom of the figure we visualize the logic of an AUT where
the traveling salesman algorithm has been mocked to a single static method
that takes the same list, Xs, as input and returns the correct ordered list Ys
as output without any computation. From a user’s perspective the behavior
of the two applications, on a GUI level, are equivalent, which infers that sim-
plified applications can be used to simulate how GUI level tests behave also
on applications with advanced business logic. If the application in the bottom
of Figure 7.3 is changed/mutated such that it displays another list Zs, where
Zs 6= Ys, it would appear to the user as a defect in the business logic in the
application at the top of the figure. Hence, as a defect in the logic that could
have been introduced, for instance, during maintenance of the application, i.e.
a regression defect. As such, the results acquired during the experiment with
AppX are perceived to have the same external validity as results acquired for
GUI-based regression testing of a larger application with similar types of GUI
components.

Another rationale for the use of AppX was to remove confounding factors
from the experimental results caused by defects or other uncontrollable im-
plementation related aspects of another application. By keeping AppX small
we could therefore be more certain that the results we acquired were caused
by manipulation of the control variables. An alternative had been to perform
the experiment on several different applications and through randomization
remove the impact of implementation specific problems, which is therefore a
potential subject of future work to verify our results.

The mutant operators in Table 7.1 were manually seeded to create 18 dif-
ferent versions of AppX. For instance, for mutation operator 1 the increment

7.3. METHODOLOGY 211

Type Mutant op. VGT
hyp.

Comp.
hyp.

Sys.
test

Acc.
test

1 Rem. Remove completely F F F F
2 Rem. Invisible F F F F
3 Rem. Remove listener F P F F
4 Dup.

/ Ins.
Add identical widget F P P F

5 Dup.
/ Ins.

Add similar widget F P P P

6 Dup.
/ Ins.

Add different widget P P P P

7 Dup.
/ Ins.

Add another listener P P F F

8 Mod. Expand/Reduce size of win-
dows and widgets will auto-
adjust their sizes

F P P P

9 Mod. Expand size of windows and
widgets will not auto-adjust
their sizes

P P P P

10 Mod. Reduce size of windows to
hide widgets

F P F F

11 Mod. Modify location of a widget
to a proper location

P P P P

12 Mod. Modify location of a widget
to edges of windows

F P F F

13 Mod. Modify location of a widget
to overlap with another

F P F F

14 Mod. Modify size of widgets F P P P
15 Mod. Modify appearance of wid-

gets
F P F F

16 Mod. Modify type of wid-
gets (Button changed
to TextField)

F F F F

17 Mod. Modify GUI library for wid-
gets (Swing button changed
to AWT Button)

P F P P

18 Mod. Expand/Reduce size of win-
dows and widgets will auto-
adjust their sizes

F P P P

Table 7.1: Mutant operators and hypotheses of the results of applying each of
the operators on App X. op. - operator, hyp. - hypothesis, Sys. - System,
Acc. - Acceptance.

212 CHAPTER 7. PAPER F: VGT-GUITAR

Figure 7.2: Original GUI for AppX.

Figure 7.3: Visualization of two applications with different business logic com-
plexity but with the same behavior for a given input.

Figure 7.4: To the left, the result of applying the first mutation operator on
AppX, i.e. removing the increment button. In the middle, the result of applying
the 10th mutation operator, i.e. reducing the size of the application window to
hide widgets. To the right, the 15th mutation operator, i.e. modification of the
appearance of widgets.

button was removed from the view class and the listener from the control class.
Figure 7.4 shows three mutated instances of AppX, to be compared to the orig-
inal GUI in Figure 7.2. The seeding process was performed systematically for
each operator by changing as few lines of code as possible for the instance to
manifest the mutant. Each instance of AppX was then tested manually to en-
sure that the introduced mutant had not affected other aspects of the AUT’s
functionality.

Once the 18 instances had been created, a complete/holistic test suite was
created for the original version of AppX that was executed three times on each
instance to evaluate the average number of identified defects, false positives,
false negatives and test case execution time. The test result was classified
as correct if the test case terminated after completing the test case or if it

7.3. METHODOLOGY 213

terminated correctly after it had identified a mutant. The test result was
classified as a false positive if the test case failed when it was expected to pass
and as a false negative if it passed but was expected to fail. Categorization of
the test results was performed through manual inspection of the test results
in comparison to the expected behavior as stated in Table T1. As such, eight
sets of results were acquired for:

1. False positive component-based system tests;

2. False positive VGT-based system tests;

3. False negative component-based system tests;

4. False negatives VGT-based system tests;

5. False positive component-based acceptance tests;

6. False positive VGT-based acceptance tests;

7. False negative component-based acceptance tests; and

8. False negative VGT-based acceptance tests.

The stated hypotheses were considered supported if all applicable test cases
of the test suite conformed to the expected, predefined, test behavior, e.g. if
the hypothesis was that GUITAR would report failed test cases for a certain
mutation, all test cases affected by the mutation had to fail in order for the
hypothesis to be considered supported. Note that in cases where the mutation
was only applied to one GUI component of the AUT, test cases that did not
interact with said component were assumed to pass as in the original version
of AppX.

The results of the experiment were then analyzed using formal statistics
with the non-parametric Wilcoxon test to identify, with statistical significance,
if there was any difference between the two test approaches’ test results. The
non-parametric test was used because normality analysis with the Andersson-
Darling normality test showed that none of the sets were normally distributed.

7.3.2 Case study: Applicability in practice

As a second part of our evaluation of the two approaches, a case study was
performed with the purpose to evaluate the component-based and VGT-based
approaches’ applicability in practice. Due to VGT GUITAR’s dependence on
the GUITAR ripper and replayer, the case study was performed with three
Java applications, which properties have been presented in Table 7.2. These
applications were chosen from an existing pool of applications that have been
used in previous research to evaluate GUITAR’s applicability [151]. Whilst
the size of the applications in lines of code is considered small, compared to
applications in industrial practice, the applications have rich GUI’s with many
different components and events that, according to the reasoning presented in
Section 7.3.1, provide the results with a high degree of external validity also
for industrial grade applications.

The case study was categorized as a single holistic case study with two
units of analysis, being the component-based and VGT approaches represented

214 CHAPTER 7. PAPER F: VGT-GUITAR

Application Version LOC # of
Windows

of
Events

Rachota 3.4.0.8 8.803 10 149
JEdit 5.1.0 55.006 20 457
JabRef 2.10b2 52.032 49 680

Table 7.2: Summary of the properties of the chosen open source applications
that were used during the case study.

by GUITAR and VGT GUITAR [17]. We do not classify the study as an
experiment because, even though we compare the tool’s results descriptively,
the purpose was still to explore the individual applicability of the tools.

The study was performed by constructing and executing test suites of 1000
randomly selected test cases for each AUT in GUITAR. These test suites were
then filtered, as explained in Section 7.2, to create test suites executable with
VGT GUITAR. In order to improve the internal validity of the results, the
results were captured as the average results over two runs of the the two tools
for each of the three applications.

The metrics that were measured during the case study were:

1. The average percentage of VGT executable test cases out of the 1000
generated tests;

2. The average execution time per test case for the two approaches; and

3. The percentage of failed test cases per tool and per application.

A qualitative analysis was then performed of the collected metrics to iden-
tify the tools perceived applicability in practice. Additionally, the metrics
were compared to test the hypothesis that the applicability of GUITAR is
higher than the applicability of VGT GUITAR. Further, the hypothesis that
the VGT GUITAR prototype is not currently ready for use in practice was also
tested. The rejection criteria of the latter hypothesis were that the number of
correctly terminating test cases would be significant in number and that the
test execution time would be reasonable.

7.4 Results and Analysis

The following subsections will present the results acquired from the experiment
and the case study presented in Section 7.3.

7.4.1 Experiment

The main results from the experiment are summarized in Table 7.3. The ta-
ble shows the number of false positives and false negatives reported by the
component-based approach (GUITAR) and the VGT approach (VGT GUI-
TAR). False results are reported as the average number of false results over
three runs of each test suite, i.e. for each version of AppX. As such, a zero
in the table indicates that all the test cases in that run terminated correctly,

7.4. RESULTS AND ANALYSIS 215

i.e. either found the defect or did not report a defect when there was none
to report. These results were then analyzed using formal statistics where an
Adersson-Darling normality test was first applied that showed that none of the
samples were normally distributed. Because of the lack of normal distribution
a non-parametric Wilcoxon test was chosen to compare the samples at a 95
percent confidence level, results shown in Table 7.4.

The results of the statistical analysis show that there was no statistical sig-
nificant difference between the two techniques in terms of reported false posi-
tives for acceptance tests or false negatives for system tests. However, in regard
to false positives, the VGT approach will report statistically significantly more
false results for system tests, meaning that the approach will fail test cases that
should have been passed. The cause of this result is that the VGT approach
requires the GUI components to have similar appearance as the original test
suite and be visible on the screen. In contrast, the component-based approach
can access components that are hidden or have changed appearance. Thus,
because the test case creation is performed by GUITAR, test cases are created
that disregard how a human user would interact with the AUT. For instance,
for the 10th mutant operator, shown Figure 7.4, the AUT’s window was re-
duced, obscuring the decrement button. GUITAR could identify the button
through the GUI model, testing the systems functionality, but VGT failed. As
such, if the purpose of the test is to exercise the functionality of the system
regardless of its graphical appearance the component-based approach is more
suitable.

However, the acquired results also show that the component-based ap-
proach reports statistically significantly more false negatives for acceptance
tests. Hence, the approach fails to report defective AUT states that a human
would report, such as defective AUT behavior, un-interactable GUI, etc. The
cause of this result is the same as for the previous stated result, i.e. that the
component-based approach can interact with hidden components and that the
GUI’s actual appearance is omitted from the assertions. Consequently, the
VGT approach is more suitable for automated acceptance testing where both
the AUT’s functionality and appearance need to be taken into account in order
to satisfy customer needs.

Special attention should be given to mutated versions 3, 4 and 17 of AppX,
presented in Table 7.3. In version 3, one of the GUI component listeners was
removed, leaving the GUI component visible, and interactive, but it did not
generate any output. The component-based approach, in this case, was not
able to identify that no new output was produced because GUITAR was only
able to assert the GUI model, i.e. change of GUI component properties, but
not the pictorial GUI. Thereby reporting false negative results both in terms
of system and acceptance tests. In contrast, due to VGT GUITAR’s ability
to assert both input and expected output visually, it could detect the faulty
AUT behavior.

In version 4 of the AUT an extra increment button was added to the
AUT that caused the VGT approach to reported false positive results both for
system and acceptance tests. The reason was because of the image recognition
algorithm’s behavior, which swept the screen from the top left to the bottom
right but started from the position where the last match was found. Thus,
the tool clicked on the correct increment button half of the time, thereby

216 CHAPTER 7. PAPER F: VGT-GUITAR

providing support to previous work regarding the lack of robustness of the
VGT approach [64]. The component-based approach did not have this problem
because the properties of the original increment button remained the same.

The third case of interest was for version 17, where the AUT’s GUI library
was changed from Swing to AWT (Abstract Window Toolkit). Consequently
changing the properties of the GUI components but not their appearance. This
change caused problems for the component-based approach that reported false
positives for all test cases for both system and acceptance tests. In contrast,
the VGT approach successfully executed all test cases. Thus providing support
for the VGT approach flexibility compared to the component-based approach.

Out of the 18 stated hypotheses, shown in Table 7.1, three results deviated
from the expected result. These deviations occurred for mutant operators 4,
5 and 7. In 4, we hypothesized that VGT would fail in all instances when an
additional, equivalent, button was added to the GUI. However, as discussed
above, only some cases failed due to the image recognition’s sweep pattern.
In 5 we also hypothesized that the VGT approach would fail, i.e. that adding
a similar button would cause problems for the image recognition. However,
in this case all test cases behaved accurately. Thus proving the hypothesis
wrong. In 7 we hypothesized that VGT would succeed even though an addi-
tional listener was added to one of the AUT’s buttons. However, because of
the listeners impact on the output result, VGT GUITAR’s output assertions
failed, which from a test point of view was correct behavior but rejected our
hypothesis. For all other mutants our hypothesis of expected behavior for both
approaches were supported by the results.

456 test cases were executed during the experiment, in each tool, with a
total execution time for GUITAR of 591 seconds (on average 4.1, standard
deviation 0.2 seconds per test case) and 3321 seconds for VGT GUITAR (on
average 23, standard deviation 10.7 seconds per test case). As such the execu-
tion time for the VGT approach is significantly higher, which can be explained
by the speed of the image recognition and because assertions were performed
for both input and output to/from the AUT.

7.4.2 Case study

The collected metrics from the second case study have been summarized in
Table 7.5.

In order to get suitable samples, test cases were generated in the order of
100k per application from which the test suites of 1000 test cases were ran-
domly selected. The order of magnitude of generated test cases was controlled
by the test case length, which due to state space explosions, therefore were
kept between two to four steps per test case depending on application. Trial
runs were made to evaluate a suitable number of steps for each application
and it was found that, as an example, over three million test cases would
have been produced for the JabRef application at length three. Generation of
all these test cases was deemed unfeasible with an execution time of several
hours that warranted the decision of lower test case length, e.g. length two for
JabRef. However, this decision also impacts the test cases representativeness
for test cases in practice that are generally based on intricate user scenarios
to test specific features. As such, we stress that the results of this study are

7.4. RESULTS AND ANALYSIS 217

G.
FP
ST

V.
FP
ST

G.
FP
AT

V.
FP
AT

G.
FN
ST

V.
FN
ST

G.
FN
AT

V.
FN
AT

G.
CAUSE

V. CAUSE

1 0 0 0 0 0 0 0 0 - -
2 0 0 0 0 0 0 0 0 - -
3 0 0 0 0 0 0 7 0 Rendered

output
-

4 0 3 0 3 0 0 0 0 - Several
identical
widgets

5 0 0 0 0 0 0 0 0 - -
6 0 0 0 0 0 0 0 0 - -
7 0 0 0 0 0 0 8 0 Rendered

output
-

8 0 8 0 8 0 0 0 0 - Widget size
9 0 0 0 0 0 0 0 0 - -
10 0 8 0 0 0 0 8 0 Ignore GUI

appearance
Hidden wid-
gets

11 0 0 0 0 0 0 0 0 - -
12 0 7 0 0 0 0 7 0 Ignore GUI

appearance
Hidden wid-
gets

13 0 7 0 0 0 0 7 0 Ignore GUI
appearance

Hidden wid-
gets

14 0 7 0 7 0 0 0 0 - Widget size
15 0 7 0 7 0 0 0 0 - Widget ap-

pearance
16 0 0 0 0 0 0 0 0 - -
17 8 0 8 0 0 0 0 0 GUI library

change
-

18 0 8 0 0 0 0 8 0 Ignore GUI
appearance

Widget size
change

Table 7.3: False results for system and acceptance tests from case study 1 with
AppX. G. - GUITAR, V. - VGT GUITAR, FP - False positive, FN - False
negative, ST - System test, AT - Acceptance test.

218 CHAPTER 7. PAPER F: VGT-GUITAR

FP ST FP AT FN ST FN AT
P-Value 0.01236 0.1883 n/a 0.009044
Result Reject H0 Accept H0 Accept H0 Reject H0
Meaning VGT reports

more false
positive
system test
results

No difference
between test
approaches
for false
positive
acceptance
tests

No difference
between test
approaches
for false neg-
ative system
tests

GUITAR
reports
more false
negative
acceptance
test results

Table 7.4: Results of the statistical analysis of the results presented in Table 7.3
with a non-parametric two-sided Wilcoxon test performed at a 95 % confidence
interval. FP - False positive, FN - False negative, ST - System test, AT -
Acceptance test.

indicative of the tools’ current applicability in practice but that more work
is required to show industrial applicability. Further, we also stress that the
state space explosion for GUI level test generation is a problem that requires
future research and development in order to raise the applicability of the tools
in industrial practice.

The GUITAR test suites for each of the applications were then filtered to
extract the test cases that could be executed with the VGT approach, i.e. the
VGT GUITAR prototype. Table 7.5 shows that the number of VGT applicable
test cases was on average less than five percent of the 1000 generated test
cases. This low result was caused by the prototype’s current ripper function,
implemented in GUITAR, that is unable to adequately capture images of all
of the GUI’s components. The additional bitmap based ripper function was
also found to only add a small percentage of extra images. As such, further
development is required to improve upon the bitmap ripping.

After execution of the VGT based test cases, it was found that all of
them had failed during execution. A failure was in this context identified
as a false positive caused by erroneous test case scenarios, which was sup-
ported by results from visual inspection of the test cases. Hence, the test
cases required interaction with components accessible to the component-based
approach through the GUI model but that were not rendered on the GUI,
e.g. menu items that GUITAR can access without opening the menu. Other
failures were caused by GUI components being in other states than when they
were ripped, e.g. buttons that were enabled during ripping were disabled dur-
ing replay. The root cause of these problems is that the test generation is
performed without taking user interaction with the AUT into consideration,
i.e. the test cases lack domain knowledge since they are created from a stateless
model that does not ensure event availability at runtime. To verify this claim,
test cases were created manually for all three applications, using images ripped
by GUITAR and GUITAR’s test case template, taking human interaction into
consideration. All of the manually created tests passed, on all applications,
thereby supporting our previous statement.

7.4. RESULTS AND ANALYSIS 219

Metric Rachota JEdit JabRef
Total # of gener-
ated TCs

353954 297568 110164

Test case length 4 3 2
of applicable TCs
(G/VGT)

1000 / 53.5 1000 / 1 1000/ 8.5

Failed TCs applica-
ble in both tools
(G/VGT)

4% / 100% 0% / 100% 91.5% / 100%

Failed GUITAR
test cases (1000
test cases)

50.1% 16.95% 28.3%

Average exe time
(G/VGT)

10.65s / 31.74s 12s / 32s 19.143s / 31.875

Standard dev. exe
time (G/VGT)

1.71s / 3.049s 0.8325 / 0 0.377s / 0.353s

Table 7.5: Summary of the quantitative metrics acquired during the second
case study. G - GUITAR, VGT - VGT-GUITAR

However, shown in Table 7.5, the component-based approach failed on
average in 31.78 percent of the test cases generated by GUITAR. Further,
GUITAR failed on average 31.83 percent of the time for the test cases also
applicable for the VGT approach, i.e. out of the 53.5, 1 and 8.5 test cases
respectively for Rachota, JEdit and JabRef. Analysis of the test results for
the failing test cases showed that there were three types of failure conditions:

1. Interactions with disabled components;

2. Interactions with null components; and

3. Timeouts.

Root cause analysis of these failures showed that they were primarily depen-
dent on the AUT’s initial state during execution. For instance, JEdit is a text
editor with the majority of its GUI components related to text manipulation
and editing. However, if no document is loaded into the application these
components are disabled. GUITAR’s ripper could capture the components
and create test cases with them but during execution the test cases failed be-
cause the components’ state. This presents a potential threat to the validity of
the study’s results since the AUT could have been initiated with an example
document that had enabled more GUI components and raised the test success-
rate. However, since VGT GUITAR was executed in the same context, with
disabled buttons, this choice does not affect the validity of the results of the
comparison. Especially since it would be expected that both evaluated tools
should be applicable regardless of the AUT’s initial state.

Additionally, it was observed that the test execution for the VGT approach
was significantly slower (a factor of three) than for the component-based ap-
proach. This supports the result from the experiment, where VGT was also

220 CHAPTER 7. PAPER F: VGT-GUITAR

slower, and the cause was once again the implementation of the VGT GUITAR
prototype, as explained in Section 7.4.1.

Consequently, our hypothesis that the VGT based GUITAR prototype is
not currently applicable in practice is supported. One factor of this conclusion
is the immaturity of the prototype but also the lack of domain knowledge taken
into account during test case generation, which also affects the component-
based approach, as shown by the high failure rate for disabled components.
This result also shows the importance of placing the AUT in a suitable state
before ripping and executing the test cases. In addition it presents a need,
and area of future work, for smarter test suite selection algorithms to mitigate
false results due to component state and pictorial access to the component.
Specifically, this functionality is required for a hybrid tool since ripping with
the component-based approach will result in test cases that instrument com-
ponents visible in the GUI model but not necessarily on the rendered GUI,
e.g. menu items or components outside the area of view.

Thus, we state that our hypothesis that GUITAR is significantly more ap-
plicable in practice than the VGT GUITAR prototype is supported. Especially
if the AUT’s initial state is considered such that disabled GUI components are
not present, etc. However, it must be noted that whilst the VGT prototype
performs both input and output assertions of the AUT’s behavior, GUITAR
only asserts that input can be performed and that the AUT does not report an
exception. GUITAR can also assert AUT state files but these assertions are
still limited since they do not evaluate that the rendered GUI state actually
conforms to the state file model of the GUI. Thus providing further support for
the need of a tool that combines the component-based and VGT approaches
to facilitate both automated system and acceptance testing.

7.5 Discussion

Our study shows that in terms of false test results the component-based ap-
proach is more suitable for system testing whilst the VGT approach is more
suitable for acceptance testing. We therefore posit that a combination of the
two is the most suitable.

Previous work [50] has shown that test execution with VGT suffers from ro-
bustness problems related to the approach use of image recognition. However,
image recognition provides VGT with flexibility and allows for simple creation
of powerful input/output oracles, but as a drawback the image recognition
is slow. In contrast, the component-based approach is associated with quick,
but also robust, test execution. However, the approach requires that the used
tool has access to the AUT, which makes it non-flexible and it restricts its
applicability for certain systems, e.g. distributed systems or systems written
in several programming languages. Furthermore, component-based oracle cre-
ation is a challenge due to the required technical knowledge about the AUT
and is despite such knowledge only able to assert the GUI model rather what
is actually rendered on the screen.

These properties support our statement regarding the suitability of com-
bining the two approaches since it would allow for robust and fast test execu-
tion with flexible oracles that could assert both the GUI model as well as the

7.5. DISCUSSION 221

graphical output shown to the user. To the authors’ best knowledge, Hewlett
Packard’s (HP) tool Unified Functional Testing (UFT) [56] is the only tool
available with this multi-approach functionality. The industrial applicability
and how well this functionality supports multi-approach scripts is however
unknown.

Another important implication of our results is that component-based tools
should not be used for acceptance testing, due to the large number of false
negative results. Whilst false positives may increase development cost due to
unnecessary root-cause analysis of working code, false negatives can result in
lingering defects in the delivered system. Thus stressing the need for industrial
practitioners to evaluate the capabilities of their test methods. In addition,
this result implies that using only one test method for quality assurance is not
enough but rather that testing needs to be performed on several, or perhaps
all, levels of system abstraction, from component level to GUI level. This
statement is partially supported by Berner et al. [16]. However, further work
is required to evaluate the criticality of our statement and we do not sug-
gest that automation is the only solution, e.g. acceptance tests could/should
be performed manually to explore the space of potential defects in the AUT.
However, due to recent trends in software industry towards more continuous
integration/development [152], a need exists that warrants future work re-
garding fully automated GUI based testing tools. In addition, this need also
warrants the development of a completely GUI based version of the GUITAR
tool, i.e. a continuation of VGT GUITAR. The reason is because, as discussed
in this work, it is not possible to obtain test coverage with the component-
based approach for systems where AUT access is restricted, e.g. distributed
systems and systems developed in multiple languages.

The developed prototype of VGT GUITAR does not fulfill this need, since,
as was seen in the second case study, the prototype is currently not applicable
in practice. However, the study does showcase that such a tool could be
developed and the experiment also shows its potential of such a tool. Further
support is given by the related work into Random Visual GUI Testing [149] in
which random inputs and random test case execution was used in combination
with image recognition to test a real-world web-application.

7.5.1 Threats to Validity

The first threat to the validity of the presented results is the use of a small
application for the experiment that could affect the external validity of the
results. However, as discussed in Section 7.3, since GUI level testing abstracts
the system’s logic into a black-box the results are perceived general for all
GUI based software. A greater threat is instead the choice of instances for
each of the 18 defined mutation operators, i.e. the instances could have been
developed in different ways that perceivably could have affected the results.
However, this does not affect the validity of the given set, which do encompass
a larger set of real application defects. For instance, for Mutation Operator
1, removal of a GUI component from the GUI, often occurs in practice and
also entails cases where the GUI component is changed. In the latter case,
GUI change, we have redundant evaluation since the experiment evaluates
several types of GUI component change, e.g. changing the appearance, type

222 CHAPTER 7. PAPER F: VGT-GUITAR

and GUI library for the component. As such, the threats to external validity
are considered low.

Another threat concerns the case study and the choice of applications.
The choice is motivated by the applications previous use in academic research
and due to their range of functionality, graphical appearance and means of
interaction. These applications are therefore perceived to provide results of
sufficient external validity. Furthermore, because of their diversity they add
to the internal validity of the results but given that other applications could
have been chosen there is a minor threat to the construct validity related to
the research design. However, since results from the experiment support the
results from the case study this threat is also considered minor, i.e. the overall
construct validity of this work is considered adequate.

Third, there is a threat to the external validity of the case study in terms
of general applicability. We clearly state that we evaluate the applicability of
the tools in practice, which is not to be confused with industrial applicabil-
ity. Due to the open source nature of the applications and limited data set
we make no broader claim of the current state of the approaches. However,
for GUITAR, previous research does support the tool’s general applicability,
whilst for VGT GUITAR the results are very limited and such a subject of
future work. Such future work should include also analysis of the costs asso-
ciated with implementation and general use of the tool, including the cost of
analysis and identification of false test results.

Lastly, the results of this work indicate, but do not show, that a combina-
tion of the two test approaches would improve GUI test efficiency. However,
since this factor was not explicitly evaluated in the study we only claim that
the reported results are indicative of such a conclusion. Thus, another im-
portant subject of future work warranted by the synergy effects identified and
presented in this work.

7.6 Related Work

Mutation testing is a practice where developer mistakes are seeded as inten-
tional faults in a software in order to evaluate the quality of a test technique or
tool and thereby show that said tests are adequate to find defects in the sys-
tem [148,153]. The technique appeared in the early 70s and has, as shown by
Jia and Harman, been applied in many different areas of testing for a plethora
of programming languages [148]. However, to the authors’ best knowledge,
our work is the first where the concepts of mutation testing are applied on a
GUI level of system abstraction in order to test GUI-based test cases.

GUITAR is a second generation tool that rips, generates and replays test
cases automatically for GUI-based testing [58]. The ripping procedure inter-
acts with the AUT and records events and properties of the GUI components
in the AUT that are then used to create an event-flow graph [111]. This graph
represents the possible interactions that can be performed on the AUT’s GUI
and is used to generate test cases, which can be replayed for automated GUI-
level regression testing [123,153]. As such, the tool adheres to the model-based
testing (MBT) paradigm. Thus, removing the need for costly manual test case
development, maintenance and execution. However, due to the tools reliance

7.7. CONCLUSIONS 223

on the component-based GUI testing, its applicability is restricted to Java and
Python AUTs.

Visual GUI Testing is referred to as third generation GUI based testing and
is a tool driven technique, with tools such as Sikuli [54] and JAutomate [67],
which uses image recognition for interaction and assertion of an AUT’s behav-
ior. The benefits of the technique is its flexibility of use for any GUI based
system but because of its immaturity it is also associated with robustness prob-
lems, i.e. false test results are reported due to image recognition failure [50].

Previous work has evaluated the benefits and drawbacks of the component-
based approach and VGT approach for web-systems [131], but to the authors’
best knowledge there is no research that evaluates the false test result rate or
potential benefits of combining the two techniques or evaluated their applica-
bility on desktop systems.

7.7 Conclusions

In this work we have performed a comparison of component-based and VGT
based GUI level testing through an experiment and a case study. Results
from the experiment show, with statistical significance, that the component-
based approach reports more false negatives than VGT for acceptance tests
but that VGT reports more false positives than the component-based approach
for system tests. This result relates to how the approaches interact with the
AUT. Whilst the component-based approach interacts and asserts the GUI
model that makes it suitable for system testing and inapplicable for acceptance
testing. In contrast, VGT interacts with the pictorial GUI that makes the
approach sensitive to the GUI’s appearance but also applicable for automated
acceptance testing.

A case study presented in this work also shows that a tool for automated
component-based testing, GUITAR, is applicable in practice, but that the
VGT based GUITAR prototype tool still requires future research and devel-
opment. More explicitly, better test case filtering and bitmap image capture
algorithms are required to raise the percentage of VGT applicable test cases.
In addition, state space explosions must be mitigated to make it possible to
generate test cases representative of industrial grade test cases.

Consequently, this work shows that there are complementary benefits and
drawbacks with component-based testing and VGT that infers that a combi-
nation of the two approaches would be the most suitable in practice. Future
work is therefore warranted into tools that can perform automated GUI based
testing with both approaches as well as purely VGT based testing to support
the software industry’s need for test automation that supports continuous in-
tegration, development and deployment.

224 CHAPTER 7. PAPER F: VGT-GUITAR

Chapter 8

Paper G: Failure
replication

Replicating Rare Software Failures with Visual GUI Test-
ing: An Industrial Success Story

E. Alégroth, J. Gustafsson, H. Ivarsson, R. Feldt

In submissionl.

225

Abstract

Not all software defects are found before the software reaches the customer.
These defects are reported back to the developer in failure reports that are
often ambiguous or incomplete making it impossible to replicate the failure to
analyze its root-cause. To make matters worse, some defects are non-frequent
or even non-deterministic and only occur after extensive use of a system. In
other cases the defects are embedded in old and undocumented code that
can not be tested by other means than through manual interaction with the
system’s graphical user interface (GUI). Combined, these scenarios present a
worst case where extensive, costly, manual and tedious work is required. Or
is it?

Saab AB is a safety critical air traffic management software developer that
faced this worst case scenario when they after several years of failure reports
from customers regarding a defect that had been deemed unfeasible to remove
was able to find a solution. The solution came through the help of a semi-
automated approach based on Visual GUI Testing that allowed the company’s
testers to replicate the defect in less than 24 hours and remove it within the
course of seven days. This article will present the company’s success story,
their experiences and lessons learned as well as the defect, how it came to be
and the approach Saab used to finally remove it.

226 CHAPTER 8. PAPER G: FAILURE REPLICATION

8.1 Failure replication

Despite rigorous testing, it is common in software development practice that
faulty software is delivered to customers [154]. When the system eventually
fails, customers complain and send back reports that, to varying degrees, con-
tain descriptions of the failures, logs and other information that may be enough
to identify the cause(s) of the failure and to remove the defect(s). However,
these reports are often ambiguous or incomplete which requires the failure to
be replicated for more systematic study. For failures reproducible with little
effort, manual, ‘monkey’ or exploratory testing [42] can be/are used in prac-
tice. However, for infrequent and/or non-deterministic failures, manual efforts
are generally too costly. Instead, automated approaches are required, such as
automated stress testing [155] and/or long-term testing [156]. However, for
legacy systems, where access to technical interfaces (APIs etc.) are either re-
stricted, undocumented or missing, automation becomes a challenge. Simply
put, these systems lack the necessary prerequisites for most automated testing
tools to be applied.

However, there is one test technique which only prerequisite is that the
system under test (SUT) has a GUI. This technique is called Visual GUI
Testing (VGT) and is an automated test technique based on tools that use
image recognition to interact and assert system conformance through the GUI
as shown to the user on the monitor. Interactions are further performed us-
ing the operating system’s clicks and keyboard types which means that VGT
scripts can emulate human user behavior. Whilst previous work into VGT
has shown the technique’s applicability in practice to automate scenario-based
manual test cases there is also work to suggest its applicability for other types
of testing, e.g. automated random testing [149].

At Saab, VGT saw another use, which was to provide failure inducing
stimuli to replicate an unfrequent failure for root-cause analysis and removal
of the underlying defect. The continuation of this article will present how the
company achieved this feat.

8.2 Success story acquisition

Saab’s success story was collected in situ at Saab during an ongoing research
collaboration with the company. VGT had, prior to the herein reported case,
been introduced at Saab by the research team but the application of the tech-
nique for failure replication was initiated by the company’s employees; it was
not part of any planned research activities. Consequently the success story
resulted from collaboration between industry and academia where academic
knowledge was applied to solve a problem in practice. Our collaboration there-
fore made it natural to jointly write this article. Whilst the academic authors
were responsible for the introduction of VGT at Saab the first industrial au-
thor was the test lead that initiated the VGT based defect replication and the
second industrial author was one of the SUT’s original developers.

8.3. SUCCESS STORY AT SAAB 227

8.3 Success story at Saab

The company: Saab is a software company developing safety-critical air traf-
fic management (ATM) systems that are delivered to both domestic (Sweden)
and international airports. The company has roughly 80 engineers that are
spread between two development sites in the swedish cities Gothenburg and
Växjö. Their software is developed using a mix of plan-driven and agile de-
velopment processes that conform to strict european regulations on software
quality.

Among the company’s many products is a radar data presentation (RDP)
system that displays aircraft movement in and around the airport’s airspace to
the (human) air traffic controllers. The RDP is part of an embedded system
that interacts with systems for controlling the airstrip lightning, aircraft flight
plans and electronic flight strips. As such, the system has a complex backend
with several advanced algorithms, controlled by a, in comparison, relatively
thin and simple GUI front-end.

Since the system’s conception in 2004, it has been extended with new
features on top of the core legacy system. The system is built with several
programming languages (although primarily C++), includes many different
services, is distributed across several physical computers, etc. Because of
these system properties it has become a challenge to test the system auto-
matically, i.e. the system does not fulfill the prerequisites of most automated
test frameworks. System verification and validation is instead performed with
manual tests, complemented by code reviews and customer driven acceptance
tests. Whilst these test activities provide the system with sufficient quality,
the company has identified a need for more automation and have gradually
worked to increase their knowledge about alternatives as well as evaluated
their benefits.

The problem: In 2012, the company started receiving failure reports from
two specific customer sites that the delivered RDP system crashed after longer-
term use, i.e. three to seven months on average. From the customer failure
reports, Saab determined that the defect was within the GUI layer of the soft-
ware and related to memory resource allocation. However, the reports did not
provide enough information to find the actual defect. Additional failure repli-
cation and analysis was required but replication turned out to be a challenge
due to the perceived months of human input required to trigger the failure. It
was therefore deemed unfeasible to identify the defect manually simply due to
cost. Automated failure replication was as mentioned also not an option due
to the system’s legacy.

Instead of resolving the defect, since it manifested so seldom in practice,
a compromise was selected: the defect was reported to all customers of the
system and was then listed as a known defect. Customers were also advised
to reboot the system at intervals to reduce the risk of it crashing. However,
this was not a solution and the defect still needed to be resolved, but how?

de f ChangeMapColor () :
#Change the c o l o r scheme o f the map
#us ing UI c o n t r o l s

de f ZoomIn () :

228 CHAPTER 8. PAPER G: FAILURE REPLICATION

#Zoom in on the map us ing the
#mouse−wheel

#(Addi t iona l Feature s t i m u l i methods)

de f ChangeMapSettings () :
#Open s e t t i n g s menu and update map
#s e t t i n g s in pop−up menu

i = 1
whi le i < 3000 : #A r b i t r a r i l y s e t number

ChangeMapColor ()
ZoomIn ()

#(Addi t iona l f e a t u r e s t i m u l i method c a l l s)
ChangeMapSettings ()

Listing 8.1: Python pseudo-code example of the VGT based stimulator used
to explore and identify the RDP defect.

The solution: The solution to resolve the defect came in 2014, two years
after the first failure report and 10 years after the defects conception, through
a semi-automated test approach developed by one of Saab’s engineers. The
approach combined incremental failure analysis from exploratory testing with
automated system stimuli provided by Visual GUI Testing with the open-
source VGT tool Sikuli [20]. Sikuli is a GUI automation tool in which users
write Python-based scripts to emulate user behavior. By extending Sikuli with
a thin testing layer on top it can integrate well with other test automation
solutions [50,121] for user emulated GUI-based system testing. In Saab’s case,
a script was developed to stimulate the SUT in order to recreate the failure
condition. Simply put, instead of using a human to replicate the failure, at
high cost, a script was created to achieve the same thing, at minimal cost.

No assertions were added to the script that instead relied on an implicit or-
acle [69] triggered when the SUT crashed. The test script consisted of roughly
100 lines of Python code that periodically provided stimuli to different RDP
features, as shown in Example 8.1. The features in this instance included
changing the settings of the radar presentation, zoom and move the radar
map, etc.

The VGT stimulation script was intentionally kept as simple and modular
as possible to make it easily changeable. Change was required to facilitate an
exploratory practice where incremental changes were made of what features
to stimulate in each run of the script. After the first script version had been
created it was executed nightly on three reference system installations of the
RDP. The script managed to reproduce the SUT failure, which in operational
practice had taken several months to manifest, in less than 24 hours. Thus,
the script quickly confirmed the existence of a defect but still did not provide
enough information about its root cause. The script was therefore changed, by
removing features that were not perceived to add to the failure, and re-executed
to narrow in on which specific stimuli caused the failure. This practice was
performed over and over until the failures root-cause was finally identified.
Thus, an approach similar to exploratory testing [42] and the automated test

8.3. SUCCESS STORY AT SAAB 229

case “shrinking” process applied in QuickCheck [157].

To make failure analysis more efficient, the test execution was monitored
using a screen capture software that recorded the screen while the script was
executed. Screen capture has been used previously at Saab for VGT based
system testing [50]. The recordings made it possible for Saab’s testers to do
post-analysis of the SUT failure, asynchronously to the script execution. This
practice was also required for feasibility since the execution time of the script
was in the order of hours before the failure occurred. To further support
the defect analysis, the Windows task manager was used to monitor memory
resource allocation during script execution to determine which, if any, memory
resource boundaries were being breached before the failure occurred. Hence,
the task manager was kept visible on the screen during test execution and
screen recording, making it an integral part of the test practice. Using the
task manager rather than a more technical solution to extracting memory
resource information made it quicker to add this ‘feature’ of the testing.

The defect: As hypothesized by Saab, the defect was identified to be
a memory resource allocation problem in the GUI code of the system. More
specifically, the defect was located in custom menu components that included a
bitmap of a check sign that was rendered if certain SUT options were activated
by the user. Each time the check sign was rendered on the screen it allocated
two graphical device interface (GDI) objects, which are Windows API com-
ponents, which were never deallocated. The memory resource leak was small
but built up after many interactions with the SUT and once it reached 10,000
allocated objects, which is the maximum amount of allowed memory resources
allocated by a single process, the memory resource leak caused the entire sys-
tem to crash.

Once the memory resource leak was identified, the defect was quickly re-
solved but this case shows how seemingly minor and unimportant defects can
have dramatic consequences. The reason why the failure had not occurred
more often in practice is because the air traffic controllers seldom reconfigure
the system’s GUI properties. Therefore, the menus with the check sign are not
rendered and the memory resource consumption is kept well under the critical
margins. However, since the system was, at the two customer sites that re-
ported the failure, kept running in months on end, the memory resource leak
slowly but steadily built up and resulted in system failure.

Post-analysis: Post-analysis of this case showed that it had been possi-
ble to identify the memory resource leak manually since the number of GDI
objects steadily increased during any interaction with the system, manual or
automated, given that the check sign was being rendered. However, to pinpoint
that it was a GDI memory resource leak required specific domain and SUT
knowledge that was not shared by all the employees at Saab. This knowledge
was not shared because the defect was embedded in a legacy component devel-
oped by technically skilled people and therefore assumed correct and therefore
not tested or code reviewed. Further, due to the developers’ skill level, it
was assumed that any produced defects would be within the advanced algo-
rithms and data structures of the system, not caused by simple programming
mistakes like the identified defect. Verification, through long-term tests and
review practices, were later introduced and are currently performed as part of
Saab’s development process. However, long-term tests were executed without

230 CHAPTER 8. PAPER G: FAILURE REPLICATION

Defect

Original
Developers

Process

Technology

System

Highly skilled

Small team

No reviews of legacy
Lacking V&V practices

Limited tool support

C++ GUI libraries

Legacy components

Lack of technical interfaces

Costly manual practices Contingencies against failure

Figure 8.1: Fishbone diagram summarizing the factors that caused the occur-
rence and persistence of the defect prior to VGT.

stimuli which did not trigger the defect and reviews were only performed on
new code artifacts.

Figure 8.1 summarizes the factors that lead to the occurrence and per-
sistence of the defect. However, three key reasons why the defect was not
managed can be identified from the figure. First, it was deemed too expensive
to manually reproduce and identify the defect. Second, the failure caused by
the defect was classified as non-safety critical, despite the safety-criticality of
the system, because there are contingencies in place at the airports. These
contingencies include manual air traffic control processes as well as redundan-
cies within the SUT itself that has several working positions that can operate
even if one or several of the working positions go offline. Third, the failure
caused the RDP client to crash but not the server backend. As such, by simply
rebooting the crashed client it could be brought back into operation.

8.4 Discussion

The presented success story shows that VGT tools can be used to replicate
and drive the analysis of non-deterministic and infrequent software failures in
systems with restricted access by other test automation tools caused by, for
instance, SUT legacy. In addition, this experience shows that test automation
can be used to raise system quality and not only as a means to reduce testing
costs, which is a common goal for companies adopting more automation.

These results have implications both for industrial practice and for aca-
demic researchers. First, static long-term tests, where the SUT is left to it’s
own devices without stimuli for a longer period of time, are not sufficient to
find all types of memory resource leaks and SUT misbehavior over time. VGT
provides an interface independent and simple solution to provide such stimuli
that also has the benefit of mimicking end user interaction. Hence, it can
provide GUI level automated stress testing, i.e. subjugating the SUT to harsh
inputs with the intention of breaking it [155].

Second, analysis of non-deterministic and unfrequent failures that manifest
through the SUT’s GUI are no longer out of scope due to unfeasibly high, often
because of manual intervention, fault replication costs. Using automated GUI

8.4. DISCUSSION 231

Time until defect
manifests

Learn
(Eliminate factor(s) that
affect/don't affect defect

manifestation)

Analysis
(E.g. memory

resource
allocation)

Test design
(Script

development/
refactoring)

Automated
test execution

(E.g. nightly execution)

Time to
change

one
Factor

Figure 8.2: Model of the process used to identify the defect in this case, derived
from the exploratory testing process.

based test techniques for guided system analysis provides a suitable means of
identifying these types of defects. Of course, given that the scripts can be
modified to include or exclude potential factors, e.g. features and functions,
which cause the failure to manifest. It is easy to imagine an even more au-
tomated system that based on a simple model of possible interaction events
can act as a kind of automated scientist or detective and gradually refine the
knowledge about which stimuli are more or less likely to cause the failure.

Third, semi-automated test practices where automated tests are guided by
a human oracles can be efficient for replicating failures of defects of unknown
origin. The cost of modeling the specification to act as an automated oracle
may be prohibitively high or require expertise that companies do not have.
In the research literature, automated testing is most often used for regression
testing or other test automation where the expected behavior is defined as part
of the test case itself. These test cases can be created from specifications or
from previously observed defects, e.g. identified during exploratory or other
manual testing. However, for latent defects, which only sporadically or infre-
quently manifests as failures, the time perspective also needs to be considered
in addition to feature stimuli. This leads into a hypothesis driven paradigm
where root-cause analysis must be driven by iteratively modified automated
scripts that explores the input space of the SUT. Consequently following the
concepts of exploratory testing [42], simultaneous learning, test design and
test execution, but driven by automated stimulation for cost efficiency where
manual stimuli is either impractical or infeasible to find the root cause of a
failure. A visualization of the adopted exploratory testing process, derived
from the success case, has been presented in Figure 8.2.

232 CHAPTER 8. PAPER G: FAILURE REPLICATION

8.5 Lessons learnt

This case shows that independent of developer skill and complexity of the
SUT logic, defects make it into customer releases and can be costly or difficult
to manage. The case also shows how legacy software in particular is subject
to this challenge for instance due to lack of interfaceability with automated
tooling, lack of component knowledge, etc. The success story also shows that
VGT can be used to mitigate this problem due to the technique’s flexibility, but
also that novel test approaches can be created by combining automated test
solutions with manual practices. Further, the success story provides empirical
evidence from industrial practice, and an actual industrial project, that test
automation can be used to identify infrequent and non-deterministic defects.
This conclusion is common knowledge but very little explicit empirical support
exist in the academic body of knowledge that shows it to be true. Finally the
case shows how academic and industrial collaboration can result in effective
solutions to industrial problems based on academic knowledge.

The implications of this work are as such that:

1. VGT can help resolve non-frequent and non-deterministic defects that
were previously out of scope due to lack of automation support,

2. Automated test tools can be used in novel, semi-automated, scenarios to
identify defects,

3. Even small defects must be managed since they can have large impacts
on a system and the customers perception of its quality,

4. Due to feasibility constraints, not all defects can be captured prior to
release, implying a need for approaches that can be applied to existing
and legacy systems.

Bibliography

[1] B. Hailpern and P. Santhanam, “Software debugging, testing, and veri-
fication,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12, 2002.

[2] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving GUI-
directed test scripts,” in Software Engineering, 2009. ICSE 2009. IEEE
31st International Conference on. IEEE, 2009, pp. 408–418.

[3] ——, “Creating GUI testing tools using accessibility technologies,”
in Software Testing, Verification and Validation Workshops, 2009.
ICSTW’09. International Conference on. IEEE, 2009, pp. 243–250.

[4] M. Finsterwalder, “Automating acceptance tests for GUI applications in
an extreme programming environment,” in Proceedings of the 2nd Inter-
national Conference on eXtreme Programming and Flexible Processes in
Software Engineering. Citeseer, 2001, pp. 114–117.

[5] A. Leitner, I. Ciupa, B. Meyer, and M. Howard, “Reconciling manual
and automated testing: The autotest experience,” in System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Conference on.
IEEE, 2007, pp. 261a–261a.

[6] A. Memon, “GUI testing: Pitfalls and process,” IEEE Computer, vol. 35,
no. 8, pp. 87–88, 2002.

[7] E. Dustin, J. Rashka, and J. Paul, Automated software testing: intro-
duction, management, and performance. Addison-Wesley Professional,
1999.

[8] A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma, “Regression
testing in an industrial environment,” Communications of the ACM,
vol. 41, no. 5, pp. 81–86, 1998.

[9] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

[10] M. Grechanik, Q. Xie, and C. Fu, “Experimental assessment of manual
versus tool-based maintenance of GUI-directed test scripts,” in Soft-
ware Maintenance, 2009. ICSM 2009. IEEE International Conference
on. IEEE, 2009, pp. 9–18.

233

234 BIBLIOGRAPHY

[11] Y. Cheon and G. Leavens, “A simple and practical approach to unit
testing: The JML and JUnit way,” ECOOP 2002Object-Oriented Pro-
gramming, pp. 1789–1901, 2006.

[12] E. Sjösten-Andersson and L. Pareto, “Costs and Benefits of Structure-
aware Capture/Replay tools,” SERPS06, p. 3, 2006.

[13] F. Zaraket, W. Masri, M. Adam, D. Hammoud, R. Hamzeh, R. Farhat,
E. Khamissi, and J. Noujaim, “GUICOP: Specification-Based GUI Test-
ing,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. IEEE, 2012, pp. 747–751.

[14] M. Olan, “Unit testing: test early, test often,” Journal of Computing
Sciences in Colleges, vol. 19, no. 2, pp. 319–328, 2003.

[15] E. Weyuker, “Testing component-based software: A cautionary tale,”
Software, IEEE, vol. 15, no. 5, pp. 54–59, 1998.

[16] S. Berner, R. Weber, and R. Keller, “Observations and lessons learned
from automated testing,” in Proceedings of the 27th international con-
ference on Software engineering. ACM, 2005, pp. 571–579.

[17] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[18] R. Potter, Triggers: GUIding automation with pixels to achieve data
access. University of Maryland, Center for Automation Research, Hu-
man/Computer Interaction Laboratory, 1992, pp. 361–382.

[19] L. Zettlemoyer and R. St Amant, “A visual medium for programmatic
control of interactive applications,” in Proceedings of the SIGCHI con-
ference on Human factors in computing systems: the CHI is the limit.
ACM, 1999, pp. 199–206.

[20] T. Yeh, T. Chang, and R. Miller, “Sikuli: using GUI screenshots for
search and automation,” in Proceedings of the 22nd annual ACM sym-
posium on User interface software and technology. ACM, 2009, pp.
183–192.

[21] B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based soft-
ware engineering,” in Proceedings of the 26th international conference
on software engineering. IEEE Computer Society, 2004, pp. 273–281.

[22] I. Sommerville, Software engineering, 6th ed. Addison-Wesley Profes-
sional, 2000.

[23] M. Huo, J. Verner, L. Zhu, and M. A. Babar, “Software quality and agile
methods,” in Computer Software and Applications Conference, 2004.
COMPSAC 2004. Proceedings of the 28th Annual International. IEEE,
2004, pp. 520–525.

[24] J. Highsmith and A. Cockburn, “Agile software development: The busi-
ness of innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.

BIBLIOGRAPHY 235

[25] G. Myers, C. Sandler, and T. Badgett, The art of software testing. Wi-
ley, 2011.

[26] I. Sommerville, “Software Engineering. International computer science
series,” 2004.

[27] D. Graham, “Requirements and testing: Seven missing-link myths,”
Software, IEEE, vol. 19, no. 5, pp. 15–17, 2002.

[28] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit testing,”
Empirical Software Engineering, vol. 11, no. 1, pp. 5–31, 2006.

[29] T. Ericson, A. Subotic, and S. Ursing, “TIM - A Test Improvement
Model,” Software Testing Verification and Reliability, vol. 7, no. 4, pp.
229–246, 1997.

[30] T. M. King, A. S. Ganti, and D. Froslie, “Enabling automated integra-
tion testing of cloud application services in virtualized environments,” in
Proceedings of the 2011 Conference of the Center for Advanced Studies
on Collaborative Research. IBM Corp., 2011, pp. 120–132.

[31] C. Lowell and J. Stell-Smith, “Successful Automation of GUI Driven
Acceptance Testing,” in Proceedings of the 4th International Conference
on Extreme Programming and Agile Processes in Software Engineering
(XP 03), Berlin, Heidelberg, 2003, pp. 331–333.

[32] E. Gamma and K. Beck, “JUnit: A cook’s tour,” Java Report, vol. 4,
no. 5, pp. 27–38, 1999.

[33] L. Williams, G. Kudrjavets, and N. Nagappan, “On the effectiveness of
unit test automation at Microsoft,” in Software Reliability Engineering,
2009. ISSRE’09. 20th International Symposium on. IEEE, 2009, pp.
81–89.

[34] H. Zhu, P. A. Hall, and J. H. May, “Software unit test coverage and
adequacy,” ACM Computing Surveys (CSUR), vol. 29, no. 4, pp. 366–
427, 1997.

[35] J. Ryser and M. Glinz, “A scenario-based approach to validating and
testing software systems using statecharts,” in Proc. 12th International
Conference on Software and Systems Engineering and their Applications.
Citeseer, 1999.

[36] R. Binder, Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

[37] B. Regnell and P. Runeson, “Combining scenario-based require-
ments with static verification and dynamic testing,” in Proceedings
of the Fourth International Workshop on Requirements Engineering-
Foundations for Software Quality (REFSQ98), Pisa, Italy. Citeseer,
1998.

[38] R. Miller and C. Collins, “Acceptance testing,” Proc. XPUniverse, 2001.

236 BIBLIOGRAPHY

[39] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing
tools,” The Computer Journal, vol. 52, no. 5, pp. 589–597, 2009.

[40] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. Mantyla, “Benefits and
limitations of automated software testing: Systematic literature review
and practitioner survey,” in Automation of Software Test (AST), 2012
7th International Workshop on. IEEE, 2012, pp. 36–42.

[41] J. Itkonen, M. V. Mantyla, and C. Lassenius, “Defect detection effi-
ciency: Test case based vs. exploratory testing,” in Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First International
Symposium on. IEEE, 2007, pp. 61–70.

[42] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case
study,” in 2005 International Symposium on Empirical Software Engi-
neering, 2005. IEEE, 2005, p. 10.

[43] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A. Andrews, and K. Bhatti,
“An experiment on the effectiveness and efficiency of exploratory test-
ing,” Empirical Software Engineering, pp. 1–35, 2014.

[44] P. Schipani, “End User Involvement in Exploratory Test Automation
for Web Applications,” Ph.D. dissertation, TU Delft, Delft University of
Technology, 2011.

[45] H. Holmström-Olsson, H. Alahyari, and J. Bosch, “Climbing the” Stair-
way to Heaven”–A Mulitiple-Case Study Exploring Barriers in the Tran-
sition from Agile Development towards Continuous Deployment of Soft-
ware,” in Software Engineering and Advanced Applications (SEAA),
2012 38th EUROMICRO Conference on. IEEE, 2012, pp. 392–399.

[46] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactor-
ing challenges and benefits,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 50.

[47] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” Software Engineering: A
Practitioner’s Approach, 2001.

[48] K. Beck and C. Andres, Extreme programming explained: embrace
change. Addison-Wesley Professional, 2004.

[49] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, “Alignment of requirements
specification and testing: A systematic mapping study,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 476–485.

[50] E. Alégroth, R. Feldt, and L. Ryrholm, “Visual gui testing in practice:
challenges, problemsand limitations,” Empirical Software Engineering,
vol. 20, no. 3, pp. 694–744, 2014.

BIBLIOGRAPHY 237

[51] E. Alegroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptualization
and Evaluation of Component-based Testing Unified with Visual GUI
Testing: an Empirical Study,” in Proceedings of the 8th IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST 2015), Graz, 2015.

[52] E. Horowitz and Z. Singhera, “Graphical user interface testing,” Tech-
nical report Us C-C S-93-5, vol. 4, no. 8, 1993.

[53] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and
touch-sensitive record and replay for android,” in Software Engineering
(ICSE), 2013 35th International Conference on. IEEE, 2013, pp. 72–81.

[54] T. Chang, T. Yeh, and R. Miller, “GUI testing using computer vision,”
in Proceedings of the 28th international conference on Human factors in
computing systems. ACM, 2010, pp. 1535–1544.

[55] A. Holmes and M. Kellogg, “Automating functional tests using Sele-
nium,” in Agile Conference, 2006. IEEE, 2006, pp. 6–pp.

[56] T. Lalwani, M. Garg, C. Burmaan, and A. Arora, UFT/QTP Interview
Unplugged: And I Thought I Knew UFT!, 2nd ed. KnowledgeInbox,
2013.

[57] W.-K. Chen, T.-H. Tsai, and H.-H. Chao, “Integration of specification-
based and CR-based approaches for GUI testing,” in Advanced Informa-
tion Networking and Applications, 2005. AINA 2005. 19th International
Conference on, vol. 1. IEEE, 2005, pp. 967–972.

[58] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR: an in-
novative tool for automated testing of GUI-driven software,” Automated
Software Engineering, vol. 21, no. 1, pp. 65–105, 2014.

[59] I. K. El-Far and J. A. Whittaker, “Model-Based Software Testing,” En-
cyclopedia of Software Engineering, 2001.

[60] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
survey on model-based testing approaches: a systematic review,” in Pro-
ceedings of the 1st ACM international workshop on Empirical assessment
of software engineering languages and technologies: held in conjunction
with the 22nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) 2007. ACM, 2007, pp. 31–36.

[61] P. Fröhlich and J. Link, “Automated test case generation from dy-
namic models,” ECOOP 2000 Object-Oriented Programming, pp. 472–
491, 2000.

[62] M. Utting and B. Legeard, Practical model-based testing: a tools ap-
proach. Morgan Kaufmann, 2007.

[63] M. Fowler, UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional, 2004.

238 BIBLIOGRAPHY

[64] E. Alégroth, “On the Industrial Applicability of Visual GUI Testing,”
Department of Computer Science and Engineering, Software Engineering
(Chalmers), Chalmers University of Technology, Goteborg, Tech. Rep.,
2013.

[65] E. Börjesson and R. Feldt, “Automated System Testing using Visual GUI
Testing Tools: A Comparative Study in Industry,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Con-
ference on. IEEE, 2012, pp. 350–359.

[66] T.-H. Chang, “Using graphical representation of user interfaces as visual
references,” in Proceedings of the 24th annual ACM symposium adjunct
on User interface software and technology. ACM, 2011, pp. 27–30.

[67] E. Alégroth, R. Feldt, and H. Olsson, “JAutomate: a Tool for System-
and Acceptance-test Automation,” ICST, 2012.

[68] TestPlant. (2013, Feb.) eggPlant. [Online]. Available:
http://www.testplant.com/

[69] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “A comprehensive sur-
vey of trends in oracles for software testing,” Technical Report Research
Memoranda CS-13-01, Department of Computer Science, University of
Sheffield, Tech. Rep., 2013.

[70] R. Harrison and M. Wells, “A meta-analysis of multidisciplinary re-
search,” in Conference on Empirical Assessment in Software Engineering
(EASE), 2000, pp. 1–15.

[71] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in
software engineering: Guidelines and examples. John Wiley & Sons,
2012.

[72] J. A. Maxwell, Qualitative research design: An interactive approach.
Sage Publications, Incorporated, 2004.

[73] C. Wohlin, P. Runeson, and M. Höst, Experimentation in software engi-
neering: an introduction. Springer Netherlands, 2000.

[74] M. Brydon-Miller, D. Greenwood, and P. Maguire, “Why action re-
search?” Action research, vol. 1, no. 1, pp. 9–28, 2003.

[75] C. Robson, Real world research: a resource for social scientists and
practitioner-researchers. Blackwell Oxford, 2002, vol. 2.

[76] M. Matell and J. Jacoby, “Is there an optimal number of alternatives for
Likert scale items? I. Reliability and validity.” Educational and psycho-
logical measurement, 1971.

[77] B. G. Glaser and A. L. Strauss, The discovery of grounded theory: Strate-
gies for qualitative research. Transaction Publishers, 2009.

[78] C. B. Seaman, “Qualitative methods in empirical studies of software en-
gineering,” Software Engineering, IEEE Transactions on, vol. 25, no. 4,
pp. 557–572, 1999.

BIBLIOGRAPHY 239

[79] R. Barbour and J. Kitzinger, Developing focus group research: politics,
theory and practice. Sage Publications Limited, 1999.

[80] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for tech-
nology transfer in practice,” Software, IEEE, vol. 23, no. 6, pp. 88–95,
2006.

[81] S. Kausar, S. Tariq, S. Riaz, and A. Khanum, “Guidelines for the selec-
tion of elicitation techniques,” in Emerging Technologies (ICET), 2010
6th International Conference on. IEEE, 2010, pp. 265–269.

[82] R. R. Young, “Recommended requirements gathering practices,”
CrossTalk, vol. 15, no. 4, pp. 9–12, 2002.

[83] S. Shiba, “The Steps of KJ: Shiba Method,” 1987.

[84] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers:
Data collection techniques for software field studies,” Empirical software
engineering, vol. 10, no. 3, pp. 311–341, 2005.

[85] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[86] F. J. Fowler Jr, Survey research methods. Sage publications, 2008.

[87] P. Berander and A. Andrews, “Requirements Prioritization,” Engineer-
ing and Managing Software Requirements, 2005.

[88] A. Bowling, Techniques of questionnaire design. Open University Press,
Maidenhead, UK, 2005.

[89] A. Bryman, “The debate about quantitative and qualitative research: a
question of method or epistemology?” British Journal of Sociology, pp.
75–92, 1984.

[90] G. Wickström and T. Bendix, “The” Hawthorne effect”what did the
original Hawthorne studies actually show?” Scandinavian journal of
work, environment & health, pp. 363–367, 2000.

[91] V. Kampenes, T. Dyb̊a, J. Hannay, and D. K Sjøberg, “A systematic
review of quasi-experiments in software engineering,” Information and
Software Technology, vol. 51, no. 1, pp. 71–82, 2009.

[92] T. D. Cook, D. T. Campbell, and A. Day, Quasi-experimentation: Design
& analysis issues for field settings. Houghton Mifflin Boston, 1979.

[93] L. Briand, K. El Emam, and S. Morasca, “On the application of measure-
ment theory in software engineering,” Empirical Software Engineering,
vol. 1, no. 1, pp. 61–88, 1996.

[94] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” Software Engineering, IEEE
Transactions on, vol. 28, no. 8, pp. 721–734, 2002.

240 BIBLIOGRAPHY

[95] W. H. Kruskal, “Historical notes on the Wilcoxon unpaired two-sample
test,” Journal of the American Statistical Association, vol. 52, no. 279,
pp. 356–360, 1957.

[96] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in IEEE Inter-
national Conference on Software Engineering (ICSE), 2011.

[97] D. Rafi, K. Moses, K. Petersen, and M. Mantyla, “Benefits and limita-
tions of automated software testing: Systematic literature review and
practitioner survey,” in Automation of Software Test (AST), 2012 7th
International Workshop on, june 2012, pp. 36 –42.

[98] C. Kendall, L. R. Kerr, R. C. Gondim, G. L. Werneck, R. H. M. Macena,
M. K. Pontes, L. G. Johnston, K. Sabin, and W. McFarland, “An empir-
ical comparison of respondent-driven sampling, time location sampling,
and snowball sampling for behavioral surveillance in men who have sex
with men, Fortaleza, Brazil,” AIDS and Behavior, vol. 12, no. 1, pp.
97–104, 2008.

[99] T. Hellmann, E. Moazzen, A. Sharma, M. Z. Akbar, J. Sillito, F. Maurer
et al., “An Exploratory Study of Automated GUI Testing: Goals, Issues,
and Best Practices,” 2014.

[100] D. Hoffman, “Cost benefits analysis of test automation,” STAR West,
vol. 99, 1999.

[101] P. Li, T. Huynh, M. Reformat, and J. Miller, “A practical approach to
testing GUI systems,” Empirical Software Engineering, vol. 12, no. 4,
pp. 331–357, 2007.

[102] P. Hsia, D. Kung, and C. Sell, “Software requirements and acceptance
testing,” Annals of software Engineering, vol. 3, no. 1, pp. 291–317, 1997.

[103] P. Hsia, J. Gao, J. Samuel, D. Kung, Y. Toyoshima, and C. Chen,
“Behavior-based acceptance testing of software systems: a formal sce-
nario approach,” in Computer Software and Applications Conference,
1994. COMPSAC 94. Proceedings., Eighteenth Annual International.
IEEE, 1994, pp. 293–298.

[104] T. Graves, M. Harrold, J. Kim, A. Porter, and G. Rothermel, “An em-
pirical study of regression test selection techniques,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 10, no. 2, pp.
184–208, 2001.

[105] D. Chelimsky, D. Astels, Z. Dennis, A. Hellesoy, B. Helmkamp, and
D. North, “The RSpec Book: Behaviour Driven Development with
RSpec, Cucumber, and Friends,” Pragmatic Bookshelf, 2010.

[106] A. Adamoli, D. Zaparanuks, M. Jovic, and M. Hauswirth, “Automated
GUI performance testing,” Software Quality Journal, pp. 1–39, 2011.

BIBLIOGRAPHY 241

[107] J. Andersson and G. Bache, “The video store revisited yet again: Ad-
ventures in GUI acceptance testing,” Extreme Programming and Agile
Processes in Software Engineering, pp. 1–10, 2004.

[108] M. Jovic, A. Adamoli, D. Zaparanuks, and M. Hauswirth, “Automating
performance testing of interactive Java applications,” in Proceedings of
the 5th Workshop on Automation of Software Test. ACM, 2010, pp.
8–15.

[109] A. Memon, M. Pollack, and M. Soffa, “Hierarchical GUI test case gen-
eration using automated planning,” Software Engineering, IEEE Trans-
actions on, vol. 27, no. 2, pp. 144–155, 2001.

[110] P. Brooks and A. Memon, “Automated GUI testing guided by usage
profiles,” in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. ACM, 2007, pp. 333–
342.

[111] A. Memon, “An event-flow model of GUI-based applications for testing,”
Software Testing, Verification and Reliability, vol. 17, no. 3, pp. 137–157,
2007.

[112] T. Illes, A. Herrmann, B. Paech, and J. Rückert, “Criteria for Software
Testing Tool Evaluation. A Task Oriented View,” in Proceedings of the
3rd World Congress for Software Quality, vol. 2, 2005, pp. 213–222.

[113] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual
network computing,” Internet Computing, IEEE, vol. 2, no. 1, pp. 33–38,
1998.

[114] L. Fowler, J. Armarego, and M. Allen, “Case tools: Constructivism and
its application to learning and usability of software engineering tools,”
Computer Science Education, vol. 11, no. 3, pp. 261–272, 2001.

[115] S. Eldh, H. Hansson, and S. Punnekkat, “Analysis of Mistakes as a
Method to Improve Test Case Design,” in Software Testing, Verification
and Validation (ICST), 2011 IEEE Fourth International Conference on.
IEEE, 2011, pp. 70–79.

[116] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case
study,” in Empirical Software Engineering, 2005. 2005 International
Symposium on, nov. 2005, p. 10 pp.

[117] J. J. Gutiérrez, M. J. Escalona, M. Mej́ıas, and J. Torres, “Generation
of test cases from functional requirements. A survey,” in 4ş Workshop
on System Testing and Validation, 2006.

[118] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in prac-
tice: preliminary assessment,” in Software Engineering (ICSE), 2011
33rd International Conference on. IEEE, 2011, pp. 1066–1071.

242 BIBLIOGRAPHY

[119] D. R. Hackner and A. M. Memon, “Test case generator for GUITAR,” in
Companion of the 30th international conference on Software engineering.
ACM, 2008, pp. 959–960.

[120] V. Vizulis and E. Diebelis, “Self-Testing Approach and Testing Tools,”
Datorzinātne un informācijas tehnolog̀ijas, p. 27, 2012.

[121] E. Alégroth, R. Feldt, and H. Olsson, “Transitioning Manual System
Test Suites to Automated Testing: An Industrial Case Study,” ICST,
2012.

[122] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse en-
gineering of graphical user interfaces for testing,” in Proceedings of the
10th Working Conference on Reverse Engineering (WCRE), 2003, pp.
260–269.

[123] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,” in ACM
SIGSOFT Software Engineering Notes, vol. 28. ACM, 2003, pp. 118–
127.

[124] K. Li and M. Wu, Effective GUI testing automation: Developing an
automated GUI testing tool. Sybex, 2004.

[125] smartbear. (2013, Feb.) TestComplete. [Online]. Available:
http://smartbear.com/products/qa-tools/automated-testing-tools

[126] E. Börjesson, “Multi-Perspective Analysis of Software Development: a
method and an Industrial Case Study,” CPL, 2010.

[127] B. Beizer, Software testing techniques. Dreamtech Press, 2002.

[128] K. Beck, Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003.

[129] C. Ebert, “The impacts of software product management,” Journal of
Systems and Software, vol. 80, no. 6, pp. 850–861, 2007.

[130] C. Mongrédien, G. Lachapelle, and M. Cannon, “Testing GPS L5 acquisi-
tion and tracking algorithms using a hardware simulator,” in Proceedings
of ION GNSS, 2006, pp. 2901–2913.

[131] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Visual vs. DOM-Based
Web Locators: An Empirical Study,” in Web Engineering, ser. Lecture
Notes in Computer Science. Springer, 2014, vol. 8541, pp. 322–340.

[132] S. Wagner, “A model and sensitivity analysis of the quality economics
of defect-detection techniques,” in Proceedings of the 2006 international
symposium on Software testing and analysis. ACM, 2006, pp. 73–84.

[133] K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical observa-
tions on software testing automation,” in Software Testing Verification
and Validation, 2009. ICST’09. International Conference on. IEEE,
2009, pp. 201–209.

BIBLIOGRAPHY 243

[134] C. Liu, “Platform-independent and tool-neutral test descriptions for au-
tomated software testing,” in Proceedings of the 22nd international con-
ference on Software engineering. ACM, 2000, pp. 713–715.

[135] M. Fewster and D. Graham, Software test automation: effective use of
test execution tools. ACM Press/Addison-Wesley Publishing Co., 1999.

[136] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution,” in Reverse Engineering (WCRE), 2013 20th Working Con-
ference on. IEEE, 2013, pp. 272–281.

[137] A. Kornecki and J. Zalewski, “Certification of software for real-time
safety-critical systems: state of the art,” Innovations in Systems and
Software Engineering, vol. 5, no. 2, pp. 149–161, 2009.

[138] A. Höfer and W. F. Tichy, “Status of empirical research in software engi-
neering,” in Empirical Software Engineering Issues. Critical Assessment
and Future Directions. Springer, 2007, pp. 10–19.

[139] E. Börjesson and R. Feldt, “Automated system testing using visual GUI
testing tools: A comparative study in industry,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Con-
ference on. IEEE, 2012, pp. 350–359.

[140] A. Marchenko, P. Abrahamsson, and T. Ihme, “Long-term effects of
test-driven development a case study,” in Agile Processes in Software
Engineering and Extreme Programming. Springer, 2009, pp. 13–22.

[141] H. Kniberg and A. Ivarsson, “Scaling Agile@ Spotify,” online], UCVOF,
ucvox. files. wordpress. com/2012/11/113617905-scaling-Agile-spotify-
11. pdf, 2012.

[142] N. Olsson and K. Karl. (2015) Graphwalker: The Open Source Model-
Based Testing Tool. [Online]. Available: http://graphwalker.org/index

[143] J. Carver, “The use of grounded theory in empirical software engineer-
ing,” in Empirical Software Engineering Issues. Critical Assessment and
Future Directions. Springer, 2007, pp. 42–42.

[144] J. Saldaña, The coding manual for qualitative researchers. Sage, 2012,
no. 14.

[145] M. Weinstein. (2002) TAMS Analyzer for Macintosh OS X: The native
Open source, Macintosh Qualitative Research Tool. [Online]. Available:
http://tamsys.sourceforge.net/

[146] C. Wohlin and A. Aurum, “Towards a decision-making structure for
selecting a research design in empirical software engineering,” Empirical
Software Engineering, pp. 1–29, 2014.

[147] N. J. Nilsson, Principles of artificial intelligence. Tioga Publishing,
1980.

244 BIBLIOGRAPHY

[148] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[149] E. Alégroth, “Random Visual GUI Testing: Proof of Concept,” Pro-
ceedings of the 25th International Conference on Software Engineering
& Knowledge Engineering (SEKE 2013), pp. 178–184, 2013.

[150] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[151] B. N. Nguyen and A. Memon, “An Observe-Model-Exercise* Paradigm
to Test Event-Driven Systems with Undetermined Input Spaces,” IEEE
Transactions on Software Engineering, vol. 40, no. 3, pp. 216–234, 2014.

[152] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, 2006.

[153] P. R. Mateo, M. P. Usaola, and J. Offutt, “Mutation at system and func-
tional levels,” in Proceedings of the 3rd IEEE International Conference
on Software Testing, Verification, and Validation Workshops (ICSTW
2010), Paris, France, 2010, pp. 110–119.

[154] L.-O. Damm, L. Lundberg, and C. Wohlin, “Faults slip through a con-
cept for measuring the efficiency of the test process,” Software Process:
Improvement and Practice, vol. 11, no. 1, pp. 47–59, 2006.

[155] L. C. Briand, Y. Labiche, and M. Shousha, “Stress testing real-time
systems with genetic algorithms,” in Proceedings of the 2005 conference
on Genetic and evolutionary computation. ACM, 2005, pp. 1021–1028.

[156] V. T. Rokosz, “Long-term testing in a short-term world,” IEEE software,
vol. 20, no. 3, pp. 64–67, 2003.

[157] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms soft-
ware with quviq quickcheck,” in Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang. ACM, 2006, pp. 2–10.

