
Test Models and Coverage Criteria for
Automatic Model-Based Test Generation with

UML State Machines

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium

(Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Herr Dipl.-Inf. Stephan Weißleder
geboren am 18.04.1979 in Berlin

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Dr. h.c. Christoph Markschies
Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II:
Prof. Dr. Peter Frensch
Gutachter:

1. Prof. Dr. Holger Schlingloff
2. Prof. Dr. Ina Schieferdecker
3. Prof. Dr. Jan Peleska

eingereicht am: 8. Dezember 2009
Tag der mündlichen Prüfung: 26. Oktober 2010

Abstract

Testing is an important means of quality management and is widely used in
industrial practice. Model-based functional testing is focussed on comparing
the system under test to a test model. This comparison usually consists of
automatically generating a test suite from the test model, executing the test
suite, and comparing the observable behavior to the expected one. Important
advantages of model-based testing are formal test specifications that are close
to requirements, traceability of these requirements to test cases, and the
automation of test case design, which helps reducing test costs. Testing
cannot be complete in many cases: For test models that describe, e.g., non-
terminating systems, it is possible to derive a huge and possibly infinite
number of different test cases. Coverage criteria are a popular heuristic
means to measure the fault detection capability of test suites. They are also
used to steer and stop the test generation process.

There are several open questions about test models and coverage criteria.
For instance, the UML 2.1 defines 13 different kinds of diagrams, which
are often used in isolation although it might be beneficial to combine them.
Furthermore, there are several unconnected kinds of coverage criteria. Most
of them are very useful and here, too, the question for ways to combine their
benefits is very interesting. Moreover, the relation between test models and
coverage criteria is not researched thoroughly yet and the question for mutual
dependencies remains.

The context of this thesis is automatic model-based test generation with
UML state machines. The focus is on test models, coverage criteria, and
their relations. We present new approaches to combine coverage criteria, to
use model transformations for testing, and to combine state machines with
other test models. In detail, we present a test generation algorithm that
allows to combine control-flow-, data-flow-, or transition-based coverage cri-
teria with boundary-based coverage criteria. We also show how to transform
state machines in order to simulate the satisfaction of coverage criteria, to
combine coverage criteria, or to define and implement new coverage criteria.
Furthermore, we present ways to combine state machines with class diagrams
and with interaction diagrams. We also show how to influence the efficiency
of the generated test suite. Finally, we developed the prototype implemen-
tation ParTeG for the mentioned contributions and applied it to standard
examples, academic applications, and industrial case studies.

Zusammenfassung

Testen ist ein wichtiges und weit verbreitetes Mittel des Qualitätsmanage-
ments. Funktionale, modellbasierte Tests vergleichen das zu testende System
mit einer Testspezifikation in Form eines Modells: Testsuiten werden auf Ba-
sis des Testmodells generiert und gegen das zu testende System ausgeführt
– anschließend wird das aktuelle mit dem erwarteten Verhalten verglichen.
Wesentliche Vorteile des modellbasierten Testens sind formale und anforde-
rungsnahe Testmodelle, die Rückverfolgbarkeit von Anforderungen, sowie die
Automatisierung des Testdesigns und damit auch die Verringerung der Test-
kosten. Testen kann oft nicht erschöpfend sein: Für viele Testmodelle ist es
möglich, eine beliebig hohe Anzahl beliebig langer Testfälle zu generieren.
Abdeckungskriterien sind populäre Mittel für das Messen des Fehleraufde-
ckungspotentials von Testsuiten, sowie für die Steuerung der Testerzeugung
und das Stoppen derselben bei Erreichen eines gewissen Abdeckungsgrades.

Zu diesen Themen gibt es etliche offene Punkte. Zum Beispiel definiert die
UML 2.1 insgesamt 13 Diagrammtypen, die oftmals in Isolation verwendet
werden obwohl eine kombinierte Verwendung vorteilhaft wäre. Weiterhin gibt
es verschiedene Arten von Abdeckungskriterien, deren Nutzen in isolierter
Verwendung bereits gezeigt wurde. Es stellt sich jedoch die Frage, wie deren
Vorteile kombiniert werden können. Darüber hinaus wurden die Beziehun-
gen zwischen Testmodellen und Abdeckungskriterien noch nicht tiefgründig
erforscht und die Frage nach gegenseitigen Abhängigkeiten ist offen.

Diese Dissertation befasst sich mit der automatisierten Testerzeugung ba-
sierend auf UML Zustandsmaschinen. Der Fokus liegt auf Testmodellen, Ab-
deckungskriterien und deren Beziehungen. Ich präsentiere verschiedene An-
sätze, Abdeckungskriterien zu kombinieren, Modelltransformationen zu nut-
zen und Testmodelle kombinieren: Ich definiere einen Testgenerierungsalgo-
rithmus, der kontrollfluss-, datenfluss- oder transitionsbasierte Abdeckungs-
kriterien mit grenzwertbasierten Abdeckungskriterien kombiniert. Weiterhin
präsentiere ich die Transformation von Zustandsmaschinen, um Abdeckungs-
kriterien austauschbar zu machen, sie zu kombinieren oder die Implementie-
rung neu definierter Kriterien umzusetzen. Ich kombiniere Zustandsmaschi-
nen mit Klassendiagrammen und mit Interaktionsdiagrammen. Die zugehöri-
gen Abdeckungskriterien können ebenfalls teilweise kombiniert werden. Dar-
über hinaus untersuche ich die Beeinflussung der Testeffizienz durch Eingriffe
in die Testerzeugung. Zu den genannten Beiträgen habe ich den prototypi-
schen Testgenerator ParTeG entwickelt, der bereits für Standardbeispiele,
akademische Anwendungen und industrielle Fallstudien genutzt wurde.

iv

Widmung

Für Tobias, Henni und Barbara.

v

vi

Contents

1 Introduction 1
1.1 Topic of the Thesis . 1
1.2 Contribution of the Thesis . 2
1.3 Structure of the Thesis . 4

2 Preliminaries & Definitions 5
2.1 Introduction to Testing . 5

2.1.1 Fault, Error, and Failure 5
2.1.2 What is Testing and What is not? 8
2.1.3 Testing Techniques . 12
2.1.4 Test Process . 14
2.1.5 Test Quality Measurement 16
2.1.6 Further References . 25

2.2 Modeling Languages . 26
2.2.1 Unified Modeling Language 26
2.2.2 Object Constraint Language 30

2.3 Model-Based Testing . 31
2.3.1 Approaches to Model-Based Testing 32
2.3.2 Positioning of this Thesis 38
2.3.3 Comparison to Conventional Testing 39

2.4 Coverage Criteria Formalization 40
2.4.1 Issues of Current Coverage Criteria Definitions 41
2.4.2 Coverage Criteria and Their Satisfaction 41
2.4.3 Formal Definitions of Coverage Criteria 43

3 Automatic Model-Based Test Generation 53
3.1 Motivation . 54

3.1.1 Value Partitions . 55
3.1.2 Value Partitions and Abstract Test Cases 58
3.1.3 Deriving Input Partitions From Output Partitions . . . 59
3.1.4 Boundary Value Analysis 61

vii

3.2 Example Test Models . 64
3.2.1 Sorting Machine . 64
3.2.2 Freight Elevator . 65
3.2.3 Triangle Classification 66
3.2.4 Track Control . 68
3.2.5 Train Control . 68

3.3 Test Goal Management . 69
3.3.1 General Test Goal Management 70
3.3.2 Expressions in Disjunctive Normal Form 71
3.3.3 Test Goal Extension and Restriction 71
3.3.4 Limitations to Test Goal Management 73

3.4 Test Case Generation Algorithm 73
3.4.1 Interpreting OCL Expressions 74
3.4.2 Generating Abstract Test Cases 79
3.4.3 Selecting Input Values 84
3.4.4 Example . 85
3.4.5 Complexity . 87
3.4.6 Restrictions . 90

3.5 Case Studies . 91
3.5.1 Prototype Implementation 91
3.5.2 Mutation Analysis . 92
3.5.3 Results of Mutation Analyis 99

3.6 Related Work . 101
3.7 Conclusion, Discussion, and Future Work 107

3.7.1 Conclusion . 107
3.7.2 Discussion . 107
3.7.3 Future Work . 108

4 Test Model Transformation 111
4.1 Industrial Cooperation . 111

4.1.1 Preliminaries . 112
4.1.2 Report on the Industrial Cooperation 113
4.1.3 Conclusion and Discussion 120

4.2 Preliminaries . 123
4.2.1 Definitions . 124
4.2.2 Basic Transformation Patterns 126

4.3 Simulated Coverage Criteria Satisfaction 130
4.3.1 Introduction . 131
4.3.2 Preliminaries . 131
4.3.3 Simulated Satisfaction Relations 134
4.3.4 Simulated Satisfaction Graph 147

viii

4.4 Further Effects of Model Transformations 150
4.4.1 Coverage Criteria Combinations 150
4.4.2 Coverage Criteria Definitions 154
4.4.3 General Considerations 156

4.5 Related Work . 157
4.6 Conclusion, Discussion, and Future Work 158

4.6.1 Conclusion . 158
4.6.2 Discussion . 159
4.6.3 Future Work . 162

5 Test Model Combination 165
5.1 State Machines and Class Diagrams 165

5.1.1 Introduction . 166
5.1.2 State Machine Inheritance 169
5.1.3 Related Work . 173
5.1.4 Conclusion, Discussion, and Future Work 174

5.2 State Machines and Interaction Diagrams 176
5.2.1 Motivation . 177
5.2.2 Interaction Diagram Concatenations 178
5.2.3 Coverage Criteria Definitions 180
5.2.4 Case Study . 184
5.2.5 Related Work . 187
5.2.6 Conclusion, Discussion, and Future Work 188

5.3 Conclusion . 189

6 Test Suite Efficiency 191
6.1 Introduction . 191
6.2 Preliminaries . 192

6.2.1 Idea of Test Goal Prioritization 192
6.2.2 Applied Search Algorithm 193
6.2.3 Online/Offline Testing 194

6.3 Test Goal Prioritizations . 195
6.3.1 Random Prioritization (RP) 195
6.3.2 Far Elements (FEF/FEL) 195
6.3.3 Branching Factor (HBFF/HBFL) 196
6.3.4 Atomic Conditions (MACF/MACL) 196
6.3.5 Positive Assignment Ratio (HPARF/ HPARL) 197

6.4 Evaluation . 198
6.4.1 Effect Measurement for Industrial Test Model 198
6.4.2 All-States . 199
6.4.3 Decision Coverage . 200

ix

6.4.4 Masking MC/DC . 202
6.4.5 Application Recommendation 203

6.5 Related Work . 204
6.6 Conclusion, Discussion, and Future Work 206

7 Conclusions 211

Bibliography 213

List of Figures 249

List of Tables 255

x

Chapter 1

Introduction

1.1 Topic of the Thesis

Testing is one of the most important means to validate the correctness of
systems. The costs of testing are put at 50% [Mye79, KFN99, Som01] of the
overall project costs. There are many efforts to decrease the costs for testing,
e.g. by introducing automation.

There are many different testing techniques, processes, scopes, and tar-
gets. This thesis is focused on functional model-based testing. Functional
testing consists of comparing the system under test (SUT) to a specification.
A functional test detects a failure if the observed and the specified behavior
of the SUT differ. Model-based testing is about using models as specifica-
tions. Several modeling languages have been applied to create test models,
e.g. B [Abr07], Z [Spi92], the Unified Modeling Language (UML) [Obj07], or
the Object Constraint Language (OCL) [Obj05a]. Model-based testing allows
to derive test suites automatically from formal test models. This thesis is
focused on automatic model-based test generation with UML state machines
and OCL expressions. Although testing with state charts, state diagrams, or
state machines has been investigated for several decades, there are still many
unexplored aspects and issues left to be solved.

Testing is often incomplete, i.e. cannot cover all possible system behav-
iors. There are several heuristic means to measure the quality of test suites,
e.g. fault detection, mutation analysis, or coverage criteria. These means of
quality measurement can also be used to decide when to stop testing. This
thesis is concentrated on coverage criteria. There are many different kinds of
coverage criteria, e.g. focused on data flow, control flow, transition sequences,
or boundary values. In this thesis, we will present new approaches, e.g., to
combine test models or to simulate and combine coverage criteria.

1

CHAPTER 1. INTRODUCTION

1.2 Contribution of the Thesis
This thesis is focused on automatic model-based test generation with UML
state machines as test models and coverage criteria that are applied to them.
Figure 1.1 provides an abstract overview of automatic model-based test gen-
eration. There are more detailed presentations. For instance, Utting et
al. [UPL06] include test execution and requirements. In contrast, this figure
just depicts all elements necessary to give an outline of this thesis: The in-
puts of the model-based test generation process are a test model and coverage
criteria to satisfy. The application of a coverage criterion to the test model
results in a set of test model-specific test goals. The test goals and the test
model are used to automatically generate the test suite.

Test
Model

Coverage
Criteria

Test
Generation

Test
Suite

Test Goals

Test Goal
Generation

Figure 1.1: Model-based test generation.

The contributions of this thesis are focused on the combination of differ-
ent test models, the relations of test models and coverage criteria, and the
combination of coverage criteria. This thesis contains five contributions.

First, we introduce a novel test generation algorithm based on UML state
machines and class diagrams with OCL expressions. The advantage of this al-
gorithm is the combination of abstract test case creation and boundary value
analysis. The major contribution is the combination of the corresponding,
e.g., transition-based and boundary-based, coverage criteria.

As the second contribution, we investigate the mutual dependency of
state machines and coverage criteria in model-based testing. We transform
state machines and evaluate the impact of the applied coverage criteria. The

2

1.2. CONTRIBUTION OF THE THESIS

major contribution is that the application of any feasible coverage criterion
to the transformed state machine can have the same effect as the application
of almost any other feasible coverage criterion to the original state machine.
We present an experience report of an industrial cooperation that shows
the importance of model transformations for model-based test generation.
We define simulated coverage criteria satisfaction and present corresponding
model transformations. The most important effect is that the satisfaction of
a strong coverage criterion on the original state machine can be simulated
by satisfying a weak coverage criterion on a transformed state machine. We
also show new ways to combine and define coverage criteria. They can also
be simulated with existing coverage criteria. This second contribution can
be used together with the afore presented test generation approach.

The third contribution is the combination of different test models, which
can be used together with the two previously presented contributions. We
present the combination of UML state machines with structural models like
UML class diagrams and with behavioral models like UML interaction dia-
grams. Since automatic test generation depends on the provided test mod-
els, this combination is advantageous for automatic test generation. Both
proposed combinations of test models have advantages that go beyond the
separate application of the corresponding single test models. New coverage
criteria are presented that are focused on combined test models.

Fourth, we investigate the application of coverage criteria on test models
and focus on the resulting set of test-model-specific test goals. The test cases
are generated based on the order of the test goals. The contribution is an
empirical evaluation of the impact of the test goal order on the efficiency
of the generated test suite, e.g. the average number of test cases to execute
until detecting a failure. Since this is also a general contribution to auto-
matic model-based test generation, its advantages can be combined with the
advantages of the afore three contributions.

These four contributions are interrelated and all support automatic model-
based test generation. They are furthermore substantiated by the developed
tool support and corresponding case studies. We work on two Eclipse plug-ins
based on EMF [Ecl07a] and UML 2.1 [Ecl07b]: The model-based test gen-
eration tool ParTeG [Weib] implements the novel test generation approach
described as the first contribution. It partly supports the transformation
and the combination of test models, and performs the ordering of test goals.
The tool Coverage Simulator [Weia] is currently under development. Its
goal is to provide a wide range of test model transformations to support the
simulated satisfaction of coverage criteria as presented in the second contri-
bution. ParTeG has been used to generate tests for standard examples as
well as academic and industrial test models.

3

CHAPTER 1. INTRODUCTION

1.3 Structure of the Thesis
The thesis is structured as follows. In Chapter 2, we present all preliminar-
ies of this thesis and formal definitions for coverage criteria in model-based
testing. Chapter 3 contains the test generation algorithm that is used to
combine the generation of abstract test cases with boundary value analysis.
We present several test model transformations that are used to influence the
fault detection capability of generated test suites in Chapter 4. In Chapter 5,
we investigate the combination of different test models. We consider the test
goal order and its influence on test suite efficiency in Chapter 6. Finally, we
conclude the thesis in Chapter 7.

Figure 1.2 depicts how the four major contributions besides the case stud-
ies fit into the roadmap of model-based test generation in Figure 1.1.

Test
Model

Coverage
Criteria

Test
Generation

Test
Suite

Test Generation Algorithm
for UML State Machines

and OCL

Combination of
Coverage Criteria

Transformation of
Test Models

Combination of
Test Models

Test Goals

State Machines
and Interaction

Diagrams

State Machines
and

Class Diagrams

Simulated Satisfaction
of Coverage Criteria

Test Goal
Order5th Chapter:

Test Model
Combination

Classification of
OCL Expressions

Transformation of
Output Partitions into

Input Partitions

3rd Chapter:
Test Generation

Algorithm

6th Chapter:
Test Suite
Efficiency

4th Chapter:
Test Model

Transformation

Test Goal
Generation

Combination of
Coverage Criteria

Combination of
Coverage Criteria

Figure 1.2: Structure of the thesis.

4

Chapter 2

Preliminaries & Definitions

This chapter contains preliminaries and basic definitions of the thesis. We
will give an introduction to existing work about testing in Section 2.1, to
modeling languages in Section 2.2, and to model-based testing in Section 2.3.
Section 2.4 contains formal definitions of coverage criteria on UML state
machines.

2.1 Introduction to Testing
There are many sentiments about testing. For instance, testing is considered
an important failure detection technique, a means for system validation, or
risk management. There are numerous test purposes, test methods, and
test processes. In this section, we provide a survey of testing and position
this thesis in the field of testing. First, we define fault, error, and failure
in Section 2.1.1. Then, we present definitions of testing in Section 2.1.2 and
several test methods in Section 2.1.3. We show test processes in Section 2.1.4
and approaches to measure test quality in Section 2.1.5. Finally, we present
further references in Section 2.1.6.

2.1.1 Fault, Error, and Failure
In this section, we clarify the notions of fault, error, and failure. For that, we
present the fault/failure model, identify reasons for faults, and a classification
of possible consequences of failures.

Fault/Failure Model.

The execution of tests on a system under test (SUT) can result in unexpected
behavior. According to Hopper [Hop47], the first such unexpected behavior

5

CHAPTER 2. PRELIMINARIES & DEFINITIONS

was caused by a moth in a relay. That is why it is common to speak of bugs.
This term, however, does not describe the different stages of fault, error prop-
agation, and failure detection appropriately. In the following, we introduce
the fault/failure model as presented in [Mor83, Off88, Mor90] and [AO08,
page 12].

Definition 1 (Fault) A fault is a static defect in a system.

A static defect is, e.g., a wrong expression in a system’s source code.
It is often caused by human errors such as misinterpreting a requirement,
forgetting a condition, or simply mistyping. As long as the fault is just
existing in the system without being executed, it has no effect on the behavior
of the system: the fault is said to be dormant. If the faulty instruction is
executed, then the fault is said to be activated. An activated fault can result
in an error, but it does not have to.

Definition 2 (Error) An error is a wrong internal state of a running sys-
tem.

A wrong internal state of a system can be, e.g., an erroneous program
counter or a faulty attribute value. If such wrong values influence the observ-
able behavior of the SUT, the error is said to be propagated to the outside.
An error that is propagated to the outside can result in a failure.

Definition 3 (Failure) A failure is an observable deviation of the actual
from the expected behavior of a system.

Failures can be detected directly by test cases. Figure 2.1 shows one pos-
sible way from a fault to a failure with fault activation and error propagation.

ActivationFault Error Failure Propagation

Figure 2.1: Relation of fault, error, and failure.

Since testing can only detect failures, it is a failure detection technique.
Nevertheless, it is often called a fault detection technique. We use both terms
interchangeably. The fault/failure model [Mor83, Off88, Mor90] defines three
conditions that must be fulfilled for that a fault results in a failure: (1) The
fault must be reached (Reachability). (2) After activating the fault, the
system state must be incorrect (Infection). (3) The infected system state
must be propagated to the outside (Propagation).

6

2.1. INTRODUCTION TO TESTING

Causes for Faults.

Here, we present a list of possible causes for faults. The first and quite com-
mon cause for faults are missing (or faulty, contradictory, etc.) requirements.
In this case, the system engineer missed some important use cases and the
corresponding expected behavior of the SUT is undefined. Such faults are
most often detected by inspecting the requirements.

Second, there are several kinds of functional faults, i.e., discrepancies
between the test specification and the SUT. They are often caused by a
defective implementation of the software or the hardware. The effect is that
the SUT does not behave corresponding to the test specification. Such faults
can be detected by functional testing.

A third kind of faults are non-functional faults. They reference non-
functional properties of the SUT, such as performance, security, scalability,
or compatibility. The detection of such faults requires theoretical considera-
tions, stress tests, security-relevant specifications, performance tests, and so
forth. There is, however, also work about expressing non-functional proper-
ties like security in models [BDL05, SEBC09]. Thus, non-functional proper-
ties can also be detected by comparing the SUT to the test specification.

Consequences of Failures.

Faults can indirectly result in failures. These failures can be classified cor-
responding to consequences of their occurrence [Bei90]. This might help to
prioritize the abolition of faults. Table 2.1 shows a corresponding failure
classification with a short description.

Level Class Symptoms
1 Mild Typing error
2 Moderate Redundancy, misleading messages
3 Annoying Erroneous behavior (bills about 0.00$ are sent)
4 Disturbing Transactions cannot be completed
5 Serious Transaction and information about it is lost
6 Very serious Exchange objects inside a transaction (money is

transferred to the wrong account)
7 Extreme Just like 6 but very frequent
8 Intolerable Unrecoverable errors in a database
9 Catastrophic System is shutting down on its own
10 Infectious Consequences for other systems, nuclear power sta-

tions, military

Table 2.1: Categorization of failure consequences according to Beizer.

7

CHAPTER 2. PRELIMINARIES & DEFINITIONS

2.1.2 What is Testing and What is not?
This section contains definitions of what is testing and what is not. Further-
more, we present different understandings of testing and sketch a short list
of prejudices about testing. Finally, we present definitions of the basic terms
used throughout this thesis.

Testing can be Validation or Verification.

Testing can be validation or verification. If it is a part of system engineer-
ing that is often part of a programmer’s (tester’s) daily work, and testers
have to derive test cases from requirements specifications manually, testing
is a validation technique. In model-based testing, tests are often automat-
ically generated from an abstract description and, in this case, testing is a
verification technique. We present a definition of validation and verification
according to [AO08, page 11] and compare testing to other techniques:

Definition 4 (Validation) Validation is the process of evaluating a system
to ensure compliance with intended usage or specification.

Definition 5 (Verification) Verification is the process of determining if
the result of a given phase in system development fulfills the requirements
established during the previous phase.

In general, it would be better to prove a system property instead of creat-
ing tests for it. There are, however, many systems that contain components
(e.g. battery, display) that cannot be proved or the proofs miss some essen-
tial parts of the SUT. A quote of Donald Knuth describes this situation well
enough: “Beware of bugs in the above code; I have only proved it correct,
not tried it.” Testing is for many situations the best technique available.

Definition 6 (Testing) Testing is the process of systematically evaluating
a system by observing its execution.

Definition 7 (Debugging) Debugging is the process of finding a fault that
causes a given failure.

Definitions 6 and 7 are adapted from [AO08, page 13]. There are also
more detailed definitions [Ber00] that define testing as a dynamic verification
with finite set of test cases that are suitably selected to check the system’s
behavior. Testing can be used to detect failures in the SUT. The detection
of the faults that cause these failures is called debugging. Detected failures
are the anchor to start the debug process from. Although there are some
approaches to automate debugging [SW96, Arc08], it is still a manual task
for system engineers.

8

2.1. INTRODUCTION TO TESTING

Correct Understandings of Testing.

There are several understandings of testing. In a sense, many interpretations
are true depending on the point of view. Here, we present several correct
understandings of testing. Some of these views are also contained in Beizer’s
testing levels [Bei90].

• Testing is comparing actual and expected behavior: Without that com-
parison it would be impossible to detect functional failures.

• Testing is detecting failures: Similar to the previous statement, a failure
is the observable deviation of the actual from the expected system
behavior.

• Testing is managing risks: For many systems, testing cannot be com-
plete and there are only heuristic means of quality measurement. More-
over, Howden [How76] shows that finding all failures of a system is
undecidable. Thus, deciding when to stop testing is managing the risk
of remaining faults. The test effort depends on the kind of remaining
possible faults and the corresponding failures. Thus, the test effort nec-
essary for entertainment systems is probably considerably lower than
the test effort for critical systems like airplanes or nuclear power plants.

• Testing is increasing confidence of testers: Since testing cannot prove
the absence of faults, the goal is to remove at least all detected failures.
If the existing test suite does not detect failures, at least the confidence
of testers in the correctness of the SUT is increased.

• Testing is giving continuous feed-back for programmers: Besides all
efforts to measure the quality of programs, testing is also a state of
mind. Following this perception, testing is a means to improve the
programming skills of the programmer: Test suites are tools to detect
errors of programmers just like a spell checker of a text editor detects
the typing errors of writers.

Wrong Understandings of Testing.

Corresponding to the various correct interpretations of testing, the following
statements describe what testing is not.

• Testing is not proving the absence of faults: Each non-trivial system
defines an infinite number of possible system execution paths. This can
be caused by large value domains of input parameter (long, string) or

9

CHAPTER 2. PRELIMINARIES & DEFINITIONS

a possibly infinite number of loop iterations. Errors can occur at an
arbitrary point in a program execution - perhaps in the 5th iteration
of a loop or the 1000th. Since it is impossible to execute an infinite
number of program instructions in finite time, the absence of faults
cannot be proven by testing.

• Testing is not diagnosing the cause of failures: Corresponding to Defi-
nitions 6 and 7, testing detects the failures but not the causing faults.

• Testing is not debugging: Definitions 6 and 7 already describe the dif-
ference between testing and debugging. Nevertheless, these two terms
are quite often mixed up.

Common Prejudices about Testing.

There are several prejudices about testing and errors. Naming and dispelling
them is important to show the limitations of testing. The presented list of
prejudices is taken from Beizer [Bei90], and the explanations are adapted to
the presented Definitions 1, 2, and 3.

• Benign Bug Hypothesis: The belief that failures are friendly, tame, and
occur following an easy logical pattern.

• Bug Locality Hypothesis: The belief that faults only impact the com-
ponent in that they exist.

• Control Bug Dominance: The belief that failures are easy to detect.

• Code/Data Separation: The belief that faults only have an impact on
either code or data.

• Lingua Salvator Est: The belief that the features of a language prevent
faults.

• Corrections Abide: The belief that a corrected failure does not appear
again.

• Silver Bullets: The belief that there is any pattern, tool, or method
that prevents the occurrence of faults [Bro87].

• Sadism Suffices: The belief that most failures can be detected by intu-
ition or destructive thinking.

• Angelic Testers: The belief that testers are better at test design than
programmers at code design.

10

2.1. INTRODUCTION TO TESTING

Definitions of Terms.

This section contains basic term definitions that are used throughout the
thesis. First of all, there are different notions of test cases. There are the
general notions of a test case, of abstract, and concrete test cases.

Definition 8 (Test Case) A test case is a sequence of input stimuli to be
fed into a system and expected behavior of the system.

A test case can exist at many different levels of abstraction. The most
important distinction is among abstract and concrete test cases.

Definition 9 (Abstract Test Case) An abstract test case consists of ab-
stract information about the sequence of input and output. The missing in-
formation is often concrete parameter values or function names.

Abstract test cases are often the first step in test case creation. They are
used to get an idea of the test case structure or to get information about
satisfied coverage criteria. For concrete test cases, the missing information
is added.

Definition 10 (Concrete Test Case) A concrete test case is an abstract
test case plus all the concrete information that is missing to execute the test
case.

Concrete test cases comprise the complete test information and can be
executed on the SUT. A single test case, however, is rarely sufficient for good
test execution.

Definition 11 (Test Suite) A test suite is a set of test cases.

The notions of abstract and concrete test suites can be defined according
to the corresponding test case definitions.

Definition 12 (Test Oracle) An oracle is an artifact that comprises the
knowledge about the expected behavior of the SUT.

Each test case must have some oracle information to compare observed
and expected SUT behavior. Without it, no test is able to detect a failure.
Typical oracles are user expectations, comparable products, past versions
of the same program (e.g. regression testing), inferences about intended or
expected purpose, given standards, relevant laws, or test specifications.

11

CHAPTER 2. PRELIMINARIES & DEFINITIONS

Definition 13 (Test Specification) A test specification is a description
of the system environment or the expected system behavior. It is used to de-
rive test suites and to compare the expected and the observed system behavior.

Test specifications are used to create test suites. Two specifications can
differ in several aspects like abstraction or formalization. Since a test spec-
ification is often the result of negotiation between vendor and customer,
the important parts for the customer are often accurately specified, whereas
unimportant parts are rather sketchy. Consequently, the degree of abstrac-
tion and formalization depends on customer wishes and possible consequences
of failures (cf. Table 2.1). For executing the test suites, test software and a
test framework are needed.

Definition 14 (Test Software) Test software is any kind of software that
can be used in the testing process. Common representatives are test genera-
tors, test frameworks, and the (generated) test suite itself.

Definition 15 (Test Framework) A test framework (or test harness) is
a framework with the objectives to automate the testing process, execute test
suites, and generate the corresponding report.

There are frameworks that provide automation to a certain extent. For
instance, JUnit [EG06] and CppUnit [Sou08] are testing frameworks that
allow for the simple definition, integration, and execution of unit test cases.
FitNesse [MMWW09] is an example for an acceptance testing framework.

2.1.3 Testing Techniques
Testing can be conducted under several conditions. Two of the most influ-
ential aspects are the knowledge and the observability of the SUT’s internal
matters. In the following, we present black-, white-, and gray-box testing.
After that, we sketch further testing techniques.

Black-, White-, and Gray-Box Testing.

In black-box testing, the SUT’s internal matters are hidden from the tester.
The tester only has knowledge about possible input and output values. The
SUT appears to be a black-box (see Figure 2.2). Since black-box testing
only allows to test input-output functionality, it is often called functional
testing. As an advantage, this technique is close to realistic conditions. One
important disadvantage is the lack of internal information, which could be
useful to generate tests.

12

2.1. INTRODUCTION TO TESTING

SUT
Black box

OutputInput

Figure 2.2: Black-box testing.

In white-box testing, the internals of the SUT are all visible. As a con-
sequence, the knowledge about these internal matters can be used to create
tests. Furthermore, white-box testing is not restricted to the detection of
failures, but is also able to detect errors. Advantages are tests of higher
quality because of the knowledge about system internal matters and tests
with stronger oracles because errors are not necessarily propagated to the
outside. An important disadvantage is the high effort necessary to look into
all aspects of a program. Since white-box testing can access the structure
of the SUT, it is often used for structural testing, e.g., focused on covering
structural aspects of the SUT.

Black-box testing and white-box testing have both advantages and dis-
advantages. Gray-box testing [LJX+04] is one approach to combine the ad-
vantages of both techniques: This testing technique is used to design tests
at white-box level and execute them at black-box level. For the tester, this
has the advantage of having access to the SUT’s internal information while
designing tests. The tests are executed, however, under realistic conditions,
i.e. only failures are detected. Gray-box testing techniques are used for com-
mercial model-based testing, where, e.g., the test model contains informa-
tion about the internal structure of the SUT, but the SUT’s internal matters
themselves are not accessible (e.g. for reasons of non-disclosure).

Further Testing Techniques.

Besides the mentioned testing techniques, there are many useful distinctions
of testing approaches. As stated above, functional testing and non-functional
testing are distinguished.

Risk-based testing is aimed at detecting serious faults with high follow-up
costs (cf. Table 2.1 on page 7). The idea is to define risks for each element
of the test specification or the SUT and select test cases with high-ranked
elements. The goal is the minimization of the remaining risk. The advantage
of this approach is that the risk of faults is taken into account. This can
already be considered at the beginning of project planning. The issue of this
approach is that the risks are assessed by humans and, thus, that the results
can be error-prone. Risks can be also be forgotten or unknown.

13

CHAPTER 2. PRELIMINARIES & DEFINITIONS

One of the major problems of testing is the extent of the test suite and
the corresponding test execution time. The test suite should be executed
after each change in the SUT. This soon becomes impossible when test suite
execution takes several hours or days. In smoke testing, only some represen-
tatives (e.g. important test cases) of the test suite are executed. This leads
to reduced test quality, but the most fundamental aspects are covered, and
the test execution time is reduced.

Stress testing is used to evaluate the stability of a system by operating
the system beyond the normal level. This testing technique is used to check,
e.g., stability or availability of web servers.

There are many more testing techniques. For instance, alpha testing and
beta testing include the users of the SUT inside and outside the company,
respectively. These techniques are often used for mass media products. In
acceptance testing, some representatives of a certain customer decide if the
SUT satisfies the requirements. This often includes non-functional require-
ments. In regression testing, the SUT is compared to past versions of the
same SUT, e.g. by executing the test suites of past SUT versions on the
current SUT.

2.1.4 Test Process

There are several abstraction levels in system development reaching from
requirements analysis to the implementation in machine code. Testing can
be conducted at all layers of abstraction. We sketch the different test levels
of the test process according to the V-model [Rat97]. After that, we present
ways to integrate the test process into system engineering.

Testing Levels in V-Model.

There are many different models describing how to manage system develop-
ment. A prominent representative is the V-Model [Rat97]. It is shown in
Figure 2.3. On the left side of the figure, system development is shown as
a top-down approach: From requirements, the system is specified, designed,
split in units, and implemented. On the right side, testing is shown as a
bottom-up process: unit testing for classes, integration testing for compo-
nents consisting of classes, system testing for integrating all components,
and acceptance testing of the customer. It is obvious that the results of late
tests have an impact on early development phases. Thus, it is advisable to
design and execute tests as early as possible.

14

2.1. INTRODUCTION TO TESTING

Requirements

System
Specification

System
Design

Unit
Design

Implementation

Unit
Testing

Integration
Testing

Acceptance
Testing

System
Testing

Processing Sequence
Influence of Test Results

Figure 2.3: The V-Model.

Integrating the Test Process in System Engineering.

In this section, we present three basic approaches of integrating the test
process into system engineering: (a) Testing after system development, (b)
Running testing and system development concurrently, and (c) Starting with
the tests (test-driven development [Bec02]). Figure 2.4 depicts these three
approaches.

Requirements

System Development

System Testing

(a) Standard approach.

Requirements

System Development System Testing

(b) Concurrent approach.

Requirements

System Development

System Testing

(c) Test-first approach.

Figure 2.4: Different approaches to integrate testing into system engineering.

Testing after System Development (a). The standard approach is
daily work of software testers: System developers create or maintain compo-
nents. After that, testers have to validate the SUT. In this approach, testing
is conducted after SUT creation. The SUT has to be adapted if the tests
detect failures in the SUT. The failures are often caused by incomplete or
contradictory requirements. Changing requirements after the implementa-
tion phase often results in high costs.

Running Tests and System Development Concurrently (b). There
is always limited time for testing. Therefore, it is advisable to start testing

15

CHAPTER 2. PRELIMINARIES & DEFINITIONS

as early as possible. The concurrent development of the test suites and the
SUT is a step in this direction: System components are tested as soon as
they become available. Faults are detected earlier, and the project manage-
ment can react faster than in the first alternative. However, the problem of
detecting faulty requirements after the implementation phase still remains.
So, this approach can also result in high costs.

Test-Driven System Development (c). In test-driven development (see
extreme programming [Bec00] or agile system engineering [BBvB+01]), test
cases are created before system implementation starts. Consequently, the
test cases fail at first, and the task of system development is to make the
test cases pass. When writing down tests before implementation, the number
of necessary changes in the requirements at the end of the implementation
phase is reduced. A possible disadvantage is that the SUT could just be
implemented with the aim to avoid the detection of failures.

2.1.5 Test Quality Measurement
As stressed before, testing cannot be complete in most cases. Common rea-
sons for that are large input domains or infinite loops within the control
flow. Even with finite domains and bounded loops, the test effort to cover all
domain elements and all repetitions of loops is very high. As a consequence,
there is need for other means of quality measurement than completeness. The
quality of testing can be measured, e.g., as the probability that there are no
faults remaining in the system under test. State of the art is to measure test
quality by heuristic means. Beyond pure quality estimation, these means of
test quality measurement are often used to steer the test generation and to
decide when to stop testing. In the following, we present coverage criteria,
mutation analysis, and a short comparison of them.

Coverage Criteria.

Coverage criteria are popular heuristic means to measure the quality of test
suites. They can be applied to anything from requirements via models to
machine code. There are several kinds of coverage criteria [AOH03, UPL06,
UL06, AO08]. We focus on structural coverage criteria: They describe parts
of the system behavior that must be covered by tests. They can reference sin-
gle instructions or value assignments but also long sequences of instructions or
data flow paths [FW88, Wey93, Hon01]. Coverage criteria can be compared
with the help of subsumption relations [CPRZ85, Wei89]: Each test suite that
satisfies the subsuming coverage criterion also satisfies the subsumed coverage

16

2.1. INTRODUCTION TO TESTING

criterion. The subsuming coverage criterion is considered stronger than the
subsumed one. There is, however, no proof of a relationship between satis-
fied coverage criteria and the number of detected failures: For instance, the
satisfaction of a weaker coverage criterion can accidentally result in a higher
number of detected failures than the satisfaction of a stronger coverage crite-
rion. There are studies that show the relation between coverage criteria and
the resulting test suite’s fault detection capability [HLL94, CM94]. Further-
more, there are also studies that describe situations in which this relation is
not substantiated [HT90, WJ91]. The results of these studies are fortified by
the success of random testing [WJ91, Nta01, MS06, CLOM07, CPL+08] com-
pared to model-based testing, which brings up the question for cost efficiency
of model-based testing [Pre06].

This thesis is focused on model-based test generation from UML models.
We will present model-based testing in Section 2.3. There are many coverage
criteria for the various aspects of UML [UL06, page 120]. For instance, Nebut
et al. [NF06] present a use-case-driven approach of automatic test generation.
Andrews et al. present further coverage criteria that are focused on UML
diagrams [AFGC03]. Briand et al. [BLL05] present an approach to use data-
flow information to improve the cost effectiveness of coverage criteria for state
machines. They focus their work on the round-trip-path (transition tree)
coverage criterion [Bin99]. The results are that data-flow information can
be used to select a better transition tree. We focus on generating tests that
satisfy coverage criteria on UML state machines [Obj07, page 519]. Without
claiming completeness, we present different kinds of coverage criteria and the
subsumption relations between them. For that, we stick to the classification
of coverage criteria as presented in [UL06] and [AO08]. We start by providing
informal definitions of these coverage criteria. This informality is common for
coverage criteria definitions. In Section 2.4, we will present formal definitions
for coverage criteria.

Transition-Based Coverage Criteria. The here presented coverage cri-
teria are focused on transition sequences [UL06, page 115]. Note that states
are considered as transition sequences of length zero.

• All-States: A test suite that satisfies the coverage criterion All-States
on a state machine must visit all states of the state machine.

• All-Configurations: State machines can contain parallel regions. A
configuration is a set of concurrently active states. The satisfaction
of All-Configurations requires that all configurations of the state ma-
chine’s states are visited.

17

CHAPTER 2. PRELIMINARIES & DEFINITIONS

• All-Transitions: Satisfying the coverage criterion All-Transitions re-
quires to traverse all transition sequences up to length one. The term
“up to length one” includes length one and length zero. This defi-
nition of All-Transitions is selected to guarantee that All-Transitions
subsumes All-States.

• All-Transition-Pairs: Similar to the definition of All-Transitions, All-
Transition-Pairs requires to traverse all transition sequences up to length
two. For the general case of All-n-Transitions, it is correspondingly
necessary to traverse all transition sequences up to length n.

• All-Paths: This coverage criterion is satisfied iff all paths of the state
machine are traversed. If there are unbounded loops, this criterion is
impossible to satisfy or infeasible, respectively.

Control-Flow-Based Coverage Criteria. The here presented coverage
criteria are focused on control flow, i.e., on value assignments for the state
machine’s guard conditions.

• Decision Coverage: To satisfy Decision Coverage, a test suite must
cover the positive and negative evaluation, respectively, of all guard
conditions of a state machine. Since it must also be decided whether
to traverse transitions without guards, we define that Decision Cov-
erage subsumes All-Transitions. There are other definitions of Deci-
sion Coverage corresponding to the focus of coverage criteria definitions
in [AO08, page 34]. We come to that later on.

• Condition Coverage: Similar to Decision Coverage, Condition Coverage
is satisfied iff all atomic boolean conditions of each guard are evaluated
to true and false, respectively, at least once.

• Decision/Condition Coverage: This criterion is satisfied iff Decision
Coverage and Condition Coverage are both satisfied.

• Modified Condition/Decision Coverage: Modified Condition/Decision
Coverage (MC/DC) [CM94] is focused on the isolated impact of each
atomic expression on the whole condition value. For this, the value
of the condition must be shown to change if the atomic expression is
changed and all other expression values are fixed. MC/DC is proposed
in the standard RTCA/DO-178B for airborne systems and equipment
certifications [RTC92]. Furthermore, the effort of satisfying MC/DC
is linear with the number of atomic expressions of a condition [UL06,

18

2.1. INTRODUCTION TO TESTING

page 114]. Thus, MC/DC is considered a sophisticated control-flow-
based coverage criterion.
Due to interdependencies, it might be impossible to change one value
and fix all others. For that, there are several kinds of MC/DC [Chi01,
Cer01]: Unique-cause MC/DC requires to show the isolated impact of
a condition on the guard. Masking MC/DC also allows other values
to change as long as they do not influence the guard value. It is also
possible to mix both form by applying unique-cause MC/DC as long
as possible and applying masking MC/DC only if necessary. There are
several applications of MC/DC, e.g. presented in [Pre03].

• Multiple Condition Coverage: The satisfaction of Multiple Condition
Coverage (MCC) requires to use the values of each row of each guard
condition’s truth table. In other words, for each guard, all possible
value assignments must be included in the test suite.

Data-Flow-Based Coverage Criteria. Data-flow-based coverage crite-
ria are focused on the data flow of variables. Expressions can define and use
variables. A variable is said to be defined if a new value is assigned to it.
If this value is read, the variable is said to be used. Two expressions exp1
and exp2 along a path form a def-use-pair iff exp1 defines a variable v, exp2
uses v and there is no other definition of v between exp1 and exp2. There
are several data-flow-based coverage criteria [UL06, page 114]:

• All-Defs: A test suite satisfies All-Defs iff for each definition dv of a
variable v, at least one def-use-pair (dv, uv) is tested.

• All-Uses: The satisfaction of All-Uses requires to test each existing
def-use-pair at least once.

• All-Def-Use-Paths: To satisfy All-Def-Use-Paths, a test suite has to
execute all the paths between all def-use-pairs.

Boundary-Based Coverage Criteria. Value partitions are constraints
that specify sets of objects. Objects that satisfy/violate a value partition are
said to be inside/outside the partition. For test data generation, values have
to be selected from equivalence classes, i.e. input value partitions of a certain
type. For ordered types T , boundary values of a partition P are inside of
P and have a maximum distance dmax to a value outside of P . A boundary
edge is a constraint of P [KLPU04]. For any partition representatives of type
T , there is a distance function dist : T × T → Integer. We consider two

19

CHAPTER 2. PRELIMINARIES & DEFINITIONS

partitions P1 and P2. A boundary value of P1 at the edge between P1 and
P2 is defined as a value x ∈ P1 with ∃y∈P 2 : dist(x, y) ≤ dmax. All boundary
values at any edge of a partition P are boundary values of P . The following
coverage criteria can be found in [KLPU04] and [UL06, page 124]. They are
focused on just one value partition:

• One-Boundary: The coverage criterion One-Boundary is satisfied iff at
least one boundary value of the partition is selected.

• Multi-Dimensional: The coverage criterion Multi-Dimensional is sat-
isfied iff each variable is tested with the minimum and the maximum
value of the corresponding value partition, respectively.

• All-Edges: A test suite that satisfies All-Edges contains at least one
boundary value for each boundary edge of the partition.

• All-Edges Multi-Dimensional: This criterion is a combination of All-
Edges and Multi-Dimensional. It is satisfied iff for each boundary edge
each variable takes its minimum and maximum value at least once.

• All-Boundaries: This criterion is satisfied iff all boundary values are
tested. This criterion is infeasible for anything but tiny domains.

Subsumption Hierarchy. The following figures show the subsumption hi-
erarchies for the presented coverage criteria. Figure 2.5 shows the subsump-
tion hierarchy for transition-based, control-flow-based, and data-flow-based
coverage criteria. Figure 2.6 shows the subsumption hierarchy for boundary-
based coverage criteria. Subsumption relations are depicted as arrows. Each
arrow points from a subsuming coverage criterion to a subsumed one.

All-Transitions

All-States

All-Transition-Pairs

All-n-Transitions

All-Paths

All-Configurations Decision Coverage Condition Coverage

Decision/Condition Coverage

Modified Condition/Decision Coverage

Multiple Condition Coverage

All-Defs

All-Uses

All-Def-Use-Paths

Figure 2.5: Subsumption hierarchy for structural coverage criteria that are
focused on transitions, control flow, and data flow.

20

2.1. INTRODUCTION TO TESTING

Multi-Dimensional

One-Boundary

All-Edges

All-Edges Multi-Dimensional

All-Boundaries

Figure 2.6: Subsumption hierarchy for boundary-based coverage criteria.

Note that there are two fundamental approaches to define coverage crite-
ria. The first approach is focused on subsumption relations and is aimed at
defining coverage criteria that subsume others [AO08, page 34]. The second
approach is focused on defining each criterion on its own and on combining
coverage criteria [UL06, page 133]. We consider subsumption an important
means to compare coverage criteria. There are several examples in which
assumed subsumption relations do not hold using the second approach. For
instance, All-Transitions is assumed to subsume All-States. Using the sec-
ond approach, All-Transitions just requires to visit all transitions [UL06,
page 117]. For a state machine with one state and without transitions, an
empty test suite would satisfy All-Transitions but not All-States. Thus, All-
Transitions would not subsume All-States, which is a contradiction to the
common assumption. We define coverage criteria so that the mentioned sub-
sumption relations are guaranteed. For instance, Ammann and Offutt also
define coverage criteria in this way [AO08, page 34]: All-Transitions is sat-
isfied iff all paths up to length one are traversed. Since paths of length zero
are interpreted as states, all states are covered if All-Transitions is satisfied.
Since All-Transitions is considered the minimum coverage criterion to sat-
isfy [UL06, page 120], it is reasonable to demand that other coverage criteria
like Decision Coverage subsume All-Transitions.

As we stated, there are alternative definitions for coverage criteria. For
instance, our definition for Decision Coverage represents a combination of
Decision Coverage and All-Transitions as defined with the second approach.
We formally define the used coverage criteria in Section 2.4.3.

Combination of Coverage Criteria. The presented coverage criteria aim
at different elements of system descriptions like state machines. Thus, a
combination seems to be reasonable. As presented in [UL06, page 134 ff.], a
common approach is to select coverage criteria for requirements, data inputs,
transition guards, and transition sequences. Antoniol et al. [ABDPL02] also
present a case study that substantiates the advantages of combining coverage
criteria. The combination of coverage criteria is also regarded as an alterna-

21

CHAPTER 2. PRELIMINARIES & DEFINITIONS

tive to the absolute comparability of coverage criteria: For instance, Decision
Coverage can be satisfied together with All-Transitions and, thus, it does not
necessarily has to subsume All-Transitions.

It is intuitive that the satisfaction of more coverage criteria brings a higher
degree of test quality. As we presented in [FSW08], coverage criteria can be
combined at arbitrary levels of abstraction by, e.g., uniting test suites (with
or without traceability), uniting test goals, or uniting coverage criteria (find
or define subsuming coverage criteria). However, such combinations are more
like a union of coverage criteria than a combination of them. In Chapters 3
and 4, we present new ways of combining coverage criteria.

Mutation Analysis.

Mutation analysis is a technique to measure the fault detection capability
of a test suite. It is quite similar to coverage criteria. The most important
difference is that activated faults have to be propagated to the outside and
also have to be detected for mutation analysis. Mutation operators can be
applied to different levels of abstraction, e.g. to models [FDMM94, BOY00]
or to implementations. We focus our work on applying mutation analysis to
implementations. It is said that mutation analysis has first been proposed by
Richard Lipton in 1971. The first publications about mutation testing were
from DeMillo et al. [DLS78] and Hamlet [Ham77]. The basic idea of mutation
analysis (see Figure 2.7) is to inject faults into a correct implementation using
mutation operators. The faulty implementations are calledmutants. The test
suite is executed on each mutant with the goal to detect as many mutants
as possible. If the test suite detects a failure of a mutant, this mutant is said
to be killed. The number of all killed mutants divided by the number of all
mutants is the mutation score. As described in Section 2.1.1, errors must
be propagated to the outside before the test suite can detect them. There
are two different kinds of mutation analysis that deal differently with this

Mutants

Correct SUTMutation Operators

Test Suite

apply mutation operators
on correct SUT

Mutation Score

run test suite on all
mutants

Figure 2.7: The basic process of mutation analysis.

22

2.1. INTRODUCTION TO TESTING

fact: The just presented approach is called strong mutation analysis – the
propagation is necessary. Weak mutation analysis [How82, GW85, WH88,
HM90, Mar91, OL91, OL94] is able to detect faults as soon as they result in
an error – propagation is not necessary [AO08, page 178].

Mutation Operators. Mutation operators define how to change details
of an artifact like an implementation or a model. Theoretically, all mutants
can be created manually. However, it is state of the art to create them
automatically by using mutation operators. This requires that there is a
formal description of mutation operators. Several mutation operators have
already been declared for software [OL94] and for specifications [BOY00].
Many languages have been used for mutation analysis. Some examples
are [OK87, OLR+96] for Fortran77, [DM96] for C, [Bow88, OVP96] for Ada,
and [CTF02, IPT+07, SW07] for Java. In the following, we present the mu-
tation operators that are also used in our case studies.

• ABS - Absolute Value Insertion: An absolute value is inserted where a
variable was used before.

• LOR - Logical Operator Replacement: Logical operators (∧, ∨, not) are
replaced by other logical operators inside logical expressions.

• ROR - Relational Operator Replacement: Relational operators (<, ≤,
=, <>, ≥, >) are exchanged inside mathematical expressions.

• AOR - Arithmetic Operator Replacement: Arithmetic operators (+, −,
∗, /) are exchanged inside mathematical expressions.

• UOI - Unary Operator Insertion: Unary operators are inserted any-
where (for arithmetic expressions: −, for boolean expressions: not).

• MCO - Missing Condition Operator: Subexpressions are removed from
the expression. This operator corresponds to “forgetting” parts of ex-
pressions.

• TSO - Target State Operator: The target state of a transition is changed
respectively the corresponding operation call in the SUT.

The first five operators compose the set of sufficient mutation operators
defined by Offutt et al. [OLR+96]. The sixth operator is presented as a
frequently occurring fault in [BOY00]. The last mutation operator is specific
for UML state machines.

23

CHAPTER 2. PRELIMINARIES & DEFINITIONS

Comparison of Mutation Operators. The comparison of mutation op-
erators concerning their appropriateness has been the topic of many discus-
sions [OLR+96]. A fundamental question is whether simple mutation oper-
ators that change only small details of the system are better than complex
mutation operators or vice versa. The difference is obvious: Simple muta-
tion operators produce simple faults, complex mutation operators produce
complex faults. The coupling effect [DLS78] states that complex and simple
faults are coupled in a way that the detection of all simple faults implies the
detection of most complex faults. There are also case studies [Off92] and
theoretical considerations [Wah03] that support the coupling effect. As a
consequence, simple mutants are sufficient for mutation analysis. Thus, we
will only apply the presented set of simple mutation operators.

Comparison to Real Faults. The mutants resulting from applying mu-
tation operators have been subject to several case studies [ABL05, Par05,
ABLN06, NAM08, SW09]. In [ABLN06], the predictability of a test suite’s
fault detection capability by detecting mutants derived from mutation opera-
tors is investigated. The real faults of the case study were taken from space.c,
a program developed by the European Space Agency. Furthermore, Andrews
et al. [ABL05] compare the fault detection capability of test suites for real
faults of the same case study space.c, mutants derived from mutation op-
erators, and faults that are manually inserted by experienced programmers.
The result is that the mutation score of mutation analysis is a good predictor
for the test suite’s fault detection capability of real faults. Another result
is that manually inserted faults are often harder to detect than the average
real fault. Thus, predicting the fault detection capability by using manu-
ally inserted faults probably underestimates the test suite’s fault detection
capability.

Coverage Criteria vs. Mutation Analysis.

Coverage criteria and mutation analysis are two means of test quality mea-
surement. Whereas the satisfaction of coverage criteria just requires the test
suite to cover certain elements of the system or the test model, mutation
analysis (weak or strong) requires the test suite to let the system be in a
different state and show a different behavior for mutants, respectively.

There are relations between coverage criteria and mutation analysis. For
instance, a test suite that detects a mutant that changes a certain part of
the system implies that this test suite also covers this part. For detecting a
failure, the propagation of the corresponding error is necessary, which may
require further test behavior. Because of the missing need of this propagation

24

2.1. INTRODUCTION TO TESTING

for coverage criteria, weak mutation is more appropriate to compare mutation
operators and coverage criteria. If the detection of all mutants for a certain
mutation operator results in the satisfaction of a certain coverage criterion,
then it is said that the mutation operator yields the coverage criterion [AO08,
page 186]. Ammann and Offutt present further mutation-based coverage
criteria in [AO08].

2.1.6 Further References

In this section, we present a list of testing-related books for further read-
ing and mention standard tools for MBT. Famous books about testing are
Beizer’s red book “Software Testing Techniques” [Bei90] and “Testing Object-
Oriented Systems: Models, Patterns, and Tools” [Bin99] from Binder. Myers
published “The Art of Software Testing” [Mye79]. Whittaker provides many
practical examples in his book “How to Break Software” [Whi02]. Kaner
et al. publish “Testing Computer Software” [KFN99]. Beck puts empha-
sis on the test-first approach in the book “Test Driven Development: By
Example” [Bec02]. In 2007, Ammann and Offutt had a detailed look at
many different aspects of software testing in “Introduction to Software Test-
ing” [AO08]. Chapter 5 of SWEBOK [Ber00] also provides a good survey of
software testing. Broy et al. published one of the first books about model-
based testing: “Model-Based Testing of Reactive Systems: Advanced Lec-
tures (Lecture Notes in Computer Science)” [BJK05]. The book “Practical
Model-Based Testing: A Tools Approach” [UL06] from Utting and Legeard
was published in 2006 and is also focused on model-based testing. It provides
many tool approaches and case studies. There are further introductions to
model-based testing, e.g. by Prowell [Pro04], Robinson [Rob06], and Peleska
et al. [PML08]. The UML testing profile supports the creation of test mod-
els. In the book “Model-Driven Testing – Using the UML Testing Profile”,
Baker et al. [BDG+07] provide a corresponding survey.

There are many tools for model-based testing. Examples for commercial
tools are the Smartesting Test Designer [Sma], Conformiq Qtronic [Con],
AETG of Telcordia Technologies [Tel], Microsoft’s SpecExplorer [Mic09],
PikeTec’s TPT [Pik09], and Reactis of Reactive Systems [Rea09]. Several
tools for model-based testing are presented and compared in [GNRS09].
Aydal et al. [AUW08] also present a comparison of model-based testing
tools. The AGEDIS project with all published documents provide infor-
mation about the tools necessary for automatic model-based testing [HN04].

25

CHAPTER 2. PRELIMINARIES & DEFINITIONS

2.2 Modeling Languages
Models are purposeful abstractions of a certain artifact. They are instances
of meta models or modeling languages, respectively. There are many dif-
ferent modeling languages that have been used to create test models. Some
examples are Abstract State Machines [BGN+03], the Unified Modeling Lan-
guage (UML) [BLC05, SHS03, BBM+01], the Object Constraint Language
(OCL) [BBH02, AS05], or Object-Z [MMSC98]. This thesis is focused on
model-based test generation from models of the UML and the OCL. We
present a short introduction to both languages.

2.2.1 Unified Modeling Language
The UML in version 2.1 is a modeling language with graphical notation that
defines 13 diagrams to describe structural and behavioral system properties.
It is now under control of the Object Management Group [Obj07]. The
initial version of the UML was developed in 1998 by Booch, Rumbaugh, and
Jacobson [BRJ98]. It is based on the Meta Object Facility (MOF) [Obj06].
There are many editors, test generators, and further tools that support using
the UML notation.

This thesis is mainly focused on UML state machines. In Section 5, we
describe new approaches to combine UML state machines with UML class
diagrams and UML interaction diagrams. In the following, we briefly sketch
the main elements of these three diagrams.

State Machines.

State machines are behavioral diagrams of the UML. They are based on
state charts, which were first introduced by Harel [Har87] as finite state ma-
chines with hierarchy, concurrency, and communication. State machines are
integrated in the UML, i.e., they can reference classes, operations, etc., and
they can also be referenced from other diagrams. Each state machine defines
states of a system and state changes. UML state machines are specified on
more than 50 pages in [Obj07]. This section is restricted to presenting only
fundamental aspects: Each state machine contains a set of parallel regions.
Each region contains vertices and transitions. Vertices can be pseudostates,
states, or connectionpointreferences. If a system object is in a certain state,
this state is active. Transitions contain events ev, a guard g, and an effect
ef . The transition is denoted with ev[g]/ef . A transition is activated if the
transition’s source state is active, one of the transition’s events is triggered,
and the guard condition is true. Activated transitions can be traversed: The

26

2.2. MODELING LANGUAGES

UML Superstructure Specification, v2.1.1 521

Package BehaviorStateMachines

Figure 15.2 - State Machines

Figure 2.8: Meta model for state machines (UML 2.1 specification).

transition’s source state becomes inactive, the transition’s effect is executed,
and the transition’s target state becomes active. Note that concurrently trig-
gering two events can result in non-determinism. Figure 2.8 shows the meta
model for UML state machines (corresponding to UML 2.1). Section 3.2
contains several example state machines.

There are many semantics defined for state machines [HG97, LMM99].
The UML is a semi-formal specification, and the semantics of UML state
machines are often defined by presenting a transformation to a formal lan-
guage like Kripke structures [LMM99] or extended finite state machines (EF-
SMs) [KHBC99]. Harel and Naamad define the STATEMATE semantics for
state charts [HN96] – a corresponding tool was developed at I-Logix. Real-
time systems can be modeled with the stateflow notation supported by the
MATLAB system. In general, there are many different semantics for state
machines, and each tool vendor defines a new one.

27

CHAPTER 2. PRELIMINARIES & DEFINITIONS

For these reasons, we use a basic and intuitive definition of state machine
semantics: State changes are possible from each state. They are triggered
by events like, e.g. operation calls. Transitions are traversed until a state
is reached with no activated transition (see run to completion [Obj07, page
559] and compound transitions [Obj07, page 568]).

State machines can be used for different levels of testing (see Section 2.1.4).
For instance, if one class behavior is described, then test generation from state
machines can be used for unit testing. If several classes are described that
are, e.g., comprised in a subsystem, then this can be used for integration
testing. These two options are often applied. Additionally, describing the
behavior of all classes would allow to generate tests for system testing. Eshuis
and Wieringa [EW00] consider state machine semantics at the requirements
level.

Class Diagrams.

32 UML Superstructure Specification, v2.1.1

Figure 7.12 - Classes diagram of the Kernel packageFigure 2.9: Meta model for classes (UML 2.1 specification).

Class diagrams describe the structure of a system. Each class can con-
tain classifiers (e.g. other classes), attributes, and operations. Relations be-
tween classes are described using associations, aggregations, and composi-
tions. Classes can be derived from other classes. They can be abstract or
concrete. More information is provided in [Obj07]. Figure 2.9 is taken from
the UML 2.1 specification and shows the class meta model [Obj07, page 32].

Classes of class diagrams can also contain behavioral system properties
like operations with their pre- and postconditions. There are approaches
to derive test cases based on the pre-/postconditions of operations [AS05].
State machines are often used to describe the behavior of classes. For that,

28

2.2. MODELING LANGUAGES

the state machine is an element of the class and can reference elements of
the class. Operations are behavioral elements and, thus, can be referenced
from the effect of a state machine’s transition. Our test generation approach
in Chapter 3 will make use of that.

Interaction Diagrams.

UML Superstructure Specification, v2.1.1 459

Figure 14.4 - LifelinesFigure 2.10: Meta model for interactions and life lines (UML 2.1).

Interaction diagrams are behavioral diagrams of the UML. They describe
the interaction of several objects. For that, each interaction contains several
life lines, which reference the represented objects. Figure 2.10 is taken from
the UML 2.1 specification [Obj07, page 459] and shows these relations.

The specification defines that life lines are connected by messages that
are exchanged between the corresponding objects. On page 460, the UML
specification shows that the class MessageOccurrenceSpecification references
the class Event. The same events (instances of the class Event) can also
trigger transitions in UML state machines. In Section 5.2, we present the
combination of interaction diagrams and state machines based on this usage
of the same events.

29

CHAPTER 2. PRELIMINARIES & DEFINITIONS

2.2.2 Object Constraint Language
The Object Constraint Language (OCL) [Obj05a] is a textual language to
express constraints. It has been developed by Mark Richters [RG98] and is
used to complement the UML. OCL can be used for contract-based design,
for which Traon [lT06] also defines vigilance and diagnosibility but does not
use it for test case generation. Just like UML, the OCL is now a OMG
specification. The current version is 2.0. Several books describe the use of
this language in combination with the UML [Jos99, CKM+02, WK03]. It
can be used to create queries on the system and to specify invariants, pre-,
or postconditions [Obj05a, page 5]. Typical applications of OCL constraints
in the afore sketched UML diagrams are state invariants in state machines,
class invariants, and pre- and postconditions of operations. There is tool
support for OCL like the Dresden OCL toolkit [Fin00], the Object Constraint
Language Environment (OCLE) [LCI03], the USE tool [ZG03], and the OCL
Eclipse plug-in [Ecl05].

In this section, we present some of the fundamental elements of OCL.
Each OCL constraint is described as follows: “context:” <context-def>
<kind> <expression>. The context definition (<context-def>) references
the namespace of the OCL expression. All elements inside this namespace can
be directly used inside the expression. The kind of the expression (<kind>)
can, e.g. be “inv:”, “pre:”, or “post:”: State invariants are defined with “inv:”,
an operation’s precondition with “pre:”, and an operation’s postcondition
with “post:”. The expression (<expression>) is a boolean or an arithmetical
expression. Within postconditions, “@pre” denotes the value of a variable
before the execution of the operation.

We present two example statements of OCL expressions:
The following invariant expresses that a company has an employee with the
forename Jack:

context: Company
inv: employee->exists(forename = ’Jack’)

A postcondition can be used to require that the amount of money on a bank
account has been raised because of an incoming payment:

context: Account::deposit(value : Integer)
post: money = money@pre + value

30

2.3. MODEL-BASED TESTING

2.3 Model-Based Testing
Model-based testing usually means functional testing for which the test spec-
ification is given as a test model. The test model is derived from the system
requirements. There are only a few approaches to use model-based testing for
non-functional tests [BDL05, SEBC09]. In model-based testing, test suites
are derived (semi-)automatically from the test model. Coverage criteria are
often considered at the test model level. The interna of the SUT are not
necessarily visible (black-box or gray-box testing). Model-based testing can
be applied to all levels from unit tests to system tests. Acceptance tests
are usually not covered because user acceptance often also depends on many
imprecise expectations. Figure 2.11 shows the kinds of testing, model-based
testing can be applied to. Similar graphics are presented by Tretmans [Tre04]
and by Utting and Legeard [UL06].

Source of Test
Generation

Kind of Testing

Level of Testing

Unit

Integration

System

Acceptance

Functional Non-Functional

Requirements

Source Code

Model-Based Testing

Figure 2.11: Application fields of model-based testing.

Model-based testing plays an important role for model-driven software
verification [Utt08]. There are several advantages of model-based testing:
First, the test model is usually quite small, easy to understand, and easy to
maintain. Second, the use of test models often allows traceability from re-
quirements to test cases. Third, model-based testing can be used for testing
after system development as well as for test-first approaches. As discussed in
Section 2.1.4, test-first approaches help reducing costs. Furthermore, experi-
ence shows that the early creation of formal test models also helps in finding
faults and inconsistencies within the requirements [UL06, page 28]. Fourth,

31

CHAPTER 2. PRELIMINARIES & DEFINITIONS

the test model can be used to automatically generate small or huge test suites
that satisfy a corresponding coverage criterion. This allows to generate either
small and quickly executed test suites or big ones with a high fault detec-
tion capability. This thesis is focused on the fourth advantage: automatic
test generation. Figure 2.12 depicts the standard procedure for automatic
model-based test generation: Automatic test generation creates a test suite
that satisfies a certain coverage criterion on the test model [PPW+05]. Af-
terwards, the test suite is executed. The result is compared using the test
oracle.

Concretization
Test

Model

Test
Generation

System
Under Test

Coverage
Criterion

Test Suite Test
Execution

Abstraction

Test
Outcome

Test
Oracle

Test
Evaluation

Figure 2.12: Concretization and abstraction in model-based testing.

This section contains a sketch of different test generation approaches, the
positioning of this thesis within the field of model-based testing, and a short
comparison of model-based testing to conventional testing.

2.3.1 Approaches to Model-Based Testing
In this section, we present a survey of techniques that are used for model-
based testing. We shortly sketch graph search algorithms, random testing,
evolutionary testing, constraint solving, model checking, static analysis, ab-
stract interpretation, partition testing, and slicing.

Graph Search Algorithms.

UML state machines and many other behavioral models are kinds of graphs.
The described behavior is the sum of all possible paths through these graphs.
Graph search algorithms can be used to find paths with certain proper-
ties [Kor90, GMS99, MS04, McM04, LHM08, ATF09]. Chow [Cho95] creates
tests from a finite state machine by deriving a testing tree using a graph
search algorithm. Offutt and Abdurazik [OA99] identify elements to be cov-
ered in a UML state machine and apply a graph search algorithm to cover

32

2.3. MODEL-BASED TESTING

them. Other algorithms also include data flow information [BLL05] to search
paths. Harman et al. [HHL+07] consider reducing the input space for search-
based test generation. Gupta et al. [GMS98] find paths and propose a relax-
ation method to define suitable input parameters for these paths.

Random Testing.

Many test generation approaches put a lot of effort on generating test cases
from test models in a “clever” way. It is to be discussed whether this effort is
always justified [Pre06]. Especially in black-box testing, there are many un-
known interna, and the derivation of test information is a costly process. Sta-
tistical approaches to testing like random testing are successful in many appli-
cation areas [BM83, May05, ODC06, CLOM06, UPL06, CLOM07, CPL+08].

In random (fuzz) test approaches, usually a huge number of test cases
is created without spending much effort on the quality of the single tests.
Statistical considerations assume that faults are randomly spread over the
whole program. In such cases, random testing has often advantages over any
kind of guided test generation. The assumption that faults are often close to
partition boundaries would change this. In [ABLN06], Andrews et al. use a
case study to show that random tests can perform considerably worse than
coverage-guided test suites in terms of fault detection and cost effectiveness.
However, the effort of applying coverage criteria cannot be easily measured,
and it is still unclear which approach results in higher costs. Mayer and
Schneckenburger [MS06] present a systematic comparison of adaptive random
testing techniques. They focus their work also on the comparison of random
testing to partition testing. Gutjahr [Gut99], Weyuker, and Jeng [WJ91] also
compare random testing to partition testing. Major reasons for the success
of random testing techniques are that other techniques are immature to a
certain extent or that the used requirements specifications are partly faulty.
The main reason for the latter is that humans make errors: developers as
well as testers (see Section 2.1.2 for the prejudice Angelic Testers). Testers
often forget some cases or simply do not know about them.

The question for the applicability of statistical testing is still subject to
research. For instance, if the SUT has a complex internal state system, then
probably only a few long sequences of input stimuli with a low probability
of being generated lead to certain internal states. In such cases, statistical
testing will probably return no satisfying results, or it will need a long time
until these sequences are generated. An adequate application domain of
random testing is, e.g. library testing [CPL+08].

33

CHAPTER 2. PRELIMINARIES & DEFINITIONS

Evolutionary Testing.

There are several approaches to steer test generation or execution with evo-
lutionary approaches [MMS97, PHP99, KG04, HM07, WS07]: An initial
(e.g. randomly created or arbitrarily defined) set of test input data is refined
using mutation and fitness functions to evaluate the quality of the current
test suite. For instance, Wegener et al. [JW01] show application fields of evo-
lutionary testing. A major application area are embedded systems [SBW01].
Wappler and Lammermann apply these algorithms for unit testing in object
oriented programs [WL05]. Bühler and Wegener present a case study about
testing an autonomous parking system with evolutionary methods [OB04].

Baudry et al. [BFJT02] present bacteriological algorithms as a variation of
mutation testing and as an improvement of genetic algorithms. The variation
from the genetic approach consists of the insertion of a new memory function
and the suppression of the crossover operator. They use examples in Eiffel
and a .NET component to test their approach and show its benefits over the
genetic approach for test generation.

Constraint Solving.

The constraint satisfaction problem is defined as a set of objects that must
satisfy a set of contraints. The process of finding these object states is known
as constraint solving. There are several approaches to constraint solving de-
pending on the size of the application domain. We distinguish large but finite
and small domains. For domains over many-valued variables, such as schedul-
ing or timetabling, Constraint Programming (CP) [RvBW06], Integer Pro-
gramming (IP) [Rav08], or Satisfiability Modulo Theories (SMT) [BSST09]
with an appropriate theory is used. For extensionally representable domains,
using solvers for Satisfiability (SAT-Solver) [BHvMW09] and Answer Set Pro-
gramming (ASP) [Bar03, Gel08] are state of the art. SAT is often used for
hardware verification [DEFT09].

There are many tools (solvers) to support constraint solving techniques.
Examples for constraint programming tools are the Choco Solver [The09],
MINION [GJK+09], and Emma [Eve09]. Integer programming tools are
OpenOpt [Opt07] and CVXOPT [DV09]. An example for SMT solvers is
OpenSMT [SBT+09]. There are several competitions for solvers [BDOS08,
vMF09, DVB+09]. Constraint solving is also used for testing. Gupta et
al. [GMS98] use constraint solver to find input parameter values that enable
a generated abstract test case. Aichernig and Salas [AS05] use constraint
solvers and mutation of OCL expressions for model-based test generation.
Calame et al. [CIvdPS05] use constraint solving for conformance testing.

34

2.3. MODEL-BASED TESTING

Model Checking.

Model checking was initially developed by Edmund Clarke and Allen Emer-
son, and by Jean-Pierre Queille and Joseph Sifakis. As the name of this
technique states, properties of a model are checked. The model checking
algorithm tries to build a state space from the model to deduce whether the
model meets the property for certain (e.g. at least one or all) states. Typ-
ical tasks are the detection of deadlocks or livelocks. The representation of
all states usually leads to the state explosion problem, which is tried to be
avoided by, e.g., partial order reduction, model slicing, or a compact repre-
sentation of states. If a model checker deduces that a property does not hold,
then it returns a path in the model as a corresponding counter-example.

Model checking is often used for automatic test generation [ABM98,
GH99, FW08b]. For that, the test model and the coverage criterion to sat-
isfy are used: The coverage criterion is expressed as a set of properties (e.g.
a certain state is reached), whose elements are negated and checked by the
model checker. If the model checker deduces that the test model does not
meet the negated property (respectively meets the original property), it re-
turns a corresponding path. This path meets the original property and is
used to create a test case. If there are test cases for all properties of the used
coverage criterion, these test cases satisfy the used coverage criterion.

Model checking and test generation have been combined in different set-
tings. Hong et al. [HLSC01] discuss the application of model checking for
automatic test generation with control-flow-based and data-flow-based cov-
erage criteria. They define state machines as Kripke structures [CGP00]
and translate them to inputs of the model checker SMV [ITC98]. The ap-
plied coverage criteria are defined and negated as properties in the temporal
logic CTL [CGP00]. Callahan et al. [CSE96] apply user-specified temporal
formulas to generate test cases with a model checker. Gargantini and Heit-
meyer [GH99] also consider control-flow-based coverage criteria. Abdurazik
et al. [AADO00] present an evaluation of specification-based coverage criteria
and discuss their strengths and weaknesses when used with a model checker.
In contrast, Ammann et al. [ABM98] apply mutation analysis to measure the
quality of the generated test suites. Ammann and Black [AB00] present a
set of important questions regarding the feasibility of model checking for test
generation. Especially, the satisfaction of more complex coverage criteria like
MC/DC [CM94, Chi01] is hard because their satisfaction often requires pairs
of test cases. Okun and Black [OB03] also present a set of issues about soft-
ware testing with model checkers. They describe, e.g., the higher abstraction
level of formal specifications, the derivation of logic constraints, and the vis-
ibility of faults in test cases. Engler and Musuvathi [EM04] compare model

35

CHAPTER 2. PRELIMINARIES & DEFINITIONS

checking to static analysis. They present three case studies that show that
model checking often results in much more effort than static analysis although
static analysis detects more errors than model checking. In [JM99], a tool
is demonstrated that combines model checking and test generation. Further
popular model checkers are the SPIN model checker [Bel91], NuSMV [ITC99],
and the Java Pathfinder [HVL+99].

Static Analysis.

Static analysis is a technique for collecting information about the system
without executing it. For that, a verification tool is executed on integral
parts of the system (e.g. source code) to detect faults (e.g. unwanted or for-
bidden properties of system attributes). There are several approaches and
tools to support static analysis that vary in their strength from analyzing only
single statements to including the whole source code of a program. Static
analysis is known as a formal method. Popular static analysis tools are the
PC-Lint tool [Gim85] for C and C++ or the IntelliJ IDEA tool [Jet00] for
Java. There are also approaches to apply static analysis on test models for
automatic test generation [BFG00, OWB04, CS05, PLK07, PZ07]. Abdu-
razik and Offutt [AO00] use static analysis on UML collaboration diagrams
to generate test cases. In contrast to state-machine-based approaches that
are often focused on describing the behavior of one object, this approach is
focused on the interaction of several objects. Static and dynamic analysis
are compared in [AB05]. Ernst [Ern03] argues for focusing on the similarities
of both techniques.

Abstract Interpretation.

Abstract interpretation was initially developed by Patrick Cousot. It is a
technique that is focused on approximating the semantics of systems [Cou03,
CC04] by deducing information without executing the system and without
keeping all information of the system. An abstraction of the real system is
created by using an abstraction function. Concrete values can be represented
as abstract domains that describe the boundaries for the concrete values.
Several properties of the SUT can be deduced based on this abstraction. For
mapping these properties back to the real system, a concretization function is
used. The abstractions can be defined, e.g., using Galois connections, i.e., a
widening and a narrowing operator [CC92]. Abstract interpretation is often
used for static analysis. Commercial tools are, e.g., Polyspace [The94] for
Java and C++ or ASTRÈE [CCF+03]. Abstract interpretation is also used
for testing [Cou00, PW02].

36

2.3. MODEL-BASED TESTING

Partition Testing.

Partition testing consists of creating value partitions of input parameters and
selecting representatives from them [HT90, WJ91, Nta01] [BJK05, page 302].
This selection is important to reduce the costs of testing. The category parti-
tion method [OB88] is a test generation method that is focused on generating
partitions of the test input space. A further prominent approach for cate-
gory partition is the classification tree method (CTM) [GG93, DDB+05],
which enables testers to define arbitrary partitions and to select represen-
tatives. The application of CTM to testing embedded systems is demon-
strated in [LBE+05]. Alekseev et al. [ATP+07] propose the reuse of clas-
sification tree models. Basanieri and Bertolino use the category classifica-
tion approach to derive integration tests with use case diagrams, class di-
agrams, and sequence diagrams [BB00]. The Cost-Weighted Test Strategy
(CoWTeSt) [BBM, BBM+01] is based on prioritizing classes of test cases
in order to restrict the number of necessary test cases. CoWTeSt and the
corresponding tool CowSuite have been developed by the PISATEL labora-
tory [PIS02]. Another means to select test cases by partitioning and priori-
tization is the risk-driven approach presented by Kolb [Kol03].

Slicing.

Slicing is a technique to remove parts of a program or a model in order to
remove unnecessary parts and simplify, e.g., test generation. The idea is
that slices are easier to understand and to generate tests from than with
the whole program or model [HD95]. Program slicing was introduced in
the Ph.D. thesis of Weiser [Wei79]. De Lucia [dL01] discusses several slic-
ing methods (dynamic, static, backward, forward, etc.) that are based on
statement deletion for program engineering. Fox et al. [FHH+01] present
backward conditioning as an alternative to conditioned slicing that consists
of slicing backward instead of forward: Whereas conditioned slicing provides
answers to the question for the reaction of a program to a certain initial
configuration and inputs, backward slicing finds answers to the question of
what program parts can possibly lead to reaching a certain part or state of
the program. Jalote et al. [JVSJ06] present a framework for program slicing.

Slicing techniques can be used to support partition testing. For in-
stance, Hierons et al. [HHF+02] use the conditioned slicing [CCL98] tool
ConSIT for partition testing and to test given input partitions. Harman
et al. [HFH+02] investigate the influence of variable dependence analysis on
slicing and present the corresponding prototype VADA. Dai et al. [DDB+05]
apply partition testing and rely on the user to provide input partitions. Tip

37

CHAPTER 2. PRELIMINARIES & DEFINITIONS

et al. [TCFR96] present an approach to apply slicing techniques to class hi-
erarchies in C++. In contrast to the previous approaches, this one is focused
on slicing structural artifacts instead of behavioral ones.

2.3.2 Positioning of this Thesis4 Utting, Pretschner and Legeard

actual output conform. It fails if they do not,
and it is inconclusive when this decision cannot
be made (yet).
A test script is some executable code that ex-

ecutes a test case, abstracts the output of the
SUT, and then builds the verdict. The adaptor is
a concept and not necessarily a separate software
component—it may be integrated within the test
scripts.

Summary. Model-based testing involves the
following major activities: building the model,
defining test selection criteria and transforming
them into operational test case specifications,
generating tests, conceiving and setting up the
adaptor component (in practice, this takes a sig-
nificant proportion of the workload) and execut-
ing the tests on the SUT. The model of the SUT
is used to validate requirements and check their
consistency, as well as to generate test cases.

3. The Taxonomy

This section identifies seven different dimen-
sions of model-based testing and discusses the
possible instantiations for each dimension. The
dimensions are concerned with orthogonal con-
cepts yet do influence each other. For instance,
if a project uses a continuous model rather than
a discrete one, this is likely to limit its choice of
modelling paradigm, of test selection criteria, and
of test case generation technology.
Fig. 2 gives an overview of the taxonomy. The

vertical arrows indicate a continuous range of pos-
sibilities, the ‘A/B’ alternatives at the leaves in-
dicate mutually exclusive alternatives, while the
curved lines indicate alternatives that are not nec-
essarily mutually exclusive (for example, some
tools may use more than one generation technol-
ogy, and it is common and desirable to support
several kinds of test selection criteria).

3.1. Model Subject
The first dimension is the subject of the model,

namely the intended behaviour of the SUT or
the possible behaviour of the environment of the
SUT. Most often, both models will be used.
The model of the SUT serves two purposes.

Redundancy

Technology

On/OfflineExecution
Test

Test Selection
Criteria

Paradigm

Generation
Test

Subject

Model

Discrete / Hybrid / Continuous

Manual
Random generation
Graph search algorithms
Model−checking
Symbolic execution
Theorem proving

Structural Model Coverage
Data Coverage
Requirements Coverage
Test Case Specifications

Fault−Based

Transition−Based
History−Based
Functional
Operational

Online / Offline

Shared test&dev model

Separate test model

Timed / Untimed

SUT

Environment

Deterministic / Non−Det.

Pre−Post

Random&Stochastic

Characteristics

Figure 2. Overview of the Taxonomy

Firstly, it acts as an oracle for the SUT in that
it encodes the intended behavior. Secondly, its
structure can be exploited for the generation of
test cases. The model of the environment is used
to restrict the possible inputs to the model. As
such, it restricts the set of possible behaviors of
the model of the SUT, and in this sense, it acts
as a test selection criterion (Section 3.5). Envi-
ronment models defined by stochastic user pro-
files describe “typical” interactions with a system
under test [4,5, Chapter 2], i.e. they describe typ-
ical patterns of stimuli to the SUT. Environment
models can also be defined by stimuli that exert
certain “parts” of a system. This can be done
on the grounds of structural requirements on the
possible input data, or by restricting oneself to
one particular functionality.

Figure 3 illustrates the possibilities of combin-
ing models of the environment and the SUT. The
vertical axis shows how much of the behaviour
of the SUT is modelled, while the horizontal axis
shows how much of the environment is modelled.
The shaded area shows all the possible models
that can be used for model-based testing. Let us
consider some extreme models.

A model at position S is a model that includes

Figure 2.13: Taxonomy according to Utting, Pretschner, Legeard [UPL06]
(used with permission).

In this section, we position the used test models and the applied test
generation algorithms of this thesis in the context of model-based testing.

Figure 2.13 shows a taxonomy for model-based testing that is taken
from [UPL06]. It describes the typical aspects of model-based test gener-
ation and test execution. Its focus is on the various kinds of models and test

38

2.3. MODEL-BASED TESTING

generation techniques. We use this taxonomy to position our thesis: The sub-
ject of our test models is the SUT. The test models are separate from the
development models. Furthermore, the used test models are deterministic,
untimed, and discrete. The paradigm of the test model is pre-post as well
as transition-based, i.e. the evaluation of pre-/postconditions is combined
with a guided depth-first graph search algorithm. Satisfying structural
model coverage is used to steer the test generation. The search technol-
ogy is based on a combination of graph search algorithm and symbolic
backward execution. The test execution is mainly offline although online
test generation is simulated for the experiments in Chapter 6.

Figure 2.14 is also taken from [UPL06]. It describes the degree to which a
test model describes the SUT or its environment. Model S describes the SUT
but has no information about the environment. This can be an advantage as
well as a disadvantage. As an advantage, the SUT is tested independent of
the environment and is expected to cope equally well with all environments.
As a disadvantage, the tests do not take the conditions of the environment
into account, which could help, e.g., to narrow the possible input data space.
Model E just describes the environment but has no information about the
SUT. Model SE contains information about the SUT and the environment.
For all these models, it is most important to abstract. Otherwise, the test
model’s complexity would be too high to handle. This is shown with the
three models M1, M2, and M3. Our approach is focused on models that
describe the SUT. There is, however, no restriction to the extent to which
the SUT’s environment is included in the test model. Thus, the used models
can be described with M1 or M2.A Taxonomy of Model-Based Testing 5

SUT

Env

Model−Based
Testing

E

S SE

M3

Abstraction

M1
M2

Figure 3. Model-based testing uses models of the
SUT and its environment.

all the details of the SUT but says nothing about
the expected environment. That means that no
“sanity constraints” on the input space of the
SUT are imposed.
Model E is the opposite. It has full knowl-

edge of the environment that the SUT will be
placed in, but knows nothing about the desired
SUT behaviour. This means that the model spec-
ifies all the legal test inputs, but gives no infor-
mation about the expected outputs of the SUT.
The (implicit) expectation that no exception oc-
curs would already form an abstract model of the
SUT.
Position SE is the most extreme case. Every-

thing about the SUT and its environment is mod-
elled. This is in general too much detail to be
practical; the model would be as complex as the
SUT itself. Consequently, they do not occur in
practice. Abstraction is essential, so models like
M1–M3 are typical for model-based testing.
We have not said how abstraction—obviously

a crucial component of model-based testing—can
be performed. Prenninger and Pretschner [1]
point out that abstraction can (a) be induced by
the modelling language itself—e.g., by not pro-
viding any means to cater for security-related
issues—or (b) by the modeller who explicitly dis-
cards certain information, e.g. timing issues. In
practice, both variants are used. Issues that are
subject of abstraction in the second sense include
the following.
Function Abstraction. The model omits

some of the SUT functionality. This is a widely
applied abstraction principle. In many cases, cer-
tain parts of the functionality are deemed uncriti-
cal or so simple that there is no need for explicitly

building a model.
Data Abstraction. This applies to abstrac-

tions of both the input and the output. Input
abstraction means that the model omits or sim-
plifies some inputs of an SUT operation. One
example is the abstraction of a set of four-digit
PINs in the into two classes, “correct PIN”, and
“incorrect PIN”. Output abstraction means that
the model omits or simplifies some outputs of an
SUT operation. This simplifies the model, but
may also reduce its oracle power. One example
is given by the abovementioned model of a ran-
dom number generator in a chip card. There are
also situations where it is deemed appropriate to
abstract input and the desired output into one
single signal [6].
Communication Abstraction. This ab-

straction principle is exemplified by the ISO/OSI
stack where the lower levels are sequences of stim-
uli that are abstracted into one single signal at an
upper level. Even within one level, sequences of
stimuli, or permutations of the stimuli in one se-
quence, can be represented by one single signal.
This abstraction is often used in the context of
protocol testing where, for instance, it is possible
to represent some handshaking in the beginning
by one single abstract signal. It is also possible
for the model of the SUT to ignore certain signals
altogether.
Abstraction from Quality-of-Service.

This general abstraction principle is often used to
abstract from concerns such as timing, security,
memory consumption, etc. In case of timing, for
instance, one might stick to some definition of a
logical rather than to actual physical time.

3.2. Model Redundancy Level
Model-based testing can be applied in many

different scenarios. Roughly, these differ in the
level of redundancy between modelling for test-
ing and/or for implementation. In the following,
we briefly review two possible scenarios [2]. The
first scenario considers one model that is used to
generate both test cases and code. The second
scenario considers a testing-specific model that is
built from the specification documents, while the
SUT is implemented manually.
One shared model for test cases and

Figure 2.14: Test models describe the SUT or its environment according to
Utting, Pretschner, Legeard [UPL06] (used with permission).

2.3.3 Comparison to Conventional Testing
In our context, conventional testing means one of two things: manual test
creation or automatic code-based test generation.

39

CHAPTER 2. PRELIMINARIES & DEFINITIONS

In many companies, tests are manually designed by testers or by develop-
ers – both approaches have advantages and disadvantages [Bec00]. A disad-
vantage that they share is the high effort to maintain test suites. There is no
traceability from requirements to test cases. As a result, for each change of re-
quirements, someone has to check all existing test suites manually. From our
industrial cooperation projects, we know that even for small changes in small
projects at least one man-week has to be sacrificed to update the test suite.
In model-based testing, the initial test model development is also costly. In
contrast to manual testing, however, the test maintenance in model-based
testing is cheap: The test model is adapted once and the whole test suite is
automatically generated afterwards. Furthermore, the test model is often far
more easy to understand than the test suite.

In automatic code-based test generation, the functionality of the system’s
source code is tested. There are many provers and model checkers that work
on source code. They allow to find inconsistencies in the control flow or
data flow that may lead to unwanted system behavior, e.g. system crash.
Due to the missing redundant test specification, code-based testing is un-
able to detect functional faults. This also excludes the detection of missing
functionality.

As presented in Section 2.1.4, costs for testing increase with the SUT’s
degree of completion. Manual test creation is costly, and code-based test gen-
eration has the drawback that testing can only start after implementation.
In contrast, model-based testing allows to find faults before the implementa-
tion phase. The creation of formal and coherent test models results in many
questions that can often help to detect inconsistencies in the requirements
specification. As an example, Holt et al. [HAA+06] present experiences of a
case study about the advantages of precise modeling with state machines for
safety-critical applications.

2.4 Coverage Criteria Formalization

Coverage criteria are a popular means to measure the fault detection capa-
bility of test suites and to steer test suite generation. Their definitions are,
however, often vague and informal. It is hard to even find a definition of
what coverage criteria actually are. In this section, we name some of the
resulting issues and present formal definitions of coverage criteria, test goals,
and their satisfaction.

40

2.4. COVERAGE CRITERIA FORMALIZATION

2.4.1 Issues of Current Coverage Criteria Definitions
Although coverage criteria have been used for decades, their descriptions are
often vague, vary depending on the artifact they are applied to (e.g. models
or source code), and depend on the cited author.

For instance, the coverage criterion All-Transitions requires to traverse
all transitions of a state machine. There seems to be no general agreement
about the traversal of a composite state’s outgoing transitions (cp. [UL06,
page 117]): Are they to be traversed for each substate of the composite state
or just once? One solution consists of applying the same coverage criterion
once to a hierarchical and once to a flattened state machine.

As another example, All-Transition-Pairs requires to cover all adjacent
transitions [UL06, page 118]. However, outgoing transitions of a composite
state s and incoming transitions of s’s final states are consecutively traversed
but not adjacent and, thus, not necessarily covered? Flattening the state
machine can help to enforce the inclusion of such transition pairs.

Subsumption is used to compare coverage criteria. It depends on the def-
inition of coverage criteria. For instance, the subsumption relation between
All-States and All-Transitions seems to be obvious: If all transitions are tra-
versed, then also all states are visited and, thus, All-Transitions subsumes
All-States? As stated above, one problematic (although artificial) scenario is
a state machine with just one state and no transitions: An empty test suite
would satisfy All-Transitions but not All-States, which contradicts the afore
mentioned subsumption relation.

2.4.2 Coverage Criteria and Their Satisfaction
In this section, we formally define coverage criteria, test goals, and how to
satisfy them. Figure 2.15 shows all the used symbols. They are explained in
the following. P(X) denotes the power set of a set X.

State Machines: SM
Step Patterns: SP
Step Coverage: SPCov
Trace Patterns: TP
Trace Coverage: TPCov
Atomic Test Goals: ATG
Complex Test Goals: CTG
Test Goals: TG
Coverage Criteria: CC
Coverage Criteria Satisfaction: |=

Figure 2.15: Names and symbols for formal definitions of coverage criteria.

41

CHAPTER 2. PRELIMINARIES & DEFINITIONS

SM denotes the set of all UML state machines [Obj07, page 519]. Step
patterns SP represent the abstract behavior of parts of test cases in a state
machine. A step pattern sp ∈ SP is a 4-tuple (c, E, cva, T) of a state config-
uration c, a set of events E, a guard condition value assignment cva, and a
set of transitions T . It describes a behavior that includes visiting the state
configuration c (set of active states) and afterwards triggering one event
e ∈ E, satisfying a certain condition value assignment cva for guard condi-
tions, and traversing one of the transitions t ∈ T . Relations of step coverage
SPCov ⊆ SP ×SP are used to describe steps that match step patterns. If a
step pattern spc representing one part of a test case on the level of the state
machine meets the description of a step pattern sp, spc is said to cover sp:
(spc, sp) ∈ SPCov. Note that step patterns are used at different abstraction
levels to describe the actual behavior as well as the abstract description that
is covered by the actual behavior. The wild-card “?” is used if elements of
the step pattern do not exist or are unimportant. We clarify these defini-

S2S1 e

t

Figure 2.16: State machine example to clarify definitions of coverage.

tions with an example. Figure 2.16 shows a state machine with two states
S1 and S2, one transition t that is triggered by the event e. Consider a
test case that visits the state S1 and traverses the transition t by calling
the event e. A step pattern that describes a this step is ({S1}, {e}, ?, {t}).
This step pattern covers, e.g., the step patterns ({S1}, ?, ?, ?), (?, {e}, ?, ?),
and (?, ?, ?, {t}). Attaching “¬” to an element of the tuple describes this
element’s exclusion from the step pattern. For instance, ({S1}, {x}, ?, {¬t})
describes that the state machine in state S1 reacts to the event x for all
guard value assignments by doing anything but traversing the transition t.
Step patterns do not necessarily describe the traversal of transitions but the
general state machine behavior, which also includes remaining in a state.

Trace patterns tp ∈ TP are sequences (ordered multisets) of step patterns
SP. A step pattern sp annotated with a “∗” describes an arbitrary number of
steps that all cover sp. The length of tp is denoted tp.length. The n-th step
pattern of tp is tp[n − 1]. Corresponding to step coverage, trace coverage is
used to describe traces that match a certain trace pattern: TPCov ⊆ TP ×
TP . Like for step patterns, trace patterns can describe the actual behavior
as well as the described pattern. A trace pattern tpc describing the abstract
behavior of a test case tc ∈ TS covers a trace pattern tp ((tpc, tp) ∈ TPCov)

42

2.4. COVERAGE CRITERIA FORMALIZATION

iff there is a subsequence tpcsub of tpc so that for each n (0 ≤ n < tp.length):
(tpcsub[n], tp[n]) ∈ SPCov. We clarify the notion of trace pattern coverage
with the example in Figure 2.16. Imagine a test case that includes a state
change from S1 to S2 using the transition t, which is triggered by the event
e. There is no guard condition. A trace pattern that describes this behavior
is (({S1}, {e}, ?, {t}), ({S2}, ?, ?, ?)). In contrast to the previously presented
step pattern, the just presented trace pattern also includes the information
that state S2 is active after traversing t. It covers, e.g., the trace patterns
(({S1}, ?, ?, ?)), (({S2}, ?, ?, ?)), ((?, {e}, ?, ?)), and ((?, ?, ?, {t})).

Each atomic test goal atg ∈ ATG is defined as a set of trace patterns,
i.e. ATG ⊆ P(TP). It is satisfied by a test case iff the test case’s trace
covers at least one of the test goal’s trace patterns. Atomic test goals can
be combined by boolean operators to more complex expressions, which we
call complex test goals ctg ∈ CTG. The satisfaction of an atomic test goal
corresponds to a true value in this boolean expression. A complex test goal
ctg is satisfied if the boolean expression of atomic test goals is satisfied, i.e. a
sufficient set of included atomic test goals is satisfied. Complex test goals
are needed to describe coverage criteria like MC/DC [CM94], for which one
test goal can require several atomic test goals to be satisfied, e.g. each by a
separate test case. The set of all test goals TG denotes the union of atomic
and complex test goals: TG = ATG ∪ CTG.

Coverage criteria cc ∈ CC are functions that return test goals for each
state machine: CC ⊆ {cc | cc : sm→ TGS; sm ∈ SM ; TGS ⊆ TG}. Cover-
age criteria satisfaction |= is a relation between trace patterns describing test
cases and test goals: |= ⊆P(TP)×P(TG). A coverage criterion cc ∈ CC
on a state machine sm ∈ SM is satisfied by a set of traces trcs ∈ P(TP)
iff each test goal tg ∈ cc(sm) is satisfied. This means that at least one trace
pattern tpg of each atomic test goal tg ∈ ATG is covered by at least one
trace of trcs: trcs |= cc(sm) iff ∀tg∈cc(sm)∃tpt∈trcs,tpg∈tg : (tpt, tpg) ∈ TPCov.
For complex coverage criteria like MC/DC, it is adequate to satisfy only a
sufficient set of included atomic test goals. There might be infeasible test
goals for each coverage criterion. Common reasons are unreachable states or
restrictions for guard value assignments. Thus, a coverage criterion is con-
sidered satisfied if all feasible test goals are satisfied. In the following, we
present formal definitions of coverage criteria.

2.4.3 Formal Definitions of Coverage Criteria
In this section, we apply the afore presented formalization to define the state-
machine-related coverage criteria that are presented in Section 2.1.5: We
define the transition-based coverage criteria All-States, All-Configurations,

43

CHAPTER 2. PRELIMINARIES & DEFINITIONS

All-Transitions, All-Transition-Pairs, and All-Paths. After that, we define
the control-flow-based coverage criteria Decision Coverage, Condition Cover-
age, Decision/Condition Coverage, MC/DC, and Multiple Condition Cover-
age. Finally, we present definitions for the data-flow-based coverage criteria
All-Defs, All-Uses, and All-Def-Use-Paths. Each coverage criterion is a func-
tion that returns a set of test goals for a given state machine. While every
concrete coverage criteria definition is not specific to the concrete state ma-
chine, the returned test goals are. The test goals can be used to create test
cases and to measure the degree of coverage criterion satisfaction. Boundary-
based coverage criteria are applied to value partitions. A value partition is
defined as a set of constraints that specify a set of objects that are associated
with the partition. All already presented definitions are clear and, thus, we
desist from presenting formal definitions of boundary-based coverage criteria.

All-States.

The coverage criterion All-States is satisfied on a state machine if each state is
visited [UL06, page 117]. Figure 2.17 shows the pseudocode for the definition
of All-States. It shows that for each vertex v, an atomic test goal is created
that contains a trace that is visiting v – triggered events, value assignments,
and traversed transitions are irrelevant.

P(TG) All-States(SM sm) {
testgoals = {};
for each vertex v in sm {

testgoals.add(new ATG((({v}, ?, ?, ?)))); }
return testgoals; }

Figure 2.17: Definition of All-States.

All-Configurations.

All-Configurations is satisfied iff all configurations (sets of concurrently active
states) are visited. Figure 2.18 shows the corresponding pseudocode.

P(TG) All-Configurations(SM sm) {
testgoals = {};
for each configuration c in sm {

testgoals.add(new ATG(((c, ?, ?, ?)))); }
return testgoals; }

Figure 2.18: Definition of All-Configurations.

44

2.4. COVERAGE CRITERIA FORMALIZATION

All-Transitions.

The coverage criterion All-Transitions [UL06, page 117] is satisfied on a state
machine if all transitions of the state machine are traversed. Figure 2.19
shows the pseudocode for the definition of All-Transitions: For each transi-
tion t, an atomic test goal is created with a trace pattern that just traverses t.
In order to guarantee the subsumption of All-States, All-Transitions includes
all test goals returned by All-States(sm).

P(TG) All-Transitions(SM sm) {
testgoals = All-States(sm);
for each transition t in sm {

testgoals.add(new ATG(((?, ?, ?, {t})))); }
return testgoals; }

Figure 2.19: Definition of All-Transitions.

All-Transition-Pairs.

The coverage criterion All-Transition-Pairs [UL06, page 118] is satisfied on
a state machine if all pairs of adjacent transitions are traversed at least
once [UL06, page 118]. Figure 2.20 shows the pseudocode for the defini-
tion of All-Transition-Pairs: For each pair of adjacent transitions t1 and
t2, an atomic test goal is created that contains a trace pattern with two
step patterns that traverse t1 and t2, respectively. In order to guaran-
tee the subsumption of All-Transitions, All-Transition-Pairs initially calls
All-Transitions(sm). For defining All-n-Transitions, the definition of All-
Transition-Pairs is extended from pairs of transitions to sequences of length n.

P(TG) All-Transition-Pairs(SM sm) {
testgoals = All-Transitions(sm);
for each transition t1 in sm {

for each outgoing transition t2 of the target state of t1 {
testgoals.add(new ATG(((?, ?, ?, {t1}), (?, ?, ?, {t2})))); }}

return testgoals; }

Figure 2.20: Definition of All-Transition-Pairs.

All-Paths.

All-Paths [UL06, page 119] is satisfied if all possible paths of a state machine
are traversed at least once. Since any state machine with loops (i.e. transi-

45

CHAPTER 2. PRELIMINARIES & DEFINITIONS

tion sequences with the same start and end configuration) can result in an
infinite set of paths, All-Paths is considered an infeasible coverage criterion.
Figure 2.21 shows the formal definition of All-Paths. To guarantee the sat-
isfaction of the initial configuration, All-Configurations is called, first. Since
All-Paths is infeasible, the pseudocode is not guaranteed to terminate.

P(TG) All-Paths(SM sm) {
testgoals = All-Configurations(sm);
Configuration c = set of all initial nodes of the regions of sm;
List transitions = ();
testgoals.addAll(getPaths(c, transitions));
return testgoals;

}

P(TG) getPaths(Configuration c, List transitions) {
testgoals = {};
TP tracepattern = new TP();
for i=0 to transitions.length-1 {

tracepattern.add((?, ?, ?, {transitions.get(i)})); }
if(transitions.length > 0) {

testgoals.add(new ATG(tracepattern)); }
for each vertex v of c {

for each outgoing transition t of v {
transitions.addToEnd(t);
c.remove(v);
c.add(t.target);
testgoals.addAll(getPaths(c, transitions));
transitions.removeFromEnd(t);
c.add(v);
c.remove(t.target);

}}}

Figure 2.21: Definition of All-Paths.

The pseudocode in Figure 2.21 starts with the initial configuration. The
function getPaths(c,transitions) uses this configuration and the path that
was already traversed to generate atomic test goals. New paths are searched
for in a depth-first manner by adding all outgoing transitions of the states
that are included in the current configuration. Since this algorithm basically
describes all transition execution sequences, it can be arbitrarily complex,
e.g., by including outgoing transitions or initial states of composite states.

Decision Coverage.

Decision Coverage [UL06, page 112] is a simple control-flow-based coverage
criterion. It is satisfied iff each guard condition is evaluated to true and false,

46

2.4. COVERAGE CRITERIA FORMALIZATION

respectively. Some test goals might be infeasible. For instance, tautologies
cannot be negated. We define that default guard conditions of unguarded
transitions are satisfied if the transitions are traversed. Thus, Decision Cov-
erage subsumes All-Transitions. Figure 2.22 shows the pseudocode definition
of Decision Coverage.

P(TG) DecisionCoverage(SM sm) {
testgoals = All-Transitions(sm);
for each transition t in sm {

Expression positive = "false";
Expression negative = "false";
for each value assignment va for the guard of t {

cva = va expressed as a logical formula;
if the guard of t is satisfied for va {

positive = positive + " ∨ cva";
} else {

negative = negative + " ∨ cva";
}}

testgoals.add(new ATG((({t.source}, t.events, positive, ?))));
testgoals.add(new ATG((({t.source}, t.events, negative, ?))));}

return testgoals; }

Figure 2.22: Definition of Decision Coverage.

The essence of this definition is to evaluate the results of all value assign-
ments and collect them in positive and negative expressions by connecting
them by disjunction. As a result, using one of these value assignments at
the current guard condition results in satisfying the corresponding positive
or negative test goal.

Condition Coverage.

P(TG) ConditionCoverage(SM sm) {
testgoals = {};
for each transition t in sm {

for each atomic condition ac of the guard of t {
testgoals.add(new ATG((({t.source}, t.events, ac, ?))));
testgoals.add(new ATG((({t.source}, t.events, ¬ ac, ?))));

}
}
return testgoals; }

Figure 2.23: Definition of Condition Coverage.

Condition Coverage [UL06, page 112] is satisfied if for each guard condi-
tion, all included atomic boolean expressions are evaluated to true and false,

47

CHAPTER 2. PRELIMINARIES & DEFINITIONS

respectively. In contrast to Decision Coverage, this does not imply the satis-
faction or violation of the guard. Figure 2.23 shows the pseudocode for the
definition of Condition Coverage.

Decision/Condition Coverage.

The coverage criterion Decision/Condition Coverage is the union of Decision
Coverage and Condition Coverage. Correspondingly, the algorithm to define
this coverage criterion consists of just reusing the definitions of Decision
Coverage and Condition Coverage (see Figure 2.24).

P(TG) DecisionConditionCoverage(SM sm) {
testgoals = DecisionCoverage(sm);
testgoals.addAll(ConditionCoverage(sm));
return testgoals; }

Figure 2.24: Definition of Decision/Condition Coverage.

Modified Condition/Decision Coverage.

The purpose of Modified Condition/Decision Coverage (MC/DC) is to show
the isolated impact of each atomic expression on the guard evaluation re-
sults [CM94] [UL06, page 114]. The isolated impact is shown by changing
only one variable and fixing all others while the evaluation results changes.
As stated above, there are different kinds of MC/DC: unique-cause, masking,
and the mix of both.

Figure 2.25 shows a possible pseudocode for unique-cause MC/DC. It
shows that each atomic condition ac of each transition guard is considered:
For each truth table row of the whole guard condition (excluding the cur-
rently selected atomic condition ac), the value of ac is set once to true and
once to false. If the guard evaluations of the resulting two value assignment
conditions differ, ac is said to have an isolated impact on the guard. The
atomic test goals atg1 and atg2 contain the corresponding trace patterns.
They are connected by conjunction and add to the complex test goal ctg by
disjunction. Such a complex test goal is satisfied if the test suite traces cover
the traces patterns of at least one conjuncted pair of atomic test goals. The
elements of the pair differ only in the value of ac. There are probably several
ways to optimize this algorithm. The intention of displaying the algorithm
was to show that the proposed framework can also be used to describe such
complex coverage criteria.

48

2.4. COVERAGE CRITERIA FORMALIZATION

P(TG) UniqueCauseMCDC(SM sm) {
testgoals = All-Transitions(sm);
for each transition t in sm {

for each atomic condition ac in the guard of t {
CTG ctg = new CTG();
testgoals.add(ctg);
for each value assignment condition cva for the guard of t {

remove the value asignment for ac from cva;
value assignment condition cva1 = cva and ac = true;
value assignment condition cva2 = cva and ac = false;
if the guard value for cva1 differs from that for cva2 {

atg1 = new ATG((({t.source}, t.events, cva1, ?)));
atg2 = new ATG((({t.source}, t.events, cva2, ?)));
ctg = ctg ∨ (atg1 ∧ atg2);

} } } }
return testgoals;

}

Figure 2.25: Definition of unique-cause MC/DC.

Multiple Condition Coverage.

Multiple Condition Coverage (MCC) [UL06, page 114] is satisfied on a state
machine if each value assignment of the truth tables of all guards is tested.
Figure 2.26 shows the pseudocode for the definition of MCC. It shows that for
each guard condition value assignment cva representing one row of a guard’s
truth table, a test goal is created with a trace pattern that references t’s
source state t.source, t’s set of events t.events, and cva. Since the guard of t
may not be satisfied by cva, t may not be traversed and, thus, no transition
is referenced in the test goal.

P(TG) MultipleConditionCoverage(SM sm) {
testgoals = All-Transitions(sm);
for each transition t in sm {

for each condition value assignment cva for the guard of t {
testgoals.add(new ATG((({t.source}, t.events, cva, ?)))); }}

return testgoals; }

Figure 2.26: Definition of Multiple Condition Coverage.

All-Defs.

All-Defs [UL06, page 115] is a data-flow-based coverage criterion. It is satis-
fied iff for each variable var and each defining transition t_d of var, at least
one pair of t_d and any using transition t_u of var is tested. Figure 2.27

49

CHAPTER 2. PRELIMINARIES & DEFINITIONS

depicts the pseudocode for All-Defs. For each (t_d, t_u), an atomic test goal
is created that demands to traverse the containing transitions t_d and t_u
without traversing a transition t_rd in between that redefines var. Since
traversing one use for each definition is enough to satisfy All-Defs, we add all
atomic test goals of one variable to one complex test goal that combines them
by disjunction. Note that a transition that contains a use and a definition of
a variable var results in infeasible test goals.

P(TG) All-Defs(SM sm) {
testgoals = {};
for each variable var in sm {

for each transition t_d that references a definition of var {
t_rd = set of all transitions except t_d that define var;
CTG ctg = new CTG();
testgoal.add(ctg);
for each transition t_u that references a use of var {

ATG atg = new ATG(((?, ?, ?, {t_d}),
(?, ?, ?, {¬t_rd})*, (?, ?, ?, {t_u}))));

ctg = ctg ∨ atg;
return testgoals; }

Figure 2.27: Definition of All-Defs.

All-Uses.

All-Uses [UL06, page 115] is satisfied on a state machine iff all def-use-pairs
(t_d, t_u) of all variables var are tested. Figure 2.28 depicts the pseudocode
for All-Uses. For each (t_d, t_u), a test goal is created that demands to tra-
verse the containing transitions t_d and t_u without traversing a transition
t_rd in between that redefines var.

P(TG) All-Uses(SM sm) {
testgoals = {};
for each variable var in sm {

for each transition t_d that references a definition of var {
t_rd = set of all transitions except t_d that define var;
for each transition t_u that references a use of var {

testgoals.add(new ATG(((?, ?, ?, {t_d}),
(?, ?, ?, {¬t_rd})*, (?, ?, ?, {t_u})))); }}}

return testgoals; }

Figure 2.28: Definition of All-Uses.

50

2.4. COVERAGE CRITERIA FORMALIZATION

All-Def-Use-Paths.

The satisfaction of All-Def-Use-Paths requires to test all paths between all
def-use-pairs. Figure 2.29 shows the pseudocode for this coverage criterion.
In the main function All-Def-Use-Paths(sm), all def-use-pairs of all variables
var are identified. The function getAllTestGoalPathsBetween(var, t_d, t_u)
is called to identify all possible paths between t_d and t_u. For that, all
configurations that may result from traversing t_d are used one by one as
starting point to identify paths to t_u. The function findAllPaths(var, c,
transitions, t_u) is called to identify these paths. A test goal is created if
the generated transition sequence ends with t_u. The search is stopped if
the current transition redefines the variable var. Since All-Def-Use-Paths is
considered infeasible, this algorithm is not guaranteed to terminate.

51

CHAPTER 2. PRELIMINARIES & DEFINITIONS

P(TG) All-Def-Use-Paths(SM sm) {
testgoals = {};
for each variable var in sm {

for each transition t_d that references a definition of var {
for each transition t_u that references a use of var {

testgoals.add(getAllTestGoalPathsBetween(sm, var, t_d, t_u));
}}}
return testgoals; }

P(TG) getAllTestGoalPathsBetween(SM sm, Variable var, Transition t_d,
Transition t_u) {

testgoals = {};
Vertex v = target state of t_d;
Set confs = set of all configurations of sm that include v;
for each configuration c of confs { // use all configurations

List transitions = (t_d); // the first transition is t_d
testgoals.addAll(findAllPaths(var, c, transitions, t_u)); }

return testgoals; }

P(TG) findAllPaths(Variable var, Configuration c,
List transitions, Transition t_u) {

testgoals = {};
TP tracepattern = new TP();
if(t_u is equal to transitions.length-1) { // last transition is t_u?

for i=0 to transitions.length-1 {
tracepattern.add((?, ?, ?, {transitions.get(i)}));

}
testgoals.add(new ATG(tracepattern)); // create test goal

}
for each vertex v in c {

for each outgoing transition t of v {
if(t does not redefine var) { // redefine var? - stop!

transitions.addToEnd(t);
c.remove(v);
c.add(t.target);
testgoals.addAll(findAllPaths(c, transitions, t_u));
transitions.removeFromEnd(t);
c.add(v);
c.remove(t.target);

}}}}

Figure 2.29: Definition of All-Def-Use-Paths.

52

Chapter 3

Automatic Model-Based Test
Generation

In this chapter, we present a new model-based test generation approach from
UML state machines and class diagrams annotated with OCL expressions.
Coverage criteria are used to steer the test generation process. The presented
test generation approach allows to combine data-flow-based, control-flow-
based, or transition-based coverage criteria with boundary-based coverage
criteria. The combination of these kinds of coverage criteria is the first con-
tribution of this thesis. We complement it with approaches to combine and
transform test models in the following chapters.

This chapter is structured as follows. We present a short motivation
for the combination of structural (data-flow-based, control-flow-based, and
transition-based) coverage criteria with boundary-based coverage criteria in
Section 3.1. This comprises preliminaries like the definition of input parti-
tions, output partitions, and their relations to abstract test cases like, e.g.,
transition paths in the state machine. After that, we will introduce several
example test models in Section 3.2. These examples are used several times
as case studies for automatic test generation. In Section 3.3, we present
the test goal management, which is focused on managing test goals during
automatic test generation. We present the corresponding concrete test case
generation approach for single test goals in Section 3.4. In Section 3.5, we
present our developed prototype ParTeG (Partition Test Generator) [Weib]
and the corresponding results of applying ParTeG to the mentioned test mod-
els. Subsequently, we describe the related work in Section 3.6. This chapter
ends with conclusion, discussion, and a survey of future work in Section 3.7.

53

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

3.1 Motivation
This section contains a motivation for our new test generation approach: We
shortly describe the benefits of combining different kinds of coverage criteria.

For the description of reactive systems, graph-based models like UML
state machines are often applied. As described above, the quality or the
adequacy of test cases is often measured with coverage criteria that are fo-
cused on data flow, control flow, or transition sequences [UL06, page 110].
There are many approaches, like model checking, genetic algorithms, or graph
search algorithms, that are used to satisfy such coverage criteria for graph-
based models (see Sections 2.1.5, 2.3, and 3.6). One important problem of
the existing test generation approaches is the selection of concrete input val-
ues: The approaches often use random input values and determine whether
the specified model elements are covered. There are approaches that allow
the user to define input values manually [BSV08]. Such approaches, however,
do not comprise information about the quality of the input values. There is
need to apply means of representative input value selection.

An alternative approach to user-defined or manually chosen input val-
ues is partition testing, which divides the input space into input partitions.
Each input partition is a set of constraints for objects that are assumed
to trigger the same system behavior. This assumption is called the unifor-
mity hypothesis [BGM91]. As a consequence of this assumption, only a few
representatives of these equivalence classes are chosen instead of all values.
Experience shows that many faults occur near the boundaries of equivalence
classes [WC80, CHR82]. There are corresponding boundary-based coverage
criteria for the selection of representatives from input partitions [KLPU04].
These coverage criteria can be combined with other approaches from par-
tition value analysis like additionally selecting random elements from the
inside of partitions [Bei90]. The issue of input partitions is that they are
only applied to the input space of non-reactive systems [BJK05, page 301],
i.e. systems that behave like a function: Only the input space is considered
and information about state changes or further behavior is neglected.

Both approaches of creating abstract test cases and selecting concrete
input values are important aspects of automatic model-based test generation.
However, they are often considered in isolation because each of them is only
applied to reactive or non-reactive systems, respectively. The core idea of
our test generation approach is to combine both approaches and make them
applicable to reactive systems. Our approach basically consists of three steps:
(1) defining output partitions as visible behavior of a system under test;
(2) using abstract behavior information to generate abstract test cases by
backward abstract interpretation; and (3) deriving test case-specific input

54

3.1. MOTIVATION

partitions from output partitions at the same time. The results are abstract
test cases that comprise information about input values. This information is
used to form input partitions and, subsequently, to select proper input values.
The abstract test cases satisfy the chosen structural, e.g., control-flow-based,
coverage criterion. For each abstract test case, proper input values can be
selected to satisfy a chosen boundary-based coverage criterion. The result
of this approach is a test suite that satisfies a combination of both kinds of
coverage criteria.

In Section 3.1.1, we introduce input and output partitions as equiva-
lence classes and describe their relations. After these considerations, we
show the mutual dependency of input partitions and abstract test cases in
Section 3.1.2. Section 3.1.3 contains a description of how to derive input
partitions from output partitions. In Section 3.1.4, we describe boundary
value analysis as a means to select conrete values from input partitions.

3.1.1 Value Partitions
In this section, we introduce value partitions. Value partitions are constraints
that describe a set of objects. We distinguish input and output partitions as
well as linear-ordered and unordered partitions.

Input Partitions and Output Partitions.

Input partitions are used to group input parameters of the SUT, e.g. user
input data. Corresponding to the uniformity hypothesis [BGM91], all rep-
resentatives of an input partition are assumed to trigger the same behavior.
Thus, only a few representatives are selected for test execution. Otherwise,
the definition of the input partitions would be needless. Besides that, select-
ing all representatives might be impossible. The selection of “good” repre-
sentatives is an important problem. It depends on two things: the selection
of representatives from partitions, and the definition and selection of the par-
titions themselves. Experience shows that faults often occur near partition
boundaries [WC80, CHR82]. In many cases, however, the partitions are de-
fined manually by the user and based on the user’s experience and knowledge.
A vital threat to this approach is that the input partitions might be invalid.
As a consequence, the selected representatives are not boundary values for
the real behavior, and the selected elements could only accidentally trigger
the expected behavior. In both cases, the selected values are more or less
worthless or at least not as meaningful as intended.

Output partitions are used to group observable output data of the system’s
behavior. Such data can be used to recognize the behavior of the SUT and

55

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

to compare it to the expected behavior. Thus, output partitions are used
to group equal values for system behavior. They are important for the test
oracle, i.e. to decide whether an executed system behavior corresponds to
the test specification. They are not used for test input data selection.

In testing, input partitions and output partitions are used for value selec-
tion and test oracle, respectively. There is, however, a connection between
them as elements of input partitions are fed into the SUT and, afterwards, re-
sult in output values of output partitions (see Figure 3.1). If input partitions
are defined manually [Con, PE05], this relation is not taken into account.
The absolute definition of input partitions assumes that the defined parti-
tions are valid for virtually all possible abstract test cases. As we will show
in Section 3.1.2, they are not.

SUTInput
Partition

Output
Partition

insert observe

derive
Figure 3.1: Relation between input partitions and output partitions.

Value Type Order.

Each partition is influenced by the type of the contained values. We distin-
guish linear-ordered types and unordered types (see page 19).

Instances of linear-ordered types are sorted. There is a distance function
dist for such data types. Boundaries of a partition are defined as all ele-
ments of the partition for which an element of another partition is within a
certain distance value dmax [KLPU04]. Figure 3.2 shows a partition for an

20 21 22 23 24 257 8 9 10 11 12 13 14 15 16 17 18 19 age

teenager

Figure 3.2: Partition for teenager age.

attribute age of integer type. Solid lines depict the boundaries of partitions.
The hachure shows the partition for which the boundary is inclusive. In this
example, the valid age for a teenager is depicted: A person is a teenager if its
age is between 14 (inclusive) and 18 (exclusive). The value dmax for boundary
distance is set to 1, i.e. all elements b are boundaries for which there is an-
other element e from another partition with dist(b, e) ≤ 1. Correspondingly,
the boundary values for the teenager partition are the values 14 and 17.

56

3.1. MOTIVATION

Instances of unordered types are not ordered. There is no notion of dis-
tance between such elements and, thus, there cannot be a definition of parti-
tion boundaries based on distances. Each representative of such a partition
is statistically as good as any other. A well-known example of unordered
types are enumerations. Figure 3.3 exemplary shows two partitions P1 and
P2 of type enumeration. In this example, the enumeration values are wares
for a coffee vending machine. The partitions are used to distinguish hot (P1)
and cold (P2) beverages. There is no obvious way to define that one of the
values of one partition is closer to the other partition than another value.

P1
coffee, tea

P2
milk, coke,
lemonade

Figure 3.3: Two partitions of an enumeration.

For many applications, there are more than one parameters that influ-
ence the result of the output (cf. sorting machine, freight elevator, or triangle
classificator in Section 3.2). The linear-ordered partitions of such parameters
are combined to create the resulting partitions. They influence each other.
Figure 3.4 shows the partitions of the two input parameters of the sorting
machine example (Section 3.2.1). The creation of one test case per combi-
nation of partitions from each variable would lead to an unnecessarily large
number of test cases. The reason is that the partitions for object.width are
only meaningful for the lower partition of object.height. Thus, it is sufficient
to consider only the four shown partitions for test generation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

object.height

6

7

8

9

10

object.width

B

A

C

A

B C D

Figure 3.4: Partitions with two dimensions for the sorting machine.

57

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

Nevertheless, it is still possible to define value partitions for each of the
input parameters without taking the other parameters into account. The only
disadvantage is that the test suite contains unnecessary test cases that, e.g.,
check partition boundaries for object.width with values of object.height above
8. In such cases, the selection of partitions is influenced by input parameter
dependencies. There are more complex dependency relations between input
parameters, e.g. when guard conditions depend on several input parameters:
Figure 3.5 shows a more complex partition for valid triangles of the triangle
classification problem. This partition is influenced by three input parameters.
It is impossible to select meaningful boundary values without taking all input
parameters into account. All values depend on each other, e.g. in a guard
condition [x < y + z]. For the sake of simplicity, we set z = 5. For the values
of x and y, we assume that 10 is the upper boundary for both values. This
imposes no general restriction on the size of the triangle. The number 10
is chosen arbitrarily. If we assumed no upper boundary, the partition size
would be infinite (which is no problem except we do not like depicting it).

1 2 3 4 5 6 7 8 9 10 11 12 13
x

5

6

7

8

9

10

11

y

B

A

C

4

3

2

1

z = 5

(10; 6)

(10; 10)(6; 10)

(1; 5)

(5; 1)

Figure 3.5: Partition for input parameters of valid triangles with z = 5.

3.1.2 Value Partitions and Abstract Test Cases
This section describes the mutual dependency of value partitions and abstract
test cases. Until now, boundary value analysis has often been considered for
non-reactive systems [BJK05, page 301] – input partitions are considered
independent of the abstract test cases. In reactive systems, however, input
parameters can depend on other input parameters or input events. In test

58

3.1. MOTIVATION

cases with loops, they may depend on the same input parameter on a tran-
sition that is traversed twice. The further application of input parameters
can also differ. We present some examples to clarify this point. Figure 3.6
shows a state machine in which the variable x is set to the value of the input
parameter a of event ev1. Depending on the subsequent event (ev2 or ev3),

idle S1
ev1(a : int) / x = a

too young

too old
ev2 [x >= 18]

ev3 [x < 14]

Figure 3.6: State machine to clarify the mutual dependency of input parti-
tions and abstract test cases.

there are different input partitions resulting for a: As shown in Table 3.1, the
boundary between the partitions is at 14 or at 18 depending on the received
events. The selection of values around 18 is needless if ev3 is triggered. The
same holds for 14 and event ev2. In cases where system attributes are incre-
mented depending on the list of triggered events, the partition boundaries
may not only be needless but also wrong. Thus, the sole definition of input
partitions can be worthless without the knowledge about additional influ-
encing factors such as the sequence of triggered events. To determine input
partitions, all information about abstract test cases (the sequence of events,
input parameters, other actors’ behaviors, etc.) must be included.

Event Sequence Input Partitions
ev1, ev2 (−∞; 18), [18; ∞)
ev1, ev3 (−∞; 14), [14; ∞)

Table 3.1: Two partitionings for two event sequences.

3.1.3 Deriving Input Partitions From Output Parti-
tions

As described above, input partitions describe sets of input parameters, and
output partitions describe the observable behavior of the SUT. Output par-
titions are often known before test execution. They can be represented,
e.g. as postconditions, system return values, satisfied guard conditions, or
state invariants. In contrast, input partitions are often unknown in advance.

59

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

However, they are important to derive test input values. In this section, we
sketch how to derive input partitions from output partitions: While creating
abstract test cases, we transform output partitions into input partitions. The
input partitions are used later to derive concrete input values.

SUTInput
Partition

Output
Partition

insert observe

derive

1) Where to start?

2) How to interprete
OCL expressions?

3) How to search
backwards?4) How to deal with

abstract domains?

Figure 3.7: Issues of deriving input partitions from output partitions.

We call the used approach abstract backward interpretation. It means
that we abstractly interpret the test model by traversing transitions back-
ward using the weakest precondition calculus [Dij76]. Figure 3.7 depicts the
process of deriving input partitions from output partitions with all described
issues. This approach deals with several questions: In forward searching ap-
proaches, the state machine transitions are iterated forward starting at the
initial node and the question is when to stop. In this approach, we iterate
backward until we reach the initial node, and the question is where to start
(1). For UML state machines with OCL expressions, the effect of traversing
a transition is often described in postconditions, which are logic expressions
without the notion of value assignment. The next question is how to in-
terpret postconditions (2). The applied graph search algorithm has to find
a transition sequence to the initial node using control flow and data flow
information (3). While searching a path to the initial node, the algorithm
has to keep track of the valid abstract value partitions. In forward search-
ing approaches, the impact of visited input parameters on system attributes
is known. In contrast, there are often attributes in backward searching for
which the influence of input parameters is unknown. Furthermore, there may
be conditions with several mutually dependent attributes. How are such in-
formation about abstract domains handled (4)?

Basically, our approach works as follows. A certain structural, e.g.,
control-flow-based, coverage criterion is applied to a state machine. The
application of this coverage criterion results in a set of test goals (see Sec-
tion 2.4). Each test goal references, e.g., a certain node, transition sequence,
or a node with an event to call and a guard condition to satisfy or vio-
late. From these referenced elements, the search algorithm starts to search a
path backward to the initial configuration (1). During the search, all guard

60

3.1. MOTIVATION

conditions (interpreted as output partitions) on the way are stored and trans-
formed if postconditions are traversed. For that, we present a corresponding
interpretation of OCL expressions and corresponding transformation rules
that are based on Dijkstra’s weakest precondition approach (2). The search
algorithm tries to reach transitions that influence the values of these guard
conditions. It stops if the initial node is reached or contradictions occur (3).
If input parameters are encountered, expressions from the stored conditions
are applied to input parameters. Such conditions are interpreted as input
partitions whose elements trigger the created test behavior (4).

3.1.4 Boundary Value Analysis
We introduced different kinds of partitions. Boundary value analysis is used
to select concrete values from partitions. There are different approaches to
deal with partitions and partition boundaries. We present the two main ap-
proaches that are focused on partitions or partition boundaries, respectively.
We introduce both of them and compare them using the example of parti-
tioning the age of people in Figure 3.2 on page 56. We also motivate why
our approach is focused on partitions instead of partition boundaries.

Focus on Partition Boundaries.

The purpose of focusing on partition boundaries is to test the surroundings
of them. The motivation for that is that domain faults are detected around
domain boundaries [WC80, CHR82]. Beizer [Bei90] describes the concrete
value selection for partitions as follows: For each partition boundary of a
partition, a value should be selected on the boundary, inside the partition
close to the boundary, and outside the partition close to the boundary. Fur-
thermore, an arbitrary number of random elements from inside the partition
should be selected. Figure 3.8 shows this exemplary for the partitioning of
the age of teenagers: We assume integer value type. The black dots de-
pict the correspondingly selected representatives. As seen in this figure, this
approach is often used to distinguish valid and invalid partitions. All rep-
resentatives from the valid partitions are expected to trigger the specified

20 21 22 23 24 257 8 9 10 11 12 13 14 15 16 17 18 19 age

Valid PartitionInvalid Partition Invalid Partition

Figure 3.8: Selected values for partition boundaries.

61

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

behavior. The representatives of invalid partitions are assumed not to trig-
ger the same behavior – otherwise, they would belong to the same partition.

Focus on Partitions.

If the focus is on partitions, the selected representatives are near the bound-
aries of the partitions like in the previous approach. For each partition,
however, only values inside the partition are selected, and representatives
of adjacent partitions are ignored. Thus, users of the second approach do
not distinguish valid and invalid partitions. Instead, each partition is an
adequate equivalence class on its own. The value on the boundary itself is
only selected if the boundary itself is inside the partition. Figure 3.9 shows
a possible selection of representatives for the partition B that describes the
age of teenagers.

20 21 22 23 24 257 8 9 10 11 12 13 14 15 16 17 18 19 age

Partition BPartition A Partition C

Figure 3.9: Selected values for partition boundaries.

Comparison.

The first approach is focused on boundaries: For each boundary, values on
either side are selected. The second approach is similar, but restricted to
values inside certain partitions. For the presented example, the following
becomes clear: Applying the second approach to all partitions can result in
the selection of the same set of representatives as the application of the first
approach. Figure 3.10 illustrates this equality. As we see, both approaches
are quite similar if we only consider the problem of selecting representatives
from input partitions. In our test generation approach, the focus is on creat-
ing abstract test cases together with input partitions whose representatives

20 21 22 23 24 257 8 9 10 11 12 13 14 15 16 17 18 19 age

Partition BPartition A Partition C

Figure 3.10: Applying the partition-oriented approach to all partitions.

62

3.1. MOTIVATION

enable these test cases. For the selection of concrete test input values for
one test case, only a few value partitions are available for each input pa-
rameter. Thus, the selection of a certain, e.g., control-flow-based, coverage
criterion determines the available input partitions from which input values
are selected.

As Beizer describes, there might be a possibly infinite number of input
partitions. Because of this large number of input partitions, the approach
that is focused on partition boundaries can be infeasible. The main problem
is the proper selection of partitions to test. In contrast, the approach that is
focused on partitions selects input values only from some selected partitions.
As a consequence, the partition-related approach probably does not all select
boundary values and does also not incur the problem of too many input
partitions. This selection problem is related to the question of which behavior
(or which partitions) of the SUT should be tested at all. Our approach of
creating input partitions only for abstract test cases that are generated for
structural, e.g., control-flow-based, coverage criteria is a solution for this
problem of proper input partition selection: Input partitions selection is
determined by a selected structural coverage criterion.

We clarify this point with a small state machine shown in Figure 3.11.
In this example, the satisfaction of the coverage criterion Multiple Condition
Coverage requires to test the conditions (x < 14), (x >= 14) and (x < 18),
and x >= 18. This results in testing all three input partitions of the teenager
partitioning shown in Figure 3.2 on page 56. If only abstract test cases
to satisfy All-Transitions or Decision Coverage are created, the conditions
(x >= 14) and (x < 18) and (x < 14) or (x >= 18) are tested, which results
in selecting only representatives for two of the three partitions. This sub-
stantiates that there is a mutual dependency between input partitions and
abstract test cases, i.e. between input partitions and the corresponding struc-
tural coverage criteria.

idle teenager

determine(x : age)
[x >= 14 and x < 18]

no teenager

determine(x : age)
[x < 14 or x >= 18]

Figure 3.11: State machine describing the reaction to the input values of the
teenager partitioning.

63

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

3.2 Example Test Models
In this section, we present five test models that are used for automatic test
generation: The sorting machine in Section 3.2.1 and the freight elevator
in Section 3.2.2 are artificial examples that, descpite their small size, partly
describe behavior that is common in practice. The triangle classification
example in Section 3.2.3 is a standard example for challenging test input
data generation problems [UL06, page 214]. The test model for a track
control in Section 3.2.4 is an academic test model that is part of the UnITeD
project [PS07] of the University Erlangen. The train control test model
presented in Section 3.2.5 is part of our industrial cooperation project with
the the German supplier of railway signaling solutions Thales. All state
machines describe the behavior of the class that is the context of the state
machine and defines all structural elements.

All test models contain attributes of linear-ordered types. Boundary
value analysis is an important task for such applications. The correspond-
ing test cases have to contain values that check even small violations of the
derived input parameter boundary values. Our prototype implementation
ParTeG [Weib] has been used to generate test suites for all these test models.
This also includes boundary value analysis. The prototype is used in further
industrial applications. However, we consider the number of presented test
models sufficient for this thesis. The selection of test models is by no means
a restriction of ParTeG’s application fields, e.g., to train-related applications.
ParTeG is of special value for applications that depend on exact values and
boundaries of linear-ordered value types.

3.2.1 Sorting Machine
The sorting machine test model describes the behavior of a machine that
wraps up an object and subsequently sorts the resulting package depending
on its size. The object is put into a plastic box filled with foam. The package
size depends on the size of the object. A possible application field of such
machines can be found in post offices.

Figure 3.12 shows a state machine and Figure 3.13 shows the corre-
sponding class diagram of such a sorting machine. The diagrams define
the rules for the packaging as follows: Due to wrapping up the objects,
the original width of the object should be doubled by foam plus two extra
size units for each side of a plastic box: (width = (object.width + 2) ∗ 2).
The height is handled a bit different, and the corresponding equation is:
(height = (object.height ∗ 2) + 2). Our sorting machine’s task is to sort
incoming items depending on the size after their wrapping so that they fit

64

3.2. EXAMPLE TEST MODELS

idle

object
inserted

object
evaluated

object
recognized

object not
recognized

object is
too big

object is
too small

detectItemEvent(object : Item)
/ detectItem(object)

/ recognize()

[recognized == false]

[recognized == true]

[width > 30][width < 20]

object fits
in package

[width >= 20 and
width <= 30] storePackageEvent

storePackageEvent

storePackageEvent

storePackageEvent

/ initialize()

Figure 3.12: State machine of a sorting machine.

SortingMachine

height : Integer

recognize() : Boolean
detectItem(Item)
initialize()

width : Integer

Item

height : Integer
width : Integer

<<Use>>

recognized : Boolean

context: SortingMachine::detectItem(object : Item)
post: (height = (object.height * 2) + 2)
 and (width = (object.width + 2) * 2)

context: SortingMachine::recognize()
post: if(height@pre < 20)
 then recognized = true
 else recognized = false
 endif

Figure 3.13: Class diagram of a sorting machine.

into given transport containers. The operations of the class SortingMachine
contain postconditions and are referenced from the state machine. The post-
conditions of these operations influence the behavior of the state machine:
The size of the package is described in the postcondition of the operation de-
tectItem(Item). The sorting is determined by the postcondition of recognize()
and by the guard conditions of the outgoing transitions of the states object
recognized and object evaluated: Objects that are too tall are sorted out us-
ing the guards of the outgoing transitions of state object evaluated. These
objects are considered as not recognized. The remaining objects are sorted
depending on their width. The values of height and width of the parameter
of detectItem(Item) both influence the packaging. The only exceptions are
tall objects, for which the width is unimportant.

3.2.2 Freight Elevator
The freight elevator behaves similar to a normal elevator. It can carry all
weights up to a maximum weight, and the user can press a button to select
the target floor of the elevator. Additional features are that the elevator can
move faster if it is empty and that certain floors require a certain minimum
user rank or authority.

65

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

idle

button
pressed

start
moving

move
fast

move
slow[actualWeight > minWeight]

[actualWeight = minWeight]

[actualWeight <= maxWeight]

[actualWeight > maxWeight]

pressButton(b,r)
[(b <> currentFloor) and
(b > basement or
r > minRank)]
/setButton(b)

insertWeight(w) / addToWeight(w)

removeWeight(w) / substractFromWeight(w)

reachFloor

reachFloor

/ initialize()

Figure 3.14: State machine of the freight elevator control.

FreightElevator

actualWeight : Integer

addToWeight(w : Integer)
substractFromWeight(w : Integer)
setButton(b : Integer)

currentFloor : Integer
minRank : Integer

context: FreightElevator::substractFromWeight(w : Integer)
post: actualWeight = actualWeight@pre - w

context: FreightElevator::addToWeight(w : Integer)
post: actualWeight = actualWeight@pre + w

initialize()

Figure 3.15: Class diagram of the freight elevator control.

Figure 3.14 shows the state machine that describes the behavior of a
freight elevator. If the elevator is in state idle, the user of the elevator can
insert and remove weight. The user can also press a button for the elevator’s
next target floor. As a reaction, the elevator checks the user’s rank and
whether the current weight exceeds the maximum weight. Subsequently, the
elevator begins to move at an appropriate velocity until the target floor is
reached. Like in the previous example, the postconditions of operations in
the class diagram (see Figure 3.15) influence the behavior the of the state
machine.

3.2.3 Triangle Classification
The triangle classification example is a standard example in testing litera-
ture [Mye79, UL06]. The task is to classify triangles whose three side lengths
are described by three integer values. The triangle is invalid if one side length
is less or equal to zero or if the sum of two side lengths is less or equal to
the third side length. Valid triangles can be scalene, isosceles, or equilateral
(see Figure 3.16). The issue of this example is the huge number of possible
parameter value combinations.

66

3.2. EXAMPLE TEST MODELS

(a) Scalene triangle. (b) Isosceles triangle. (c) Equilateral triangle.

Figure 3.16: Valid triangle classification results.

For this example, boundary value analysis is an good means to select
proper input values. Since the conditions for the triangle classification include
many mutual dependencies of the input parameters, there are many possible
boundary values. This results in many correspondingly necessary test cases.

idle

resetEvent

classifyEvent(a, b, c)
/ classifyTriangle(a, b, c)

validinvalid

[x < y + z and y < x + z and z < x + y
and x > 0 and y > 0 and z > 0][else]

isosceles

equilateral

[x = y and y = z]

[x = y or y = z or x = z][else]

scalene

resetEvent

resetEvent

resetEvent

Figure 3.17: State machine for the triangle classification.

TriangleClassificator

x : Integer

classifyTriangle(
 a : Integer, b : Integer
 c : Integer)

y : Integer
z : Integer

context: TriangleClassificator::classifyTriangle(
a : Integer. b : Integer, c : Integer)
post: x = a and y = b and z = c

Figure 3.18: Class diagram for the triangle classification.

There are many ways to describe the triangle classification problem. For
instance, Utting and Legeard [UL06, page 214] define OCL expressions to
classify triangles. We use UML state machines. Figure 3.17 shows such
a state machine. The corresponding class is shown in Figure 3.18. The
postcondition of the operation classifyTriangle(a, b, c) represents a simple
mapping from input parameters a, b, and c to system attributes x, y, and z.

67

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

3.2.4 Track Control
The track control example is part of the UnITeD project [PS07] of the Uni-
versity Erlangen. This example describes the control of a railway track and
includes the steering of trains depending on their priority, their train num-
ber, and the track status. The original test model contains 15 states and 27
transitions. We present only a part of the test model to show the frequent
use of linear-ordered types. Nevertheless, we use the complete model for test
generation. Further information is available at the UnITeD homepage [PS07].

train passed by
RR

eval train
approaching FR

train inserted
in RR

reserved
reserved

reserved free

... ...

bTWaiting(trainNbr : Integer) [bTMainFree = true]
/ setReservedAndMainFreeToFalse()free

reserved trainApproaching(trainNbr : Integer, priority : Integer)
[trainNbr > 0 and priority = 4]

trainReachedNextTrack
(trainNbr : Integer)

trainApproaching(trainNbr : Integer, priority : Integer)
[trainNbr > 0 and priority > 4 and priority <= 99999]

trainApproaching(trainNbr : Integer, priority : Integer)
[trainNbr > 0 and priority < 4]
/ setGuardCondition(trainNbr, priority)

trainPassing(
trainNbr : Integer)

bTWaiting(trainNbr : Integer) [not guardCondition]

...

bTWaiting(trainNbr : Integer) [guardCondition]

...

...

...

Figure 3.19: State machine of the track control.

TrackControl

bTReserved : Boolean

setGuardCondition(
trainNbr : Integer, priority : Integer)

setReservedAndMainFreeToFalse()

guardCondition : Boolean
bTMainFree : Boolean

context: TrackControl::setReservedAndMainFreeToFalse()
post: bTReserved = false and bTMainFree = false

context: TrackControl::setGuardCondition(
trainNbr : Integer, priority : Integer)
post: guardCondition = ((trainNbr + 1) / 10000 >
(bTTrainNbr@pre + 1)/10000) or
priority > bTBasePriority@prebTTrainNbr : Integer

bTBasePriority : Integer

Figure 3.20: Class diagram of the track control.

Figure 3.19 depicts a part of the state machine and Figure 3.20 the cor-
responding class diagram. Note that there are several integer attributes for
which boundary value analysis is a proper means to improve the test results.

3.2.5 Train Control
The test model for a train control is part of our industrial cooperation with
the German supplier of railway signaling solutions Thales. The test model

68

3.3. TEST GOAL MANAGEMENT

describes the communication behavior between modules of a train and the
railroad line. The task of these modules is to determine the train’s position.
Since safety is an important aspect for this company, the model describes
several cases for emergency situations. It comprises about 35 states, 70 tran-
sitions, and composite states with a hierarchy of depth 4. Transitions are
all triggered by call events. All generated tests are functional tests without
time information. In order to protect the intellectual property of the com-
pany, we only provide an anonymised version of the test model. Due to the
test model size and complexity, Figure 3.21 depicts only a part of the state
machine. Since the model is anonymised, there is no sense in presenting the
class diagram. Again, we use the complete model for test generation.

compositeState B

state A

state C
[else]

event1

state E

[intValue1 <= intValue2]

compositeState D

event2

event4

...

event3

...
...

... ...

Figure 3.21: Anonymised part of the train control state machine.

3.3 Test Goal Management
Since our approach is focused on the satisfaction of coverage criteria, coverage
criteria play an important role for the management of test generation. Here,
we present the management of coverage criteria for automatic test generation.
We generate test goals according to the approach presented in Section 2.4.3
using the multi-purpose language Java [Sun95].

First, we describe the general test goal management process during the
automatic test generation in Section 3.3.1. Then, we present refinements that
consist of transforming all expressions referenced by the test goals to disjunc-
tive normal form in Section 3.3.2 and by extending or restricting test goals in
Section 3.3.3. After showing the standard test suite generation management,
we present some limitations to the presented approach in Section 3.3.4. The
test case generation for the single test goals is presented in Section 3.4.

69

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

3.3.1 General Test Goal Management
The proposed test generation approach is focused on the satisfaction of cov-
erage criteria on the test model level. The model-specific representation of
a coverage criterion is a set of test goals. Thus, the management of test
suite generation is based on test goals. Figure 3.22 depicts all tasks that are
comprised in test goal management. The single steps are described in the
following.

Coverage
Criterion

Test Model

Unsatisfied
Test Goals

Satisfied Test
Goals

at least one feasible
test goal is unsatisfied

Generated
Test Suite

control flow
data flow

Test Goal
Generation

Test Case
Generation

Test Suite
Optimization

all feasible test
goals are satisfied

Test Goal
Monitoring

1 2

3

4

Figure 3.22: Test goal management for test suite generation.

First, the initial set of unsatisfied test goals has to be generated. This
is done by applying the selected coverage criterion to the used test model.
Corresponding algorithms for coverage criteria definitions that return a set
of test goals are described in Section 2.4.3.

Second, the test goals of the resulting set of unsatisfied test goals are used
one by one for test case generation. The process of using one test goal to
generate a test case is described in Section 3.4.2.

Third, after each test case generation, the set of satisfied test goals is
determined: Each generated test case was intended to satisfy a certain test
goal. We say that this test goal is satisfied intentionally by the test case.
There are typically more test goals that are accidentally satisfied by the test
case, e.g., by visiting certain elements on the path from the initial config-
uration to the elements referenced by the intentionally satisfied test goal.
For these accidentally satisfied test goals, no further test case has to be cre-
ated. This process of constant test goal satisfaction checking is also known
as monitoring [FW08a].

Finally, if there are no unsatisfied feasible test goals left, the created test
suite is optimized: A test case is redundant if it only satisfies test goals that
are also satisfied by other test cases. All test cases are checked one by one – if
they are redundant, then they are removed. Afterwards, each remaining test

70

3.3. TEST GOAL MANAGEMENT

case satisfies at least one test goal that is not satisfied by another test case,
and all test goals are still satisfied. Thus, the resulting test suite contains no
redundant test cases, anymore.

Depending on the sequence of test case removals, there are several opti-
mal test suites possible. Furthermore, there are other possible optimization
steps, e.g., that are focused on the number of test cases and their respec-
tive length [FS07]. In most cases, however, these aspects are only useful for
certain application areas and are not further considered here.

3.3.2 Expressions in Disjunctive Normal Form
Test goals, e.g., for control-flow-based coverage criteria, contain logical ex-
pressions. All these expressions are transformed into disjunctive normal form
(DNF). Using DNF instead of the original form has some advantages. For
instance, the evaluation of complex conditions, e.g., consisting of several if-
then-else constructs, might be cumbersome, whereas the satisfaction of a
guard condition in DNF is evaluated by checking whether one of the DNF’s
conjunctions holds. As a consequence, our search algorithm, which has to
evaluate such conditions, is less complex because a) the conjunction to evalu-
ate is usually shorter than the whole expression, and b) all interdependencies
between the expression subparts are obvious. This approach has been used
already several times [DF93] [AO08, page 138].

The only restriction to using DNF is that test goals must be created
before expressions are transformed into DNF. The reason for that is that
the structure of expressions is shown to have an impact on the number of
test goals, i.e., the effect of the applied coverage criterion (cp. [HHH+04,
FS07, RWH08, Wei09b]). This impact can have unexpected and possibly
disadvantageous effects.

3.3.3 Test Goal Extension and Restriction
There is sometimes the need to adapt test goals, i.e., to extend or restrict
them. This section describes problems resulting from incomplete guard con-
ditions and how to solve them by adapting the test goals returned by the
coverage criterion for a specific test model.

Definition 16 (Influencing Expression Set). Each guard condition of
a transition is composed of a set of atomic boolean expressions. For each state
s of a state machine, we call the union of all atomic boolean expressions of
s’s outgoing transitions’ guards s’s influencing expression set.

71

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

Definition 17 (Incomplete Guard Condition). A guard condition that
does not reference all elements of its transition’s source state’s influencing
expression set is incomplete.

A

[X and Y] B

D

C
[not Y and Z]

[else]

(a) Incomplete guard conditions.

A

[X and Y and
(Z or not Z)]

B

D

C[not Y and Z and
(X or not X)]

[else]

(b) Complete guard conditions.

Figure 3.23: Add missing elements of A’s influencing expression set.

The state A of the state machine in Figure 3.23(a) has three outgoing
transitions. Its influencing expression set is {X, Y, Z}. The guards are mu-
tually exclusive. Nevertheless, all guards are incomplete because no guard
references all elements of A’s influencing expression set. The following issue
arises: One test goal for the satisfaction of Multiple Condition Coverage for
[X and Y] consists of satisfying the condition [X and not Y] in state A. For
this condition, there are several possible resulting target states (C and D) –
depending on the value of Z. As a consequence, only from the satisfaction of
[X and not Y], the test oracle cannot deduce the traversed transition. This
restricts the means to check the correct behavior of the SUT for such scenar-
ios, e.g., by evaluating the target state’s invariant.

How does a solution look like? Transition-based coverage criteria [UL06,
page 115] are focused on sequences of transitions but not focused on value
assignments for guard conditions and, thus, their satisfaction is no solution.
A possible solution seems to be the extension of existing guard conditions
with the missing elements of A’s influencing expression set. Figure 3.23(b)
shows the corresponding state machine. This test model transformation in-
serts the missing elements of A’s influencing expression set and seems to solve
the described problem. As described above, however, the effect of control-
flow-based coverage criteria depends on the structure of conditions. Since
test model transformations may possibly change the structure of expressions
in a disadvantageous manner, we have to avoid this approach.

Instead, we propose the dynamic adaptation of test goals. This means
that each test goal is checked for whether there is more than one resulting tar-
get state. In such a case, the conditions to satisfy the test goal are extended
so that they satisfy the original test goal and missing elements of the influ-
encing expression set are added. In our example, one test goal requires the

72

3.4. TEST CASE GENERATION ALGORITHM

satisfaction of [X and not Y]. The test goal adaptation results in splitting the
original trace pattern (see Section 2.4.2) into two alternative trace patterns
that require to test [X and (not Y) and Z] and [X and (not Y) and (not Z)],
respectively. The test goal is satisfied if at least one of the trace patterns is
covered. For each of the new conditions, there is only one resulting target
state. As a consequence, the oracle of each test case can predict the traversed
transition and the target state for each event trigger. Thus, the test cases
have higher fault detection capabilities.

3.3.4 Limitations to Test Goal Management
In this section, we discuss limitations to the sketched test goal manage-
ment. One can assume that the test goal management process creates ex-
actly one test case for each test goal. There are a few exceptions to that
assumption: First, test goals cannot always be covered because, e.g., the
corresponding transitions cannot be traversed. The corresponding problem
of finding feasible test goals respectively paths that satisfy them has been
shown to be undecidable [GWZ94]. Second, the coverage criterion unique-
cause MC/DC [CM94, Chi01] is only satisfied iff the isolated impact of each
atomic expression on the whole guard evaluation is shown. Thus, the de-
scribed test goal actually consists of pairs of atomic test goals, each of which
is referencing atomic expressions that satisfy or violate the guard, respec-
tively. There are test models in which the satisfaction of such test goal pairs
does not necessarily lead to more than one test case (e.g. by traversing loops).
In most cases, however, it does. If one of the corresponding atomic test goals
is infeasible, this may result in test cases that have to be removed because
no matching partner test case could be created.

3.4 Test Case Generation Algorithm
In this section, we present the algorithm for our test case generation ap-
proach. The test case generation is subdivided into the generation of ab-
stract test cases and the subsequent generation of input parameter values for
each abstract test case. Possible inputs of our test generation algorithm are
UML state machines and class diagrams annotated with OCL expressions.
The OCL expressions are used to describe, e.g., guards or state invariants of
the state machine and pre-/postconditions of the class diagram’s operations.
Class operations are referenced from the state machine and, thus, their pre-
/postconditions can be evaluated together with the conditions of the state
machine. Before explaining the generation of abstract test cases, we show

73

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

how to interpret OCL expressions in Section 3.4.1. This is necessary for our
abstract backward interpretation. The generation of abstract test cases is
presented in Section 3.4.2. The corresponding input value selection for each
abstract test case is presented in Section 3.4.3. A short example to support
the explanation of the algorithm is given in Section 3.4.4. Section 3.4.5 is
concerned with the complexity of the algorithm. In Section 3.4.6, the limi-
tations of the test generation approach are listed.

3.4.1 Interpreting OCL Expressions
Postconditions are used to express the effects of operations. However, OCL
does not include a notion of assignment, which would be necessary to identify
the variables of a postcondition that are actually changed. In this section,
we present our approach to interpret OCL expressions: Depending on this
interpretation, equations in postconditions can be interpreted as assignments.
Furthermore, this also allows to derive useful information from inequations
of postconditions.

Classification of OCL Expressions.

We present a classification of all atomic expressions to identify the changeable
and the fixed elements in OCL expressions. We motivate this characterization
with a short example of the postcondition X = Y . This postcondition allows
several interpretations: a) the old value of Y is assigned to X, b) the old
value of X is assigned to Y , or c) a new value is assigned to both variables.
Without further investigation, it would be hard to derive any information
beyond the equality of X and Y . There are, however, some influencing
factors that allow further results. For instance, the value type of Y can be
constant, Y can be a fixed input parameter, or an “@pre” can be attached
to Y . In these cases, Y is fixed for the postcondition, X can be changed,
and consequently the postcondition is satisfied by assigning the value of Y to
X (interpretation a). In the following, we present the classification of OCL
expressions:

An OCL expression is composed of several atomic predicates that con-
sist of variables var, relations between them, and operations on them. A
predicate that contains var is a context predicate of var. We classify the
test model’s variables (attributes, input parameters, or constants) and de-
fine dependent and independent variables. We distinguish two characteristics
of OCL variables var : their dependency and their context.

74

3.4. TEST CASE GENERATION ALGORITHM

Definition 18 (Variables) The elements in OCL expressions are constants
(e.g. numbers or strings), class attributes, or input parameters. We call all
elements of these types variables.

Definition 19 (Dependency of Variables) Constant class attributes, in-
put parameters, and constants are independent variables. Their values are
fixed. Non-constant class attributes are dependent variables. They depend
on previous behavior and value assignments.

Definition 20 (Context of Variables) The context of a variable is the
kind of OCL expression the variable is referenced from.

Possible contexts of a variable are, e.g., transition guards, state invariants,
preconditions, and postconditions. In the following, we apply the dependency
and the context of variables to classify variables. Each variable can have one
of two possible classifications: The variable is changeable or fixed, which
basically means that its value can be changed or not.

Only postconditions describe the situation after an action and, thus, ex-
press changes. All dependent variables var that are contained in postcondi-
tions and have no “@pre”-attachment can be changed – var is changeable. In
all other cases, the value of var cannot be changed (because of type, context,
or an attached “@pre”), and var is fixed. Table 3.2 shows the classification.

Expression Context Dependent Variable Independent Variable
postcondition changeable fixed

(no “@pre” attached)
postcondition fixed fixed

(“@pre” attached)
all other contexts fixed fixed

Table 3.2: Classification of variables in OCL expressions.

Definition and Use of Variables in OCL Expressions.

UML state machines typically reference several OCL expressions. Conse-
quently, paths of a state machine also often reference more than one OCL
expression. In order to execute the test case corresponding to a path in
a state machine, each referenced expression has to be satisfied or violated,
i.e. must have a determined result.

Several expressions that reference the same variable can be connected by
this variable. Depending on the variable’s classification in both expressions

75

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

and the relations between them, one expression can influence the other. We
use the terms from data flow analysis to describe these relations:

Definition 21 (Definition of a variable) A variable var is defined in an
expression exp iff var is classified as changeable in exp.

Note that constants and input parameters cannot be defined at a transi-
tion. Their values are always fixed.

Definition 22 (Use of a variable) A variable var is used in an expression
exp iff var is classified as fixed in exp.

Definition 23 (Def-use-path of a variable) A def-use-path of a variable
var is a path from a definition def(var) of var to a use use(var) of var. The
part of the path between definition and use of var must be definition-free,
which means that there is no other definition of var in-between.

Definition 24 (Def-use-pair) Expressions def(var) and use(var) that are
connected by a def-use-path of any variable var, are called the def-use-pair
(def(var),use(var)).

Definition 25 (Connecting variable) The variable var of a def-use-pair
(def(var),use(var)) is called a connecting variable of def(var) and use(var).

All definitions of defining and using expressions are also used for the
corresponding containing transitions. Note that there can several connecting
variables of two expressions.

Transforming OCL Expressions.

With the help of the presented classification of OCL variables, expressions
can be interpreted as definitions and uses of variables. In this section, we
describe how expressions influence each other and how we process them while
traversing transitions backward. The approach of transforming OCL expres-
sions corresponds to finding the weakest precondition [Dij76, Whi91, CN00]
where use(var) denotes the postcondition and def(var) denotes the command
for computing the weakest precondition. The task is to transform a given
expression use(var) using the expression def(var) so that the satisfaction of
the transformed expression and def(var) imply the satisfaction of use(var).
The final goal of computing the weakest precondition is to replace all de-
pendent system attributes with input parameters so that the corresponding
expressions can be used as conditions for selecting input parameter values.

76

3.4. TEST CASE GENERATION ALGORITHM

The test algorithm iterates all transitions backward. Thus, for any def-
use-pair (def(var),use(var)) on the path, use(var) is visited before def(var).
The expression def(var) can be used to transform use(var) by isolating the
connecting variable var in both expressions on one side and replacing var in
def(var) with the remaining part of use(var). Any connecting variable must
be dependent. Otherwise, it cannot be defined in def(var). The connecting
variable must also be fixed in use(var). Otherwise, it would not be used but
defined in use(var). In the following, we describe how to deal with use(var)
depending on the number of included dependent fixed variables.

One Dependent Fixed Variable. The expression use(var) contains ex-
actly one dependent fixed variable var. Since var is the only dependent fixed
variable in use(var), it is also the connecting variable of any def(var) and this
use(var). Thus, def(var) influences use(var) only via var – all other variables
in def(var) do not influence the satisfaction of use(var).

Our basic approach to deal with this situation is to isolate the connect-
ing variable var in def(var) and use(var) on one side and exchange var in
use(var) with the expression on the other side in def(var). As a result,
the satisfaction of use(var) is now expressed with all influencing variables
(e.g. input parameters or constants) used in def(var), and the postcondition
def(var) is described with elements that are valid before. For instance, if
def(var) is var = p with p as an input parameter and use(var) is var > 0,
then the transformed expression is p > 0. This transformation is based on
the fact that p > 0 and var = p imply var > 0. As stated above, we have to
find a new expression for def(var) and use(var) so that use(var) will be sat-
isfied if the new expression and def(var) are satisfied. The occurring relation
symbols are important for this replacement: In Table 3.3, we present a list of
relation symbols for the resulting expression depending on the expressions

def(var) use(var) transformed expression
var ? expr1 var ? expr2 expr1 ? expr2

< < ≤
< ≤ ≤
≤ < <
≤ ≤ ≤
= < <
= ≤ ≤
= = =
= <> <>

<> <> =

Table 3.3: Relation symbols for expression transformation.

77

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

def(var) and use(var). The term var ? expr means that var is isolated on
the left-hand side, expr is isolated on the right-hand side, and the relation
symbol is shown in the corresponding column.

The same rules are valid if we exchange all > for < and ≥ for ≤. All re-
maining combinations of relation symbols cannot be evaluated. For instance,
there is no condition about expr1 and expr2 that could be satisfied before
traversing a transition to enforce that the satisfaction of the transition’s
postcondition var < expr1 results in the satisfaction of var > expr2.

We present a part of the sorting machine defined on page 64 to clarify
this transformation: The postcondition of the operation detectItem(Item) is
a conjunction that contains the expression width = (object.width + 2) ∗ 2.
There are several transitions that reference the attribute width in a guard
condition. One such guard condition is width < 20. In use(var), width
is the only dependent fixed variable – in def(var), object.width is an input
parameter and 2 is a constant value. The variable width is isolated on one
side of each expression. According to Table 3.3, these two expressions can be
transformed to the new precondition (object.width + 2) ∗ 2 < 20. Isolating
object.width on the left side results in object.width < 8, which has to be
satisfied in order to satisfy the guard width < 20.

Note that this approach also allows to interpret inequations in postcon-
ditions. For instance, a postcondition x < y@pre can be used to satisfy a
subsequent guard x < 10 if a preceding condition requires that y ≤ 10. Ac-
cording to our experiences in case studies, one dependent fixed variable in a
use expression is the standard case.

Several Dependent Fixed Variables. If there are several dependent
fixed variables in use(var), the satisfaction of use(var) can depend on more
than one defining expression. As a consequence, the relationship between
these variables is often not easily determined and a simple replacement of
variables as soon as there are possible matches is no solution: One reason
for this is that this replacement would mask dependencies between the two
connecting variables. Since these dependencies can influence the evaluation
of other expressions, this would probably change the meaning of the result-
ing expression. Instead, we do not process expressions with more than one
connecting variable but collect all such expressions in groups and evaluate
these groups after a candidate test case is found. This current evaluation ap-
proach for groups consists of creating transformed expressions for all possible
combinations of expressions. Based on this whole set of expressions, possible
partitions for each input parameter are derived. Validity checks are used to
determine whether intermediate expression groups are contradictory.

78

3.4. TEST CASE GENERATION ALGORITHM

As a special case, there may be several expressions in use(var) that all
reference the same variables. The triangle classification example in Sec-
tion 3.2.3 contains several such guard conditions. For such examples, the
costs of evaluating the collected expression groups is exponential.

3.4.2 Generating Abstract Test Cases
In this section, we describe the abstract test case generation algorithm, whose
purpose is the creation of an abstract test case with abstract information
about input parameters.

The algorithm starts at a certain point in the test model described by a
given test goal. From that point, the algorithm iterates backward in the state
machine to the initial configuration with a guided depth-first graph search
approach and creates a corresponding trace. When iterating backward, the
algorithm collects all conditions and keeps them in a consistent set of data-
flow information. According to the satisfiability of this data-flow information,
we call the resulting traces valid, contradictory, or indetermined:

Definition 26 (Valid trace) In a valid trace, all guard conditions of the
traversed transitions are satisfied. The trace contains one def-use-path for
each used variable. This means that all variables necessary to determine the
evaluation of the conditions along the trace are determined by initial values,
constants, and input parameters.

Definition 27 (Contradictory trace) A contradictory trace contains con-
tradictions for at least one condition of the path. Thus, it is impossible to
find input data that enables the path.

Definition 28 (Indetermined trace) An indetermined trace contains var-
iable uses without preceding definitions to determine their values. Thus, the
values for the respective variables are undefined. Correspondingly, there may
be settings in which the path is valid or contradictory, respectively.

The presented search algorithm only returns abstract test cases from valid
traces. The following subsections contain the description of the basic graph
search algorithm and possible extensions to steer the algorithm.

The Search Algorithm.

This section contains the description of our test generation algorithm that
returns for each test goal an abstract test case together with input parameter
constraints. The idea is to find a path by traversing state machine transitions

79

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

backward and keeping track of all the guard conditions to satisfy. For the
latter, we define two kinds of expressions:

Definition 29 (One-dimensional expression) All expressions that con-
tain only one dependent variable or input parameter are called one-dimen-
sional expressions.

Definition 30 (Multidimensional expression) All expressions that con-
tain more than one dependent variable or input parameter are called multi-
dimensional expressions.

The one-dimensional expressions contain exactly one dependent variable
or input parameter. The expression satisfaction depends only on the value
of this variable. As soon as the corresponding definition of this variable
is identified, the expression can be evaluated. The expressions contained
in multidimensional expressions contain several dependent variables. As a
consequence, the validity of these expressions can only be evaluated after
detecting all corresponding input parameters.

The algorithm consists of the following steps:
1) Extending the trace pattern defined by the test goal to possible end parts
of the created path (see Section 3.3.3): The result is a sequence of visited
states, traversed transitions, and event calls that match the trace pattern
defined by the current test goal. The end point of each such extended path
is a possible start point for searching backward. Furthermore, outgoing com-
pletion transitions (that may contain guards) can also be included in the
extended path. This last step is optional. Experience show, however, it is
advisable to include it (see Section 4.1.2).
2) Searching a trace backward to the initial configuration: For creating a
transition sequence, the same basic algorithm is applied for each encoun-
tered state configuration: All incoming transitions are evaluated according
to the following aspects: First, the contained postconditions are applied to
transform expressions as described in Section 3.4.1 about OCL expression
transformations. Second, the transition’s guard condition is added to the
one-dimensional and multidimensional expressions, respectively. If the eval-
uation of one-dimensional or multidimensional expressions only depends on
input parameters, the expressions are used to determine the concrete input
parameter values. The algorithm stops if the initial state is reached and the
satisfaction of all encountered one-dimensional and multidimensional expres-
sions can be determined only with input parameters.

The pseudocode in Figure 3.24 shows how trace extensions are created for
each trace pattern of the given test goal (line 03). The extension consists of

80

3.4. TEST CASE GENERATION ALGORITHM

01 TraceExtensions extendPathForTestGoal(tg : TestGoal) {
02 set traceExtensions = {} // keeps track of the current extensions
03 for each trace pattern tp of the test goal tg {
04 traceExtension = ();
05 traceExtension = buildTraceExtension(tp, 0, traceExtension);
06 }
07 return traceExtensions;
08 }
09
10 TraceExtensions buildTraceExtension(
11 tp : TracePattern, i : index, tE : traceExtension) {
12 set traceExtensions = {};
13 if(i < tp.steppatterns.size()) { // add further information
14 sp = tp.steppatterns.get(i); // get current step pattern
15 trans = all transitions that match tE; // candidate extensions
16 for each transition t in trans {
17 add t to tE;
18 traceExtensions.addAll(
19 buildTraceExtension(tp, i+1, tE)); // recursion with i+1
20 remove t from tE;
21 }
22 } else { // create additional extension from tE
23 s = target state of last transition in tE;
23 for all outgoing completion transitions t of s {
24 add t to the end of tE;
25 traceExtensions.addAll(
26 buildTraceExtension(tp, i+1, tE)); // recursion with i+1
27 remove t from tE;
28 }
29 if there are no outgoing completion transitions of s {
30 add copy of tE to traceExtensions;
31 }
32 }
33 return traceExtensions;
34 }

Figure 3.24: Test goal extension for all all trace patterns of a test goal.

81

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

concrete trace information that match the trace pattern. At the beginning,
it’s an empty sequence (line 04). In line 05, buildTraceExtension() is called
for each trace pattern: All step patterns that are contained in the current
trace pattern are used for the extension. The index i describes the current
step pattern (line 11). If there are still unused step patterns in the trace
pattern (line 13), then all possibly matching transitions are identified and
buildTraceExtension() is called for the next step pattern (i+1 in line 19). If
all step patterns of the trace pattern have been used (line 22), then comple-
tion transitions [Obj07, page 568] are added to the extension (lines 23-28). If
there are also no more completion transitions, the current extension is saved
and returned (lines 18, 25, 30, and 33).

36 TestCase createTestCase(te : TraceExtension) {
37 n = target node of the last transition of te;
38 TestCase tc = searchBackwardsFromNode(n, te);
39 if(tc is a valid test case) { return tc;}
40 else { return null;}
41 } }
42
43 TestCase searchBackwardsFromNode(n : Node, te : TraceExtension) {
44 if(n is initial node and all expressions are satisfied) { // valid
45 return test case that contains the current path information;
46 }
47 TestCase tc = null;
48 if(n has a transition t that is part of te) {
49 tc = traverseTransition(t, te);
50 if(tc != null) return tc;
51 } else {
52 for each incoming transition t of n {
53 tc = traverseTransition(t, te);
54 if(tc != null) return tc;
55 } }
56 return null; }
57
58 TestCase traverseTransition(t : Transition, te : TraceExtension) {
59 transform all one-dimensional expressions with t’s postcondition;
60 classify precondition of t and add it to the one-dimensional or
61 the multidimensional expressions;
62 tc = searchBackwardsFromNode(t.sourceNode, te);
63 if (tc is valid test case) { return tc;}
64 else { return null;}
65 }

Figure 3.25: Pseudocode for generating test cases by searching backward.

In Figure 3.25, the pseudocode for the creation of test cases is shown.
The just generated trace extensions are used as starting points for searching

82

3.4. TEST CASE GENERATION ALGORITHM

backward. They are used one by one for the operation createTestCase(). As
soon as a valid test case is returned, all remaining trace extensions of the
test goal are discarded. If the use of no trace extension leads to the creation
of a test case, the test generation for that test goal fails.

The target node of the trace extension’s last transition is the start node
(line 37) for the search algorithm implementation in the function searchBack-
wardsFromNode() (line 38). Line 44 shows that the algorithm stops as soon
as an initial configuration is found and all one-dimensional and multidimen-
sional expressions are satisfied. If the initial configuration is not reached yet,
then it is checked if one incoming transition of the current node n is part of
the trace extension (line 48). The described trace pattern should be included
once at the beginning of the path search – afterwards, the trace extension
plays no role for selecting transitions. If yes, then this transition is traversed
(line 49). Otherwise, all incoming transitions of the current node are investi-
gated (line 52). The function traverseTransition() describes how to deal with
the expressions attached to transitions (lines 58 – 65). For each such tran-
sition t, t’s postcondition is used to transform the current one-dimensional
expressions (line 59) as described in Section 3.4.1. Furthermore, the guard of
t is added to the one-dimensional or multidimensional expressions and used
for further computations (lines 60, 61). Afterwards, the search is continued
for the source node of t (line 62). If this search was successful, then the
current test case is returned (line 63), and all remaining trace extensions are
discarded. If the search is not successful, no test case is returned (lines 40,
56, and 64).

Applying Search Techniques.

The algorithm is presented on an abstract level. There are many details that
can influence the search algorithm. Some of them are used in the imple-
mentation of the corresponding prototype ParTeG. First of all, it is shown
in [GWZ94, JBW+94] that the problem of detecting infeasible test paths is
undecidable. As a consequence, there may be many improvements, but there
will never be a guarantee that all feasible test cases will be detected. Since
a perfect, deterministic search algorithm is impossible, we only sketch some
improvements.

For instance, the application of standard search algorithms like the pre-
sented depth-first results in high costs. For small standard examples like the
freight elevator or the triangle classificator in Section 3.2.3, the costs of test
generation are not important. When we applied ParTeG to the academical
and industrial test model in Sections 3.2.4 and 3.2.5, we ran into exponen-
tial runtime and stopped test generation after several minutes. Brute force

83

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

depth-first search was infeasible and, thus, we implemented data-flow-driven
approaches to steer the search backward to the closest definition of a vari-
able. One important problem of our test generation approach to solve is the
inclusion of expressions in the path that define the variables that are used
subsequently in the path. If these define-expressions are not included, the
resulting test case is considered indetermined. As a solution, the algorithm
steered the selection of the current nodes and the next transition to traverse
backward in order to find postconditions that set the values of variables that
are used but not defined, yet. The results of these approaches was that satis-
fying test suites were generated for both mentioned academical and industrial
test models within a few seconds.

There are further approaches to utilize data-flow information for test gen-
eration. For instance, Briand et al. [BLL05] and Weyuker [Wey93] consider
data-flow information to improve test case generation. Korel [Kor90] pur-
sues a forward searching approach but also applies data analysis in order
to determine the input parameters that influence the evaluation of a guard
value.

3.4.3 Selecting Input Values
In this section, we describe how to select concrete input values for abstract
test cases generated in the previous section. The basis for input data se-
lection are abstract value domains of input parameters. As described in
Section 3.1.4, it is advisable to select only a few representatives at proper
positions inside of each input partition. In Section 2.1.5, we described
that there are corresponding coverage criteria for value selection from par-
titions [KLPU04]. In the following, we show how to utilize the abstract infor-
mation about input partitions to create representatives that satisfy boundary-
based coverage criteria like Multi-Dimensional.

Multi-Dimensional.

The criterion Multi-Dimensional [KLPU04] is satisfied if each variable that is
contained in describing an input partition takes its minimum and maximum
value at least once. The task is to select these values for each referenced
input variable instance in each abstract test case. As defined on page 80, we
distinguish one-dimensional expressions and multidimensional expressions.

One-dimensional expressions only contain information about one parame-
ter. The coverage criterion Multi-Dimensional is satisfied for one-dimensional
expressions by initially creating an unbounded abstract value partition for
the input parameter and restricting it step-wise for each one-dimensional ex-

84

3.4. TEST CASE GENERATION ALGORITHM

pression. The result is a value partition whose representatives satisfy all used
expressions. The boundary values of this value partition are the minimum
and maximum values, respectively, for the corresponding input parameter.
Figure 3.26 depicts this approach: The three expressions about x (x > 5,
x > 7, x < 11) are combined to a value space from 7 to 11 (both exclusive
as the hachures show).

x < 11x > 5

x
2 3 4 5 6 7 8 9 10 11 12

x > 7

Figure 3.26: Value partition for one-dimensional expressions.

For multi-dimensional expressions, the satisfaction of Multi-Dimensional
is not that easy. The obvious reason is that there are more than one input pa-
rameters. The triangle classification is a good example to clarify this. There
are several multidimensional expressions that are all focused on three param-
eters x, y, and z that correspond to the three sides of a triangle. There are
several possible value combinations. Our approach is a step-wise refinement
of the expressions. For that, we focus on only one parameter. We evaluate
all expressions like for one-dimensional expressions and determine temporary
value partitions. After that, we use all expressions and the already existing
temporary value partitions to determine the value partition for another vari-
able and so forth. This is necessary because some of the multidimensional
expressions can only be evaluated if there is partly knowledge about other
parameters. For instance, x < y + z can only be evaluated for x if y and z
are known in advance. Note that this is an initial solution, and the use of
constraint solvers may lead to a more efficient computation of more complex
expressions.

3.4.4 Example
In this section, we explain the presented test goal management approach
with the example of the sorting machine as presented in Section 3.2.1. In
this example, the goal is to satisfy All-States on the state machine and Multi-
Dimensional for each resulting abstract test case. Figures 3.27 and 3.28 show
the state machine and class diagram of the test model.

As presented in Section 3.3.1, the first step is to create test goals by
applying the coverage criterion All-States to the state machine. We select an

85

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

idle

object
inserted

object
evaluated

object
recognized

object not
recognized

object is
too big

object is
too small

detectItemEvent(object : Item)
/ detectItem(object)

/ recognize()

[recognized == false]

[recognized == true]

[width > 30][width < 20]

object fits
in package

[width >= 20 and
width <= 30] storePackageEvent

storePackageEvent

storePackageEvent

storePackageEvent

/ initialize()

Figure 3.27: State machine of a sorting machine.

SortingMachine

height : Integer

recognize() : Boolean
detectItem(Item)
initialize()

width : Integer

Item

height : Integer
width : Integer

<<Use>>

recognized : Boolean

context: SortingMachine::detectItem(object : Item)
post: (height = (object.height * 2) + 2)
 and (width = (object.width + 2) * 2)

context: SortingMachine::recognize()
post: if(height@pre < 20)
 then recognized = true
 else recognized = false
 endif

Figure 3.28: Class diagram of a sorting machine.

arbitrary test goal with the trace pattern ((object recognized, ?, ?, ?)), which
is the test goal that is covered by visiting the state “object recognized”.

The second step is the test case generation for this test goal. First, the
given trace pattern is extended: The referenced state has several outgo-
ing completion transitions. Corresponding target states without completion
transitions are “object is too big”, “object is too small”, and “object fits
in package”. The algorithm creates corresponding trace extensions. After-
wards, these extensions are used for test generation. We start with the
extension that ends in the state “object is too big”. There is only one
shortest path back to the initial node. Traversing two transitions backward,
the algorithm collects two one-dimensional guard expressions: width > 30
and recognized = true. The next transition references the operation rec-
ognize(), whose postcondition is used to transform recognized = true into
height < 20. Here, the transformation of the expressions into DNF is used:
The postcondition of recognize() is transformed so that there is a conjunc-
tion (height@pre < 20 and recognized = true), which can be used to de-
rive the new condition height < 20. The next transition references a post-
condition that is used to transform both one-dimensional expressions into
(object.width+2)∗2 > 30 and (object.height∗2)+2 < 20, respectively. These

86

3.4. TEST CASE GENERATION ALGORITHM

expressions can be transformed to object.width > 13 and object.height < 9,
respectively. After that, the initial state can be reached with one transition
traversal. All one-dimensional expressions are mapped to input parameters,
i.e. a corresponding definition is found. The expressions are not contradict-
ing. Thus, the generated abstract test case is valid. The remaining task
is to identify the concrete input values. As stated in Section 3.4.3, this
is quite easy for one-dimensional expressions: object.height is set to 8 and
object.width is set to 14. The result is a concrete test case. All remaining
trace extensions are discarded.

In the third step, we monitor the test goal satisfaction. All generated test
goals contain trace patterns that reference single states. The created path
visits the states “object is too big”, “object recognized”, “object evaluated”,
“object inserted”, and “idle”. Thus, it also satisfies the corresponding test
goals. As a result, the test case generation only has to be executed for the
remaining three states.

Step four is about optimizing the resulting test suite. Since we present
the generation of only one test case, we just sketch this step. The generated
test case visits the state “object is too big” and satisfies the corresponding
test goal. The test goal monitoring guarantees that there will be no further
test case generation for this test goal. Since “object recognized” has to be
visited to visit “object is too big” and the monitoring guarantees that “object
recognized” has not been visited before, there has been no test case to satisfy
“object is too big” before generating the test case for “object recognized”.
Thus, there is no further test case that visits “object is too big”. The just
created test case is not redundant and will not be removed.

3.4.5 Complexity
This section contains a description of the presented approach’s complexity.
We consider all phases in the test goal management as presented in Sec-
tion 3.3.1 and further problems that depend on the selected target language.

Test Goal Management.

The first phase is the test goal generation. It depends on the selected coverage
criterion. Simple coverage criteria like All-States or All-Transitions create
one test goal per state or transition, respectively. For such coverage criteria,
the effort is linear with the expression size, e.g. measured as the number
of variables in a guard. Most control-flow-based coverage criteria subsume
All-Transitions. Thus, their effort is at least linear with the test model size.
They depend, however, also on the complexity of the considered conditions:

87

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

Decision Coverage requires two condition evaluations and its effort is constant
with the condition size for each condition. MC/DC is linear with the model
size [CM94]. Multiple Condition Coverage requires that each possible value
assignment of a condition’s truth table is used and its effort is, therefore,
exponential (0(cn)). There are, however, even worse coverage criteria: All-
Paths is satisfied iff all paths of the state machine are traversed. Since loops
can cause an infinite number of paths, the test goal generation may never
stop. A stop timer like it is used in ATG [IBM] might be a solution to prevent
infinite test generation. For that, we propose to satisfy all subsumed feasible
coverage criteria in a step-wise manner.

The second phase is the test case generation. It depends on many factors
and is basically undecidable [GWZ94]. It’s complexity depends on the num-
ber of attributes that influence the path search, the number of transitions
and how many loops they form, the number of parallel regions in the state
machine, and the overall size and complexity of all data-flow information. We
described in Section 3.4.2 some techniques to improve the test generation.

Test goal monitoring is the third phase. The brute force approach is to
check for each existing test goal whether the generated test case covers it.
Test goals do not match the whole test case but only steps of it. Thus, each
single step of each test case must be compared to each step pattern of each
test goal. This results in n comparisons, where n is the number of steps
per test case times the number of test cases times the number of test goals:
n = #steps ×#testcase ×#goals. As a rule of thumb, the number of test
goals, the number of test cases, as well as their length (number of steps)
depend on the size of the test model. As a consequence, the effort of test
goal monitoring is about the size of the test model to the power of three
(0(n3)). However, this is only an upper boundary: First, if the test cases are
longer, then there is a high probability that many test goals are accidentally
satisfied and fewer test cases have to be created and checked for test goal
satisfaction. Furthermore, the implementation contains a map from model
elements to test goals, which requires to compare each step of a test case
only to a small subset of all test goals.

In the fourth and last phase, the test suite is optimized. This means that
all satisfied test goals of a test case are checked for whether they are also
satisfied by other test cases. If each test goal is also satisfied by another test
case, then the current test case is redundant and can be removed. The basic
effort for these operations is high: For each test case and all test goals that
are satisfied by it, all other test cases have to be analyzed whether they satisfy
the same test goals. In the implementation, this issue is solved by creating
maps from test cases to the test goals they satisfy and from test goals to
the number of satisfying test cases. Both maps are created and filled during

88

3.4. TEST CASE GENERATION ALGORITHM

the monitoring phase. No further comparisons are necessary. The overall
task is only to check for each test case whether all mapped test goals are in
turn mapped to more than one test case. In this case, all test goals of the
test case are also satisfied by other test cases, the test case is removed, and
the number for each referenced test goal is decreased by one. The remaining
effort corresponds to the product of test cases and their satisfied test goals.

As we have seen, many aspects of the presented algorithm’s complexity
analysis depend on the details of the used state machine. That is why the
main statements are rather sketchy and the whole question whether the algo-
rithm terminates at all (if not stopped by a time limit or buffer overflow) is
undecidable [GWZ94]. Nevertheless, the current implementation performed
good in comparison to some commercial tools. For instance, for the state
machine of the industrial train control test model of Section 3.2.5, ParTeG
needed only 10 seconds to create a test suite that satisfies a combination of
Multiple Condition Coverage and Multi-Dimensional whereas the evaluation
version of the commercial tool Smartesting Test Designer [Sma] in version
3.2.1 (Leirios) needed about 25 minutes for creating a test suite that satisfies
only All-Transitions.

Expression Solving.

The OCL expressions that are currently used can contain equations, inequa-
tions, and logical operators. After transforming all expressions into expres-
sions that only contain constant values and input parameters, these new
expressions are used to derive concrete input parameter. There might be
complex expressions like polynomial, exponential, or further mathematical
functions for which it is not easy to derive concrete representatives. In all
used examples, the academic, and the industrial cooperation, there were only
linear expressions. Using the agile approach [BBvB+01], there was no need to
implement further support. We are aware, however, that the problem of find-
ing a solution for a set of expressions is non-trivial. There are several kinds
of SAT solving [GMS98, AS05, HGK06] that are focused on the problem of
detecting representatives that satisfy a set of constraint expressions.

Target Language Selection.

This section contains several target-language-dependent problems that we
faced for the created test suites. The first approach of printing test files for
mutation analysis in Java was to print all code into one static function. This
works well for all coverage criteria applied to the sorting machine example and
the freight elevator. Using the train control state machine already resulted

89

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

in a Java error because the size of the function exceeded the 65536 characters
limit. To solve this issue, we split up the generated code into one function
per test case. Another problem was printing all data into one stream. This
resulted in stack overflow of ParTeG. As a consequence, we flushed the used
streams at constant intervals into the file to keep memory usage low. A
C++-specific problem occurred when compiling the CppUnit [Sou08] files
with MS Visual Studio. This resulted in an internal C++ compiler error
because there were too many object instances in one file. The corresponding
solution consisted in splitting the test suite over several output files. We
added a corresponding switch to ParTeG to define the number of output
files. All test cases are equally distributed to the generated output files.

3.4.6 Restrictions
In this section, we describe the restrictions of the presented test generation
approach. We include the supported coverage criteria, state machines, and
OCL expressions.

In Section 2.4.3, we presented the formal definitions of coverage criteria.
We listed many important coverage criteria without claiming completeness.
Transition-based and control-flow-based coverage criteria are considerably
easy to use for test generation, because they describe connected sets of model
elements to start the the search for the initial configuration. For data-flow-
based coverage criteria, the algorithm has to start at the use of a variable,
has to include a definition of this variable, and afterwards has to find a path
to the initial configuration. This corresponds to the concatenation of two
searches and, thus, also does not pose a problem. Infeasible coverage criteria
like All-Paths can result in a non-terminating test goal generation.

Basically, there is no restriction to the used state machines other than
undecidability. The proposed search algorithm is based on a graph search
algorithm. Since state machines are graphs, there is no general restriction
to graph constructs that cannot be evaluated or traversed, respectively. Of
course, the test generation algorithm may be impossible, e.g., because of an
infeasible coverage criterion or an unbounded loop in the state machine. Such
restrictions, however, are common to all test generators.

Our test generation approach is based on state machines and class dia-
grams with OCL expressions. Section 3.4.1 includes descriptions of how to
interpret OCL expressions. The main point is transforming OCL expres-
sions using the weakest precondition approach. As a consequence, our test
generation is restricted to OCL expressions that can be used to deduce pre-
conditions. For all others, the test generation algorithm just fails to deduce
concrete input values or abstract test cases at all. Again, this restriction is

90

3.5. CASE STUDIES

common to all test generators because it depends on the test model’s degree
of completeness and abstraction.

3.5 Case Studies
We implemented the presented test generation approach in the tool ParTeG
(Partition Test Generator) [Weib]. Here, we shortly describe our prototype
and the experiments for combining coverage criteria: We describe the im-
plementation of ParTeG in Section 3.5.1. In Section 3.5.2, we present the
mutation analysis on artifical implementations. We summarize the results of
the experiments in Section 3.5.3.

3.5.1 Prototype Implementation
ParTeG is an Eclipse plug-in that is based on the Eclipse Modeling Frame-
work (EMF) [Ecl07a] and is able to create test suites for UML state ma-
chines and class diagrams that are described with the Eclipse UML 2.1 plug-
in [Ecl07b]. EMF is a modeling framework comparable to EMOF (Essential
Meta Object Facility). EMOF is the OMG standard to describe metamodels
like the UML. The used UML 2.1 plug-in is an implementation of the UML
description based on EMF. Besides the used modeling frameworks, ParTeG
is implemented in the multi-purpose language Java. Possible editors for cre-
ating the test models are the editors of the UML 2.1 plug-in or the open
source editor TOPCASED [Ope09]. The current version of ParTeG is 1.3.2.

The tool ParTeG is a prototype implementation to evaluate the ap-
proach of combining test path generation with boundary value analysis.
It supports the satisfaction of the transition-based coverage criteria All-
States and All-Transitions, as well as the control-flow-based coverage crite-
ria Decision Coverage, masking MC/DC, and Multiple Condition Coverage
(see Section 2.1.5). ParTeG also prints a log containing all considered test
goals. Input parameter values for the generated abstract test cases are se-
lected randomly or by applying the boundary-based coverage criterion Multi-
Dimensional with or without additional random values and values near abso-
lute type minima and maxima. The evaluated OCL expressions are restricted
to boolean and linear arithmethic expressions. Constraint solvers can be used
to increase the set of supported OCL expressions. ParTeG implements the
whole test goal management as described in Section 3.3. It uses an inde-
pendent internal test case graph metamodel, on which the test generation
algorithms run. All used state machines and class diagrams are transformed
into that model. The purpose of the internal metamodel is the reusability of

91

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

all implemented algorithms for other modeling languages like UML activity
diagrams or UML protocol state machines: The remaining work consists of
transforming these models into test case graph models. In the current ver-
sion, ParTeG supports the code generation for JUnit 3.8, JUnit 4.3 [EG06],
CppUnit 1.12 [Sou08], and Java Mutation Analysis – a proprietary code for-
mat for automated mutation analysis.

There are several possible extensions to ParTeG concerning the supported
elements of UML state machines and OCL expressions. For instance, history
states are not supported yet, and also OCL collection expressions are not
fully supported. The current version supports parallel regions only at the
uppermost state machine level, all kinds of boolean and linear arithmetical
OCL expressions, and all vertices except history states. Further extensions
comprise a plug-in for a user-defined output format, e.g. by providing corre-
sponding pattern files. The current implementation is sufficient to generate
test cases for all presented example models.

3.5.2 Mutation Analysis
In our case studies, we use ParTeG to automatically generate test suites
from a UML state machine, the corresponding context class, and OCL ex-
pressions. To evaluate the generated test suites, we use mutation analysis
(cf. Section 2.1.5). The mutation analysis is executed on manually created
implementations of the test models. For running mutation analysis, we use
the existing mutation analysis tool Jumble [UTC+07] and the Java Muta-
tion Analysis output format of ParTeG. Jumble is an open source mutation
analysis tool that works at byte code level to evaluate the fault detection
capability of JUnit 3.8 test suites. Jumble in version 1.1 returns only per-
cental integer values of the mutation score but no absolute numbers. The
percental values are imprecise if there are more than 100 mutants. To get
the absolute numbers, we adapted the provided source code so that absolute
numbers of detected mutants are provided. Although we configured Jumble
so that the maximum number of available mutants is used, we have only
restricted control over the applied mutation operators or the place where
they are applied [UTC+07]. Therefore, we created the mutants that are used
for the ParTeG Java Mutation Analysis manually. For mutation analysis,
they are all provided by an external mutant factory, which returns all mu-
tants one by one for evaluation. This gives us improved control over the
application of mutation operators. As a result, Jumble and Java Mutation
Analysis used different sets of mutants. Thus, the maximum number of killed
and detectable mutants differ for both approaches. For both approaches, we
identified the detectable mutants from the set of all mutants – we measured

92

3.5. CASE STUDIES

the fault detection capability only with them. In all figures, we used a black
dashed line to depict the number of detectable mutants. Note that all pre-
sented results are no comparison of Jumble and the Java Mutation Analysis,
but studies about the impact of combining coverage criteria as supported by
ParTeG. Furthermore, for evaluating the impact of a coverage criterion, the
numbers of detected and undetected mutants are important.

We use both mutation analysis approaches to compare the fault detec-
tion capabilities of test suites that satisfy single transition-based or control-
flow-based coverage criteria to that of test suites that satisfy the combined
coverage criteria supported by ParTeG. For that, we measured the effect of
the coverage criteria in terms of detected mutants and test suite size of the
generated test suites for all the test models that are presented in Section 3.2.
For creating abstract test cases, we use the coverage criteria All-States, All-
Transitions, Decision Coverage, masking MC/DC, and Multiple Condition
Coverage. For selecting input parameter values, we applied random selection
(Random), Multi-Dimensional that only creates values near partition bound-
aries between two partitions (MD_0) and Multi-Dimensional in combination
with one randomly selected value of the partition and values at absolute type
boundaries (MD_1). The terms in parentheses denote the terms used in the
following figures.

We know of no tool that is able to include boundary value analysis for the
automatically generated input partitions of all generated abstract test cases.
For this reason, the results of the random value selection approach corre-
sponds to the state of the art of commercial tools. The two other criteria
for concrete input parameter selection MD_0 and MD_1 are only supported
by ParTeG. In the beginning of 2008, we used a temporary, scientific ver-
sion of the Smartesting Test Designer [Sma] version 3.2.1 and Rhapsody
ATG 6.2 [IBM] for a comparison with ParTeG. Mutation analysis (see Sec-
tion 2.1.5) showed that both commercial tools detected only 50% of the
mutants detected by ParTeG. As mentioned above, the Test Designer also
needed considerably more time than ParTeG. For each mutation analysis, we
show three bars for each used structural coverage criterion. Each bar presents
the detected mutants for the test suites that are generated by combining the
structural coverage criterion with Random, MD_0, and MD_1, respectively.

Sorting Machine.

Figure 3.29 shows the results for the mutation analysis with Jumble and with
Java Mutation Analysis for the sorting machine example. Jumble used 47
semantically different mutants – Java Mutation Analysis used 71. The black
dashed lines show these values.

93

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

47 4747 47

42 42 4242
37

47

42

47 4747

42

47 47 47 47

0

10

20

30

40

50

60

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

47

(a) Jumble.

48 53 525253

7066 70 7070 7171717167

0

10

20

30

40

50

60

70

80

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

71

(b) Java Mutation Analysis.

Figure 3.29: Mutation analysis for the sorting machine example.

Random MD_0 MD_1
All-States 4 5 9
All-Tran-sition 4 5 9
Decision Cove 4 5 9
MC/DC 4 5 9
MCC 4 5 9

4
5

9

4
5

9

5

9

44

5

9

4
5

9

0
1
2
3
4
5
6
7
8
9

10

Random MD_0 MD_1

Boundary-Based Coverage

N
um

be
r o

f T
es

t C
as

es

All-States
All-Tran-sitions
Decision Coverage
MC/DC
MCC

4 4 444

55 555

9 9 9 9 9

0

1

2

3

4

5

6

7

8

9

10

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

N
um

be
r o

f T
es

t C
as

es

Random

MD_0

MD_1

Figure 3.30: Test suite sizes for the sorting machine.

For Jumble, the application of MD_0 or MD_1 results in an increase of 5
killed mutants compared to the random value selection, which corresponds to
an average increase of 13%. MD_1 has no additional advantage over MD_0.

The mutation analysis with the Java Mutation Analysis output of ParTeG
shows a similar picture. Only the extent of the improvement is larger. On
average, the number of killed mutants is increased by 18, which corresponds
to an increase of more than 34%. The application of MD_1 instead of MD_0
results in an additional advantage of 1 killed mutant.

Note that the numbers of undetected mutants are even more important to
measure the impact of coverage criteria combination: For both measurement
approaches, the numbers of undetected mutants are reduced to 0.

Figure 3.30 shows the test suite sizes for all coverage criteria combinations.
The test suite sizes increase for all coverage criteria from 4 (Random) to 5
(MD_0) and 9 (MD_1), which corresponds to an increase of 25% and 125%,
respectively. Note that the test suite size is equal for both kinds of mutation
analysis: The test suites are almost equal – their main difference is only the
output format (Java Mutation Analysis or JUnit 3.8, respectively).

94

3.5. CASE STUDIES

Freight Elevator.

Here, we evaluate the fault detection capabilities of test suites generated for
the freight elevator example. Figure 3.31 shows the corresponding numbers.
Jumble used 63 detectable mutants. Java Mutation Analysis executed the
test suite for 86 mutants. Again, the dashed lines depict the total numbers
of detectable mutants.

57 57
58

61 61
All-States

47

55

58

45

34 36

61

49

57

47

36

47 49

57 61

0

10

20

30

40

50

60

70

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

63

(a) Jumble.

36

47

70
64

54

77

41

52

71

58

79
75

58

52

41

0

10

20

30

40

50

60

70

80

90

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

86

(b) Java Mutation Analysis.

Figure 3.31: Mutation analysis for the elevator control example.

Random MD_0 MD_1
All-States 2 4 6
All-Tran-sition 3 6 9
Decision Cove 4 7 11
MC/DC 5 8 13
MCC 8 13 21

2
4

6
3

6
9

7

11

45

8

13

8

13

21

0

5

10

15

20

25

Random MD_0 MD_1

Boundary-Based Coverage

N
um

be
r o

f T
es

t C
as

es

All-States
All-Tran-sitions
Decision Coverage
MC/DC
MCC

2
3

8

544
6

8
7

13

21

13
11

9

6

0

5

10

15

20

25

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

N
um

be
r o

f T
es

t C
as

es

Random

MD_0

MD_1

Figure 3.32: Test suite sizes for the elevator control example.

The application of Jumble brought the following results: For all coverage
criteria, the number of killed mutants increases by 2 to 3 mutants, which
corresponds to an increase of 5.1% to 5.8%. Again, selecting MD_1 instead
of MD_0 has no impact.

The evaluation with Java Mutation Analysis shows a stronger increase:
For MD_0, the number of killed mutants increases for all applied coverage
criteria by 4 to 7 mutants, which corresponds to an increase of 6.2% and
14.3%, respectively. The selection of MD_1 instead of MD_0 brings only
advantages for MC/DC and MCC: The number of killed mutants is increased

95

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

by another 6 and 2 mutants, respectively. Note again, that the number of
undetected mutants is considerably decreased – for MCC, from 16 to 7.

In Figure 3.32, the test suite sizes for all coverage criteria combinations
are shown. Compared to Random, the test suite size increases for MD_0
between 62.5% and 100% and for MD_1 between 162.5% and 200%. Again,
the size of the test suites are equal for both Jumble and Java Mutation
Analysis. This also holds for all following evaluations.

Triangle Classification.

The triangle classification example is a standard example for automatic test
generation (cp. [UL06, page 214]). The challenge of this example is the large
number of interdependencies of the three input parameters. This makes this
example especially hard for boundary value analysis. Figure 3.33 shows the
results for the corresponding mutation analysis. The number of detectable
mutants for Jumble is 41 – for Java Mutation Analysis, it is 143.

41 41 413939 39 4141 413939 39 41 41 41

0

10

20

30

40

50

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

41

(a) Jumble.

74 74

121119

87

135

84 84

133

95

138136

95

8484

0

20

40

60

80

100

120

140

160

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

143

(b) Java Mutation Analysis.

Figure 3.33: Mutation analysis for the triangle classification.
Random MD_0 MD_1

All-States 5 9 25
All-Tran-sition 5 9 29
Decision Cove 5 10 34
MC/DC 11 24 72
MCC 15 28 85

5

29

9

25

5
9

10

34

511

24

72

15

28

85

0
10
20
30
40
50
60
70
80
90

Random MD_0 MD_1

Boundary-Based Coverage

N
um

be
r o

f T
es

t C
as

es

All-States
All-Tran-sitions
Decision Coverage
MC/DC
MCC

5 5

1511

5
9 9

24

10

28

85

72

34
29

25

0

10

20

30

40

50

60

70

80

90

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

N
um

be
r o

f T
es

t C
as

es

Random

MD_0

MD_1

Figure 3.34: Test suite sizes for the triangle classification.

96

3.5. CASE STUDIES

Jumble does not yield an improvement of the mutation score. This is
caused by the used mutation operators, on which we have only restricted
influence: The application of Decision Coverage, MC/DC, or MCC already
results in killing all detectable faults. This means that there is no room for
improvement for a combination of coverage criteria.

The mutation analysis using Java Mutation Analysis shows an increase
for MD_0 and MD_1. The application of MD_0 instead of Random results
in an increase of the killed mutants between 8 and 14. This corresponds to an
increase of 9.2% to 13.5%. For MC/DC and MCC, the application of MD_1
instead of MD_0 brought an additional effect: For both, the number of
detected mutants was additionally increased by 3. Furthermore, the numbers
of undetected mutants were decreased considerably: For MCC, the number
is decreased from 22 (Random) to 5 (MD_1).

Figure 3.34 depicts the corresponding test suite sizes. The test suite
sizes of this example increase considerably: For MD_0, the test suite size is
doubled compared to Random. For MD_1, it is about sixtupled.

Track Control.

The track control example contains a test model that is taken from the
UnITeD project [PS07] of the University Erlangen. Figure 3.35 shows the
number of killed mutants. Jumble used 120 detectable mutants. For the
Java Mutation Analysis, 312 mutants were tested.

120 120118 120 120

79

116 118 118

106

79

120
117

120

106

79

106

117 120 120

0

25

50

75

100

125

150

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

120

(a) Jumble.

149
121

188

255251

212

303

223

298

248

311307

249
223

149

0

100

200

300

400

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

312

(b) Java Mutation Analysis.

Figure 3.35: Mutation analysis for the track control example.

Jumble detected no increase of the fault detection capability for All-States
and All-Transitions. For the stronger structural coverage criteria, the appli-
cation of MD_0 and MD_1 results in an increase of the killed mutants
between 1 and 2, which correspond to 0.8% and 1.7%, respectively. Since

97

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

Random MD_0 MD_1
All-States 6 26 98
All-Tran-sition 13 42 125
Decision Cove 20 52 144
MC/DC 39 133 431
MCC 56 223 810

98
266

125
42

13

144
522039

133

431

56

223

810

0
100
200
300
400
500
600
700
800
900

Random MD_0 MD_1

Boundary-Based Coverage

N
um

be
r o

f T
es

t C
as

es

All-States
All-Tran-sitions
Decision Coverage
MC/DC
MCC

6 13

56
392026 42

133
52

223

810

431

14412598

0

100

200

300

400

500

600

700

800

900

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

N
um

be
r o

f T
es

t C
as

es

Random

MD_0

MD_1

Figure 3.36: Test suite sizes for the track control example.

the combination with MD_0 results in killing all detectable mutants, the
application of MD_1 instead of MD_0 brings no additional gains.

The mutation analysis with Java Mutation Analysis also shows a strong
impact of the coverage criteria combination on the number of killed mutants:
For MD_0, it increases between 28 and 48. Applying MD_1 instead of
MD_0 brings for MC/DC and MCC another advantage of 8 or 9 killed mu-
tants. Combining MCC with MD_1 instead of Random results in a decrease
of the undetected mutants from 57 to 1.

Figure 3.36 shows the test suite sizes for this example. The test suite sizes
increase considerably for MD_0 and MD_1: The test suite size is multiplied
with 4 for MD_0 and with 15 for MD_1.

Train Control.

The test model of the train control example was used in an industrial case
study. Figure 3.37 shows the results of the mutation analysis with Jumble and
the Java Mutation Analysis output of ParTeG. Jumble applied 314 mutants,
and Java Mutation Analysis applied 263 mutants.

The number of killed mutants for Jumble is only increased by 2 to 3. For
MCC and MD_1, only 6 of 314 mutants remain unkilled.

The mutation analysis with Java Mutation Analysis shows a different
result: For all coverage criteria, there is an increase of killed mutants between
6 and 13, which corresponds to an increase of about 5%. The selection of
MD_1 instead of MD_0 brings no additional advantage.

Figure 3.38 shows the test suite sizes for the case study. The test suite
sizes increase almost linearly: For all coverage criteria, the application of
MD_0 doubles the test suite size and the application of MD_1 triples the
test suite size compared to random value selection.

98

3.5. CASE STUDIES

189187

294 306305305296 308307 308 308308307296

189

0

50

100

150

200

250

300

350

400

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

314

(a) Jumble.

119

205

236232225

247

214

243234

125

247243234

214

125

0

50

100

150

200

250

300

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

K
ill

ed
 M

u
ta

n
ts

Random

MD_0

MD_1

263

(b) Java Mutation Analysis.

Figure 3.37: Mutation analysis for the train control example.

Random MD_0 MD_1
All-States 13 25 38
All-Tran-sition 34 66 100
Decision Cove 42 78 119
MC/DC 47 86 131
MCC 55 99 150

13
25

3834

66

100
78

119

4247

86

131

55

99

150

0
20
40
60
80

100
120
140
160

Random MD_0 MD_1

Boundary-Based Coverage

N
um

be
r o

f T
es

t C
as

es

All-States
All-Tran-sitions
Decision Coverage
MC/DC
MCC

25

42 47
55

34

13

99

78
86

66

38

100

119
131

150

0

20

40

60

80

100

120

140

160

All-States All-Tran-
sitions

Decision
Coverage

MC/DC MCC

N
um

be
r o

f T
es

t C
as

es

Random

MD_0

MD_1

Figure 3.38: Test suite sizes for the train control example.

3.5.3 Results of Mutation Analyis

The fundamental result of the presented mutation analysis is that the com-
bination of coverage criteria as presented in this chapter usually cause an
increase of the mutation score. Given the importance of detecting the last
undetected mutants [ABLN06], this increase is an important advantage of
automatically generated model-based test suites – in some cases, the number
of detectable but unkilled mutants is reduced to almost zero. As a second
result, the test suite sizes are increased considerably when applying MD_0 or
MD_1. Since there are case studies [ABLN06] that estimate an exponential
growth of the test suite size for the detection of the last undetected mutants,
this increase is not surprising. After all, applying the presented coverage cri-
teria combinations is still a decision of the overall test risk management. The
combinations of coverage criteria are a means to increase the fault detection
capability beyond the ones for single coverage criteria. Given enough time
and a strong interest in test quality, the application of these combinations is
a valuable instrument.

99

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

The impacts measured with Jumble are always lower than the ones mea-
sured with Java Mutation Analysis. Furthermore, applying MD_1 instead
of MD_0 never brings an additional impact for Jumble. One reason for this
is that Jumble only supports the change of linear-ordered type instances if
they are defined as literal constants [UTC+07], which is often not the case in
the used implementations. However, Jumble also shows a positive impact of
coverage criteria combination on the test suite’s fault detection capability in
most cases. The Java Mutation Analysis of ParTeG is based on manually cre-
ated mutants according to the mutation operators presented in Section 2.1.5.
The measured impact of applying the boundary-based coverage criteria for
the Java Mutation Analysis was always stronger than the impact measured
with Jumble. Furthermore, applying MD_1 instead of MD_0 often has an
additional impact for Java Mutation Analysis.

Combining coverage criteria has an impact on all considered coverage cri-
teria. In most cases, the absolute impact is similar for all coverage criteria.
Since there are less undetected mutants for stronger coverage criteria like
MCC than for weaker coverage criteria like All-States, we consider the unde-
tected mutants for stronger coverage criteria harder to detect and the relative
impact of combining coverage criteria bigger for stronger coverage criteria. A
similar effect can be observed for the application of MD_1: For the elevator
control, the triangle classification, and the track control, applying MD_1
instead of MD_0 only has an effect for MC/DC and MCC.

The identification of undetectable mutants requires a considerable amount
of manual work: We manually checked all unkilled mutants to identify the
undetectable mutants. Since running the test suites on the correct SUT
does not result in the detection of any failures, the executed test suites only
kill detectable mutants. In the following, we summarize the results of the
mutation analysis for the generated test suites to satisfy MCC. Table 3.4
shows the Jumble mutation scores for all combinations of MCC with Random,
MD_0, and MD_1, respectively. Table 3.5 shows the corresponding results
for applying the Java Mutation Analysis output.

Boundary-Based Sorting Freight Triangle Track Train
Coverage Criterion Machine Elevator Classification Control Control

Random 42/47 58/63 41/41 118/120 306/314
MD_0 47/47 61/63 41/41 120/120 308/314
MD_1 47/47 61/63 41/41 120/120 308/314

Table 3.4: Comparison of Jumble mutation analysis for MCC with all
boundary-based coverage criteria.

100

3.6. RELATED WORK

Boundary-Based Sorting Freight Triangle Track Train
Coverage Criterion Machine Elevator Classification Control Control

Random 52/71 70/86 121/143 255/312 236/263
MD_0 70/71 77/86 135/143 303/312 247/263
MD_1 71/71 79/86 138/143 311/312 247/263

Table 3.5: Comparison of Java Mutation Analysis for MCC with all bound-
ary-based coverage criteria.

3.6 Related Work
All the general work about model-based testing has been introduced in Sec-
tion 2.3. In this section, we focus on work related to the presented test
generation approach. For instance, partition testing and boundary testing
are testing techniques that are focused on the selection of test input val-
ues. Several approaches validate predefined boundaries [Kor90, HHF+02]
but do not provide means to derive these boundaries from test models. As
an exception, Legeard, Peureux, and Utting claim that they developed a
method for automated boundary testing from the textual languages Z and
B [LPU02]. In contrast to this approach, however, we additionally consider
the combination of control-flow-based, data-flow-based, or transition-based
coverage criteria with boundary-based coverage criteria. Unfortunately, the
corresponding prototype BZ-TT were not available for evaluation and com-
parison due to operation system incompatibilities of the development ma-
chines. This shows the general advantage of implementing ParTeG in Java.
There are coverage criteria for boundary values of finite partitions [KLPU04].
In contrast, our approach is not restricted to finite input partitions. A
prominent approach for manual partition definition is the classification tree
method (CTM) [GG93, DDB+05, LBE+05, ATP+07]. For instance, Hierons
et al. [HHS03] specify an automatic test generation approach focused on
boundary values. Their approach, however, is also based on CTM, which re-
quires the tester to manually define the equivalence partitions. In contrast,
our approach is able to derive the input partitions based on control-flow-
based, transition-based, or data-flow-based coverage criteria. This gives our
approach the additional advantage of restricting the number of considered
partitions according to a selected, e.g., control-flow-based, coverage crite-
rion. Gupta et al. [GMS98] propose a relaxation method to create input
parameters for automatically detected feasible paths. However, they start
with arbitrary input parameters and adapt them using constraint solvers to
find any solution for input parameters. Their work is not focused on finding
boundary values. A similar approach has been proposed in [GMS99].

101

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

Simon Burton describes in his PhD thesis [Bur01] a different way of in-
cluding boundary value analysis into automatic test generation from test
specifications in Z. For that, he defines heuristics that are used to transform
the test model, e.g. by splitting one inequation of the test model into several
ones. For instance, he transformed an expression that corresponds to a guard
[x >= y] into three guards [x = y], [x = y + 1], and [x > y + 1]. The idea is
that the satisfaction of each separate guard forces the test generator to se-
lect boundary values for the guard. There are similar approaches for model
checkers that include the transformation or mutation of the test model. Our
approach for integrating boundary value analysis has some advantages over
model transformations for boundary value analysis. We briefly discuss two of
the most important advantages. Figure 3.39 presents such a tranformation
adapted to UML state machines.

A B
[x >= y]

A B
[x = y + 1]

[x = y]

[x > y + 1]

Figure 3.39: Semantic-preserving test model transformation by Burton.

First, we consider boundary value analysis important for the place where
input parameters are specified and not where they or derived attributes are
used (at the guard). The reason is that the input parameters are used to
steer the SUT and there are many situations in which the attributes of the
transition guard cannot be directly accessed. It is not guaranteed that the
concrete attribute values of the guards can be equal to the constants they
are compared to. For the example of the sorting machine in Section 3.2.1,
it would be necessary to create boundary values for [x = y + 2] instead of
[x = y +1] because x is twice the value of an integer input parameter. In the
ParTeG approach, boundary values for input parameters are derived from
the guard conditions to satisfy and all value changes on the path to reach
that guard condition. Figure 3.40 shows a similar extension of the test model

A B
[x = y + 1]

[x = y]

[x > y + 1]
C

ev(i) / x = 3*i

Figure 3.40: Problematic scenario for Burton’s approach.

example for Burton of Figure 3.39: The value of x is set to three times the
value of the input parameter i. If we assume that x, y, and i are integers

102

3.6. RELATED WORK

and y is fix, it is easy to see that at most two of the three guards can be
satisfied and that x = y and x = y + 1 can never be jointly satisfied by
any set of test cases for one test model. As a consequence, at most one of
the corresponding boundary values will be selected for test generation - the
remaining one is a random value for x > y + 1. In contrast, our approach
creates partitions on the input values and selects values that are closest to the
boundary, e.g. if y is divisible by 3, then i = y/3 and i = y/3+1 are selected,
which results in x = y and x = y + 3, respectively. The second boundary
value can be created by ParTeG but not by the approach of Burton. The
approach of Burton can be extended by including static analysis and creating
the transition guard [x = y + 3] instead of [x = y + 1]. This would solve
the presented issue. There may be, however, several paths leading to that
guard, e.g., one that sets x three times the value of an input parameter and
one that sets it to the value times seven. Figure 3.41 shows a corresponding
state machine. This is an example for the violation of the Markov property

A B

[x = y + 3]

[x = y]

[x > y + 3]
C

ev(i) / x = 3*i

ev(i) / x = 7*i
[x = y + 7]

[x > y + 7]

Figure 3.41: Different computations for the same input parameters.

that states that only the current state machine state and the future input
are important for future behavior. As a consequence, the traversed transition
sequences are important and, thus, the transformation of guard conditions
into trace-specific conditions of input parameters is important. In this case,
several guards would have to be created. In a scenario where x is increased
depending on the number of transition loops, this would result in a potentially

A B

[x = y + 1]

[x = y]

[x > y + 1]
C

ev1 / x = x@pre + 1

[x = y + 2]

[x > y + 2]

ev2

...

Figure 3.42: Boundary values depending on the number of loop iterations.

infinite number of additional guards to cover all possible paths, which makes
this approach infeasible for such scenarios (see Figure 3.42).

103

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

Second, we are interested in executing boundary value analysis for each
abstract test case. There might be several transition sequences leading to the
transformed guard condition. Splitting the guard condition as presented has
the effect that only one of these paths has to satisfy a certain boundary value:
the satisfaction of any control-flow-based coverage criterion only demands to
satisfy a guard without considering the transition sequence that leads to it.
So the number of transition sequences per visited guard condition for which
boundary value analysis must be executed is limited to 1. Figure 3.43 depicts
such a scenario: Satisfying [x = y] for the event ev1 implies that it is not
necessary to satisfy this guard for the event ev2. In contrast, the ParTeG
approach includes boundary value analysis for each created abstract test
case. Transforming the test model graph into a tree could help here. This
approach, however, is infeasible for loops. The tool Qtronic [Con] implements
Burton’s approach to boundary value analysis.

A B
[x = y + 1]

[x = y]

[x > y + 1]
C

ev1

ev2

Figure 3.43: Another problematic scenario for the approach of generating
boundary values with model transformations.

Finally, we also created two test suites that were generated for the com-
bination of Multiple Condition Coverage and Multi-Dimensional as provided
by ParTeG and for Multiple Condition Coverage on a transformed model
as proposed by Burton, respectively. We applied mutation analysis to com-
pare the fault detection capabilities of both test suites for the redundant test
model (see Section 4.1.1) of the industrial train control with the Java Muta-
tion Analysis output: The test suite for the Burton approach detected 834
mutants. The test suite for the combined coverage criteria as implemented in
ParTeG detected 839 mutants. Thus, all theoretic advantages were fortified
by a short experiment including an industrial test model.

Cause-effect graphs [Elm73, Mye79] are “a graphical representation of in-
puts or stimuli (causes) with their associated outputs (effects), which can be
used to design test cases” (BS 7925-1. British Computer Society Specialist
Interest Group in Software Testing (BCS SIGIST)). They are an alternative
way to describe dependencies between input partitions and output parti-
tions. Basically defined for any kind of expressions, they can also be applied
for partition descriptions. Cause-effect graphs have been used to derive test
cases [Mye79, PTV97]. Schroeder and Korel [SK00] try to reduce the number
of black-box tests using input-output analysis. They identify relationships

104

3.6. RELATED WORK

between inputs and outputs. We can also describe these relations between in-
puts and outputs with cause-effect graphs [WS08b]. In contrast, however, we
also consider the transition paths that connect input and output partitions.

Fox et al. [FHH+01] present backward conditioning as an alternative to
conditioned slicing. Backward slicing provides answers to the question of
what program parts can possibly lead to reaching a certain part of the
program. The same intention applies to the backward search approach of
ParTeG: In order to satisfy each test goal of a coverage criterion, we are only
interested in finding a path that can lead to covering this test goal.

OCL is a language to express constraints on models [RG98, ZG03, lT06].
Sokenou [Sok06a] translates OCL expressions of the model into Java code
to use them as a test oracle. Hamie et al. consider OCL in combination
with state machines and classes [HCH+99]. Our algorithm deviates in that
we also evaluate OCL constraints and use them to derive test input value
partitions. Smartesting claims that their Test Designer for UML [UL06]
can evaluate OCL expressions like pre-/postconditions or transition guards
for boundary value analysis. They use an operational interpretation of equa-
tions in OCL postconditions. As a consequence, their approach is not able to
deal with inequations and logical expressions beyond conjunction (e.g. “or”,
“not”) in postconditions. Furthermore, the Smartesting approach is only able
to create min-max values, which may be insufficient to satisfy the boundary-
based coverage criterion All-Edges [KLPU04] for edges that do not contain
minimal or maximal partition values of a certain parameter (see definition
in Section 2.1.5). In 2008, we received and evaluated a scientific version
of Smartesting (Leirios) Test Designer 3.2.1, which was not able to create
boundary values at all. In [BLC05], Briand et al. present an approach to au-
tomate the evaluation of OCL expressions. They assume that the transition
sequences are already generated and focus on the remaining task of solving
the constraints given as OCL expressions. In contrast, our work includes the
generation of transition sequences. Since transition sequences can be infea-
sible due to the attached OCL constraints, the inclusion of OCL expression
evaluation in the test generation process is important.

We transform and evaluate OCL expressions to deduce input parame-
ter values. There are many constraint solving techniques that are applied
to finding object states that satisfy a set of constraints [RvBW06, Rav08,
BSST09, BHvMW09, DEFT09]. Our approach, however, is not focused on
finding only any possible solution as generated by most constraint solvers.
Instead, we aim at generating boundary values. There are also constraint
solvers that include linear optimization [BEN04]. Such solvers can probably
be used to support the evaluation of further OCL expressions or non-linear
mathematical functions that are out of the scope of OCL (e.g., sin, cos).

105

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

Dijkstra’s weakest precondition calculus [Dij76, Gri81, Whi91, Win93,
CN00] is often used for reasoning and proofs. We know of no backward
interpretation approach that uses Dijkstra’s weakest precondition for gener-
ating test data in model-based testing.

As presented in Section 2.3.1, there are several approaches to model-based
testing with model checking [CSE96, ABM98, GH99, HLSC01]. A major
draw-back of model checking is the approach to build up a complete state
space. For input values of ordered type (e.g. integer), this often results in a
restriction of the value space, e.g., from 0 to 100. In contrast, our approach is
based on abstraction of concrete values and, thus, there is no need to restrict
data types. We used ParTeG to create boundary values for arbitrary integer
values ranging from the minimum possible Java integer or double values to
the corresponding maximum.

Abstract interpretation [Cou03, CC04] is a technique to interpret pro-
grams at a higher abstraction level than the program itself. The representa-
tion at the higher level is formal. The major advantage is to derive informa-
tion without executing the program. We also apply abstract interpretation
in our approach: While searching a path backward to the initial configura-
tion, the test generator keeps track of abstract information that restrict the
values of the input parameters. After creating a feasible abstract test case,
this abstract information is used to derive concrete input parameter values.

Other models or formalisms than the UML (e.g. extended finite state
machines [CK93, BDAR97]) are also used for test generation. However, they
do not adequately support object-oriented systems.

Besides the already mentioned Test Designer of Smartesting [Sma], many
commercial tools support model-based test generation based on UML state
machines. The tool Rhapsody ATG [IBM] is based on UML state machines.
It generates and executes test cases with respect to coverage criteria like
MC/DC. Boundary value selection is not included. The Conformiq tool
Qtronic [Con] supports parallelism and concurrency in UML state machines
and supports the boundary value analysis approach of Simon Burton, but also
faces the mentioned disadvantages. The algorithm of the tool AETG [Tel]
depends on user-defined values and boundaries and is not able to derive them
automatically from the test model. In contrast, we derive input partitions
automatically. To our knowledge, no commercial tool creates test cases by
explicitly deriving input partitions from conditions.

106

3.7. CONCLUSION, DISCUSSION, AND FUTURE WORK

3.7 Conclusion, Discussion, and Future Work
In this section, we present conclusion, discussion, and possible future work
for the presented test generation approach.

3.7.1 Conclusion
In this chapter, we presented a new approach to test suite generation, which
is focused on combining data-flow-based, control-flow-based, or transition-
based coverage criteria with boundary-based coverage criteria. The approach
is based on a guided depth-first search algorithm. After providing motiva-
tions, we described the test goal management as well as the corresponding
test case generation approach for single test goals. We also introduced exam-
ple test models from literature, academia, and industry, and we used them
to evaluate the impact of combined coverage criteria on the test suites gen-
erated by our prototype implementation ParTeG. As a major result of the
corresponding mutation analysis, the satisfaction of combined coverage cri-
teria results in a higher fault detection capability of the generated test suite
than the satisfaction of single coverage criteria. Since the latter is the state
of the art, we also pointed out our contribution and showed the advantages of
combining coverage criteria. A small comparison with test suites generated
by commercial tools further substantiates the advantages of ParTeG over the
state of the art in automatic model-based test generation.

3.7.2 Discussion
The above results show the prospective strengths of our approach. We also
discussed the related work in the previous section. There are, however, fur-
ther interesting points to discuss. First of all, the presented algorithm and
the corresponding tool are not as mature as other (commercial) products.
Some constructs for UML state machines are not supported. We already
named them in Section 3.5.1 and accounted for that with the agile devel-
opment process. The results of applying ParTeG successfully in industrial
applications, however, shows the relative strength of this academic tool.

Furthermore, the completeness of the test model and its pre-/postcondi-
tions strongly influences the quality of the generated test suite. As any other
model-based testing approach, our approach can only transform expressions
into input value partitions if the model comprises the corresponding depen-
dencies between definition and use of variables. In general, the detection of
feasible paths is undecidable. Correspondingly, our approach cannot guaran-
tee the satisfaction of a selected coverage criterion. However, ParTeG returns

107

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

a detailed list containing the unsatisfied test goals, which gives the tester the
opportunity to check the test model or manually create missing test cases.

There are several reasonable adaptations and extensions for ParTeG. For
instance, initial configurations can be expressed in object diagrams. Since
names of test model elements may differ from the used names of SUT ele-
ments, it may be necessary to adapt the resulting test suite in a subsequent
step or to support the creation of a test adapter. The use of only one state
machine can also be discussed – especially for distributed systems or dis-
tributed development processes: It would be possible to define several active
classes of the SUT and define one state machine for each active class.

3.7.3 Future Work
ParTeG has already been applied in two industrial cooperations. Measured
in terms of the number of killed mutants, the results for ParTeG were always
better then the results of the selected commercial product.

However, there are some things that could be improved for this tool. We
plan to support a broader range of constraints in OCL postconditions includ-
ing expressions about collections. The selection of concrete input parameters
from a set of restricting constraints is not a trivial problem. We think about
including an existing constraint solver into ParTeG to be able to derive con-
crete test input values. Possible solvers might be lp_solve [BEN04], which
also includes linear optimization, or SAT4J [Con09], which is already shipped
with the ParTeG development platform Eclipse 3.5 (Galileo). The transition
sequence search using data-flow information (e.g. for loops) could be im-
proved as well as the support of the missing UML state machine elements
like parallel composite states or history states. The set of uncovered test
goals could be returned, e.g., in an XML document, to enable other test gen-
erators to search for the remaining test cases, automatically. Furthermore,
the current approach satisfies boundary-based coverage criteria for each cre-
ated abstract test case, which results in a sharp increase of the test suite size
compared to selecting only one representative input value for each partition.
In one industrial project, we realized that some of these values do not need to
be selected twice if the corresponding transition paths in the state machine
overlap to a certain degree. We think that this can be solved by determining
the overlapping def-use-paths. The criteria for identifying these overlapping
paths, however, still need to be elaborated. As another possible improvement,
model slicing could be used to reduce the effort of test generation. Before
slicing away parts of the model, however, the data-flow has to be carefully
analysed in order to prevent the removal of essential aspects. Moreover, the
presented test generation algorithm combines pre-post and transition-based

108

3.7. CONCLUSION, DISCUSSION, AND FUTURE WORK

algorithms (cf. classification in Section 2.3.2). An open question is whether
further combinations with other test generation techniques may bear simi-
lar advantages like the presented combination of coverage criteria. Finally,
the user interaction can be improved, and other input languages than state
machines can be supported.

109

CHAPTER 3. AUTOMATIC MODEL-BASED TEST GENERATION

110

Chapter 4

Test Model Transformation

In this chapter, we present test model transformations as a means to influence
the automatic model-based test generation based on UML state machines.
This is the second contribution of this thesis. The transformations are used
to change and improve the effect of the applied coverage criteria. Thus, this
contribution can be used in conjunction with the first contribution of this
thesis, which is the automatic generation of test cases.

This chapter is structured as follows. We present experiences from an
industrial cooperation that show the potential impact of test model trans-
formations in Section 4.1. We provide the preliminaries for all subsequent
considerations in Section 4.2. In Section 4.3, we present the simulated sat-
isfaction of coverage criteria as the satisfaction of coverage criteria on the
original test model by satisfying other, possibly weaker coverage criteria on
a transformed test model. We sketch further effects of model transforma-
tions in Section 4.4. After that, we present related work in Section 4.5 and
conclusion, discussion, and future work in Section 4.6.

4.1 Industrial Cooperation
In this section, we report on a cooperation [Wei09a] with the German sup-
plier of railway signaling solutions Thales. The results of this report are
our initial motivation for considering model transformations as a means to
improve the quality of automatically generated test suites. The test suites
in the company are usually created manually. For our industrial partner,
the objective of this cooperation was to investigate the use of model-based
testing before adopting it as an additional testing technique. Our task was to
automatically generate unit tests based on a given UML state machine. For
reasons of nondisclosure, the SUT was not provided. Instead, we manually

111

CHAPTER 4. TEST MODEL TRANSFORMATION

created artificial implementations of the test model and conducted mutation
analysis on them to measure the fault detection capability of the generated
test suite. This mutation analysis showed that the application of existing
coverage criteria on the given state machine often does not result in a sat-
isfying fault detection capability of the test suite. As a consequence, we
tuned several influencing factors of the model-based test generation process
to improve the results of mutation analysis: We transformed the test model,
adapted the test goals of the applied coverage criteria, and combined coverage
criteria. We also used the cooperation as a test for the presented prototype
implementation ParTeG [Weib] under realistic conditions.

Section 4.1.1 contains preliminaries. In Section 4.1.2, we report on the
cooperation and all the steps to improve the fault detection capability of the
generated test suites. Section 4.1.3 contains conclusion and discussion.

4.1.1 Preliminaries
In this section, we present the preliminaries of the cooperation report: We
introduce the notions of artificial SUTs as well as efficiency and redundancy
for SUT and test models.

Our aim was to convince our client of the advantages of model-based
testing. Thus, we wanted to maximize the generated test suite’s fault detec-
tion capability for the company’s SUT. Since this SUT was not provided, we
created and used artificial SUTs, instead: (1) a small SUT with almost no
redundancy - we call it the efficient SUT - and (2) a cumbersome SUT with
a lot of copied source code and redundant function definitions - we call it the
redundant SUT. The two SUTs are two extreme implementations regarding
source code efficiency.

if(eventIs(’ev1’)) {
if(inState(’B’) ||

inState(’C’) ||
inState(’D’)) {
if(a < b) {

setState(’E’);
}}}
(a) Efficient condition definition.

if(eventIs(’ev1’)) {
if(inState(’B’) && a < b) {

setState(’E’); }
if(inState(’C’) && a < b) {

setState(’E’); }
if(inState(’D’) && a < b) {

setState(’E’); }}
(b) Redundant condition definition.

Figure 4.1: Examples for efficient and redundant SUT source code.

Figure 4.1 shows two small examples. Both SUTs are manually imple-
mented in Java and show the same behavior as the test model. Since the
redundant SUT contains more similar code snippets than the efficient SUT

112

4.1. INDUSTRIAL COOPERATION

and each snippet can contain a fault, there are more possible places for faults
in the redundant SUT and, thus, these faults are assumed to be harder to
detect than faults in the efficient SUT. We were aware that the company’s
SUT can be totally different to our artificial SUTs, and we do not claim that
our approach is the best one. However, in the described situation we had
no access to the company’s SUT and considered the use of artificial SUTs
a good solution for finding state-related failures. These artificial SUTs gave
us at least an indication for the possible performances of the generated test
suites. Since the focus of mutation operators is on syntactic changes, the real
SUT is important. Different SUTs can have the same behavior but different
structures. Thus, in general, good mutation scores on artificial SUTs are no
guarantee for good mutation scores on the company’s real SUT.

B

C
D

B

C
D Eev1

A

ev1

ev1
A

Eev1
[a<b]

[a<b]

[a<b]
[a<b]

Figure 4.2: Hierarchical and flat state machine.

Likewise, we also call test models efficient or redundant: For instance, a
hierarchical state machine is often more efficient than a flattened one because
it needs less model elements to describe the same behavior (see Figure 4.2).
The provided test model of the cooperation contains almost no redundancy.
Our prototype ParTeG partly supports the insertion of redundancy such as
flattening state machines, which allows us to automatically generate redun-
dant test models from efficient ones. During the cooperation, we considered
two scenarios most interesting. (1) The test suite is generated from the ef-
ficient test model and executed on the efficient SUT. (2) The test suite is
generated from the redundant test model and executed on the redundant
SUT. Additionally, we also applied the test suite derived from the efficient
test model on the redundant SUT, and we applied the test suite derived from
the redundant test model on the efficient SUT in Section 4.1.2. This gives
us further information about the impact of the used SUT’s structure.

4.1.2 Report on the Industrial Cooperation
This section contains our report on the industrial cooperation with the Ger-
man supplier of railway signaling solutions Thales. A UML state machine
was provided to automatically generate unit tests from it. The test model is
described in Section 3.2.5.

113

CHAPTER 4. TEST MODEL TRANSFORMATION

For reasons of nondisclosure, the company’s SUT was not provided. In-
stead, we had access only to the UML state machine to generate test suites
from. We used ParTeG for automatic test generation. The test oracle was
contained in the state machine (e.g. as state invariants), and the correspond-
ing oracle code was also generated automatically. After generating a test
suite, we measured its fault detection capability with mutation analysis and
manually identified all undetectable mutants. Furthermore, we investigated
the reasons for detectable but undetected mutants, came up with solutions to
detect them, and repeated the test suite generation. We applied the coverage
criteria All-Transitions, masking MC/DC, and Multiple Condition Coverage
(MCC) to the test model (see Section 2.1.5). In the following, we describe all
adaptations of the test generation process and present their impacts on the
generated test suites’ fault detection capabilities. In Section 3.2.5, we intro-
duced the test model of the industrial cooperation already. The presented
figure, however, was focused on showing the use of linear ordered types. Fig-
ure 4.3 shows another anonymised part of the provided state machine that
contains only model elements for the aspects that were adapted during the
cooperation. All following figures depict parts of Figure 4.3.

C

D

E

A B

I

H L

K

ev6 [X and Y]
ev1,
ev2,
ev3

ev4

ev5

F

G

ev6 [not Y and Z]

ev6 [else]

[X and Y]

[else]
[else]

[X]

ev7

ev8

M

ev9

ev10

Figure 4.3: Anonymised part of the provided state machine.

Initial Results.

This section contains a description of the cooperation’s initial results. Ta-
ble 4.1 shows the results of mutation analysis for the efficient and the redun-
dant SUT with test suites generated from the efficient and the redundant test
model (TM), respectively, without test goal adaptations (cf. Section 3.3.3).
The need for test goal adaptation was identified during this cooperation. All
following tables contain numbers in parentheses that describe the absolute
impact of the described adaptation on the test suite size as the number of
test cases and on the mutation score as the percentage of killed mutants.

114

4.1. INDUSTRIAL COOPERATION

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

All-Transitions 33 185/255 117 610/872
masking MC/DC 46 212/255 197 790/872

MCC 54 217/255 257 810/872

Table 4.1: Results of initial mutation analysis.

Transition Trigger Distribution.

Some transitions of the provided UML state machine are triggered by mul-
tiple events (e.g. from state A to state B). None of the applied coverage
criteria is focused on events, but the SUT can contain separate source code
snippets for each transition trigger. Thus, the satisfaction of any of the
used coverage criteria does not necessarily result in the detection of a fault
in each corresponding implementation branch. In theory, testing all (even
the non-triggering) events for all transitions can be covered with sneak path
analysis [REG76, PS96]. Sneak path analysis is focused on finding state tran-
sitions that are unintended and, thus, unmodeled. This analysis, however, is
costly and we know of no supporting test tool [BSV08].

We considered two solutions: the implementation of a better test gener-
ator and the transformation of the test model. For users of a (commercial)
model-based testing tool, the improvement of the test generator is almost
impossible. Even if the tool vendor is willing to implement the necessary
aspects, this change would probably be costly. Transforming the test model,
however, seems to be easy: The transformation consists of creating several
copies of the corresponding transitions, each of which is triggered by exactly
one of the original transition’s events. Figure 4.4 shows the original and the
transformed test model.

A
ev1, ev2, ev3

B A
ev3

Bev2

ev1

Figure 4.4: Splitting transitions according to their triggering events.

We implemented this solution in ParTeG and repeated the test suite
generation. The results of the subsequent mutation analysis are presented in
Table 4.2. The numbers in parentheses describe the change caused by this
test model transformation. The presented adaptation had a positive impact
for the pair of redundant test model and SUT (TM/SUT) and almost no
impact on the efficient TM/SUT. Since the redundancy of the company’s
SUT is unknown, however, we consider this transformation valuable.

115

CHAPTER 4. TEST MODEL TRANSFORMATION

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

All-Transitions 36 (+3) 185/255 (+0) 134 (+17) 627/872 (+17)
masking MC/DC 49 (+3) 212/255 (+0) 214 (+17) 807/872 (+17)

MCC 57 (+3) 217/255 (+0) 274 (+17) 827/872 (+17)

Table 4.2: Mutation analysis after limiting triggers per transition to 1.

Dynamic Test Goal Adaptation.

Dynamic test goal adaptation as a means to deal with incomplete guard
descriptions has already been described in Section 3.3.3. Including this step
in automatic test generation was motivated during this cooperation. The
idea is to adapt generated test goals (see Section 2.4.2) so that there is only
one possible target state for each test goal. As a consequence, the oracle of
each test case can predict the expected target state for each event trigger, and
the corresponding test case is able to detect more mutants. We implemented
this dynamic test goal adaptation in ParTeG and generated the test suites
again. Table 4.3 shows the results of the subsequent mutation analysis.

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

All-Transitions 34 (-2) 189/255 (+4) 131 (-3) 634/872 (+7)
masking MC/DC 50 (+1) 226/255 (+14) 215 (+1) 820/872 (+13)

MCC 57 (+0) 229/255 (+12) 274 (+0) 842/872 (+15)

Table 4.3: Mutation analysis with additional dynamic test goal adaptation.

Choice Pseudostate Splitting.

The state machine in Figure 4.3 contains completion transitions, which are
not triggered explicitly. A problem occurs if a vertex has several incoming
transitions and several outgoing completion transitions with guard condi-
tions. The satisfaction of a control-flow-based coverage criterion such as
MC/DC or MCC is focused on value assignments for guard conditions. It
is not influenced by traversed transition paths, and there may be different
paths for each necessary guard value assignment. Figure 4.5(a) shows a cor-
responding part of the state machine. The outgoing transitions of the choice
pseudostate are not directly triggered by events. Each control-flow-based
coverage criterion is already satisfied, e.g. if the guard [X and Y] is satisfied
on a path including the state F and if [else] is satisfied on a path including
the state G (see Figure 4.5(a)). Consequently, [X and Y] may not be sat-
isfied for paths including state G and [else] may not be satisfied for paths
including state F. All corresponding mutants will remain unkilled.

116

4.1. INDUSTRIAL COOPERATION

F

I[X and Y]G

H[else]

(a) Original choice pseudostate.

F

I

[X and Y]

G

H
[else]

[else]

[X and Y]

(b) Splitted choice pseudostate.

Figure 4.5: Split the choice pseudostate.

The application of transition-based coverage criteria [UL06, page 118]
like All-Transition-Pairs instead of MCC is no satisfying solution because
All-Transition-Pairs only requires to test one of the three value assignments
to satisfy [else]. We know of no coverage criterion that is focused on transi-
tion sequences and on the value assignment of guards’ atomic conditions at
the same time. Our solution comprises a test model transformation – each
choice pseudostate is split up according to its incoming transitions: Each
new choice pseudostate is attached to only one incoming transition but to all
outgoing transitions of the original choice pseudostate (see Figure 4.5(b)). As
a consequence of this transformation, the satisfaction of control-flow-based
coverage criteria implies that each guard condition on outgoing transitions
of choice pseudostates has to be covered for each source state of the choice
pseudostate (F and G in the example). We implemented this test model
transformation and rerun the test generation. Table 4.4 shows the results of
the subsequent mutation analysis.

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

All-Transitions 47 (+13) 209/255 (+20) 144 (+13) 660/872 (+26)
masking MC/DC 61 (+11) 239/255 (+13) 226 (+11) 840/872 (+20)

MCC 68 (+11) 241/255 (+12) 285 (+11) 860/872 (+18)

Table 4.4: Results of mutation analysis with splitted choice pseudostates.

Composite States Transformation.

Several choice pseudostates of the test model are contained in composite
states and are directly connected to the composite state’s initial state (see
Figure 4.6(a)). There is only one incoming transition for such choice pseu-
dostates and all compound transitions [Obj07, page 568] from outside the
composite state are united in the initial state. Thus, the previous test model
transformation has no effect. For this case, we have to split incoming com-
pound transitions instead of splitting incoming transitions: We transform

117

CHAPTER 4. TEST MODEL TRANSFORMATION

the initial state into an entry point and connect it to all incoming transi-
tions of the composite state (see Figure 4.6(b)). After that, this entry point
is duplicated so that there is only one incoming transition for each entry
point (see Figure 4.6(c)). As a consequence, the choice pseudostate has
now several incoming transitions and the previously presented transforma-
tion about choice pseudostate splitting produces several choice pseudostates
(see Figure 4.6(d)). As a result of this transformation, the guard conditions
of choice pseudostates are also tested across boundaries of composite states
for each start state of compound transitions. We implemented this model
transformation in ParTeG and regenerated the test suite. Table 4.5 shows
the results of the subsequent mutation analysis.

L

K

H

I

[X]

[else]

ev8

ev7

(a) Original composite state.

L

K

H

I

[X]

[else]ev7

ev8

(b) Transformed initial node.

L

K

H

I

[X]

[else]ev7

ev8

(c) Duplicated entry point.

L

K

H

I

[else]

[else]

[X]

[X]

ev7

ev8

(d) Splitted choice pseudostate.

Figure 4.6: Transform composite states.

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

All-Transitions 51 (+4) 213/255 (+4) 148 (+4) 661/872 (+1)
masking MC/DC 65 (+4) 242/255 (+3) 229 (+3) 843/872 (+3)

MCC 72 (+4) 244/255 (+3) 288 (+3) 863/872 (+3)

Table 4.5: Mutation analysis with additionally transformed composite states.

Coverage Criteria Combination.

Mutation analysis shows that the generated test suites do not kill all de-
tectable mutants. The remaining unkilled mutants are caused by small
changes of boundary values in conditions with (in-)equations and variables
of ordered types. For instance, if the correct SUT contained a condition
[x > 5], then the unkilled mutants could contain [x > 4] or [x ≥ 5], instead.

118

4.1. INDUSTRIAL COOPERATION

To detect such mutants, boundary value analysis has to be included in the
test suite generation. As described in Chapter 3, ParTeG includes bound-
ary value analysis in automatic test generation. Boundary coverage criteria
like Multi-Dimensional (MD) [KLPU04] are combined with structural, e.g.,
control-flow-based, coverage criteria: For each abstract test case generated
to satisfy one of the three investigated coverage criteria, the concrete input
values are selected according to the boundary coverage criterion MD. These
combined coverage criteria are denoted with a preceding MD. We regener-
ated the test suites for all three considered coverage criteria combinations.
The subsequent mutation analysis showed that the test suites that satisfy
MDMCC (combination of MD and MCC) on the efficient and redundant
test model killed all mutants of the corresponding SUT (see Table 4.6).

Combined Efficient TM/SUT Redundant TM/SUT
Coverage Criterion Test Suite Size Mutation Score Test Suite Size Mutation Score
MDAll-Transitions 102 (+51) 222/255 (+9) 296 (+148) 672/872 (+11)

masking MDMC/DC 128 (+63) 251/255 (+9) 456 (+227) 852/872 (+9)
MDMCC 140 (+68) 255/255 (+11) 572 (+284) 872/872 (+9)

Table 4.6: Mutation analysis with additionally combined coverage criteria.

Impact of the SUT.

In the previous sections, we presented the results of running test suites de-
rived from the efficient state machine on the efficient SUT and of running
test suites derived from the redundant state machine on the redundant SUT.
The results for both scenarios are comparable. In both cases, we assumed
that the SUT and the test model have a similar degree of redundancy. How-
ever, the implementation details of the company’s SUT are unknown. Thus,
we also investigated the impact of the SUT redundancy on the fault detec-
tion capability of the test suite. For reasons of conciseness, we present the
mutation analysis results just once for all presented adaptations.

Combined Efficient TM/Redundant SUT Redundant TM/Efficient SUT
Coverage Criterion Test Suite Size Mutation Score Test Suite Size Mutation Score
MDAll-Transitions 102 240/872 296 226/255

masking MDMC/DC 128 285/872 456 251/255
MDMCC 140 289/872 572 255/255

Table 4.7: Combinations of efficient and redundant test models and SUT.

Table 4.7 shows the results of the mutation analysis for the combina-
tion of efficient test model and redundant SUT as well as the results for the
combination of redundant test model and efficient SUT: If the test model

119

CHAPTER 4. TEST MODEL TRANSFORMATION

is efficient but the SUT is redundant, then the fault detection capability of
the generated test suite is low. None of the used coverage criteria was able
to kill one third of all detectable mutants! The test suites derived from the
redundant state machine that were applied to the efficient SUT are also un-
satisfactory: The test suite generated from the efficient state machine using
MDMCC already killed all detectable mutants and no improvement of the
fault detection capability is possible. Instead, the test suite size increased:
the number of test cases is more than four times higher than for the satis-
faction of MDMCC on the efficient test model.

For the time of the industrial cooperation and also during presented test
generation process, the company’s SUT was unknown to us. After delivering
the test suites, however, we got feed-back about the number of failed test
cases (see Table 4.8) and a short analysis of the reasons. Following that
analysis, the test suite generated from the efficient test model detected one
fault that caused four test cases to fail and the test suite generated from
the redundant test model detected two faults that caused 32 test cases to
fail. In random testing, such results are expected – big test suites are likely
to detect more faults than small test suites. Here, however, the test suites
are generated from the same behavioral information using the same coverage
criteria. Thus, the test model redundancy is important: The test suite for
the redundant test model contains more test cases that detect faults, but
it also detects more faults. This substantiates the importance of the de-
scribed adaptations and transformations in realistic scenarios as well as the
importance of considering different levels of test model redundancy.

Combined Efficient Test Model Redundant Test Model
Coverage Criterion Failed Tests Detected Faults Failed Tests Detected Faults

MDMCC 4/140 1 32/572 2

Table 4.8: Failed tests and detected faults on the company’s SUT.

4.1.3 Conclusion and Discussion
In this section, we conclude and discuss the presented report on the industrial
cooperation. Related work is presented in Section 4.5.

Conclusion.

We reported on an industrial cooperation with the German supplier of rail-
way signaling solutions Thales. We described the initial situation and the
occurred challenges of model-based black-box testing. We provided solutions

120

4.1. INDUSTRIAL COOPERATION

for all of these challenges. The application of the solutions resulted in the
detection of all detectable mutants. We measured the fault detection capa-
bilities of the generated test suites with mutation analysis on artificial SUTs
and also got feed-back about the execution of the final test suites on the
company’s SUT. The goal of the presented cooperation was to investigate
model-based testing before adopting it as a new testing technique. We were
able to convince our client of the benefits of model-based testing: The quality
of the generated test suites was comparable to manually created test suites in
terms of detected faults and covered source code elements. However, model-
based testing requires considerably lower maintenance effort than manual test
creation. Moreover, the test execution effort can be considerably influenced
by the selection of a weaker or stronger coverage criterion.

Furthermore, we got interesting feed-back about the importance of inte-
grating boundary value analysis in test generation. We were told that once
a whole train communication was shut down because one boundary value
was not implemented correctly: The distance to a certain point was exactly
zero, a highly unlikely event. Boundary value analysis probably would have
revealed this fault.

The contribution of this section is the presented procedure for model-
based testing in an industrial scenario with a hidden SUT. The main benefit
of this procedure is the increased fault detection capability for automatically
generated test suites. Novel elements of this report are the application of
artificial SUTs, the purposeful transformation of test models, the adapta-
tion of test goals, and the combination of coverage criteria in an industrial
application.

Discussion.

Most of the presented results can also be reached by improving the used test
generator. Usually, however, the tester is just a user and has no influence
on the used test generator. The presented test model transformations are
the only way to increase the generated test suite’s fault detection capability
without changing the test generator.

One result is that test suites generated from redundant test models have
a higher fault detection capability than test suites from efficient test models.
The result of this report is not a recommendation to create redundant test
models as a new kind of “modeling paradigm”. Such models would be hard to
maintain. Instead, we recommend to create and maintain efficient test mod-
els, to transform copies of them automatically, and to use these transformed
and redundant copies for automatic model-based test generation. Test mod-
els have to be adapted if the SUT is changed. Since test models are in general

121

CHAPTER 4. TEST MODEL TRANSFORMATION

easier to understand than source code and test suites are generated automat-
ically, we consider the corresponding effort lower than the effort for adapting
manually created test suites.

We were skeptical about using artificial SUTs. There is no guarantee
that a good mutation score for artificial SUTs implies a good mutation score
for the company’s SUT. Reasons can be that some information is missing
in the test model and that the artificial implementations only contain state-
based information that is also contained in the test model. Furthermore, the
presented influencing factors were only investigated for artificial SUTs, and
it is an open issue whether their application also leads to the detection of
all mutants in the company’s SUT. In our case, however, this technique was
quite successful. As shown in the section about the impact of the SUT, the
artificial SUTs were helpful to improve the fault detection capability of test
suites generated from redundant test models. Furthermore, the presented
report shows that the adaptations also have a positive impact on the fault
detection capability of the generated test suites for the company’s SUT.

We presented the incremental effect of the adaptations, i.e., the results of
each adaptation already included the results of all previous adaptations. This
is especially obvious for the choice pseudostate splitting and the composite
state transformation, for which the second one is only intended to improve the
effect of the first one. An isolated investigation of all adaptations would be
interesting. This report just presents our experiences during the cooperation.

Furthermore, the combination of coverage criteria resulted in doubling
the test suite size. Case studies [ABLN06] estimate an exponential growth
of the test suite size with respect to the number of already killed mutants.
These case studies also point out the importance of killing the last 10%-20%
of all detectable mutants.

Moreover, we used a technique to dynamically adapt test goals in Sec-
tion 4.1.2. As presented in [FW08a], the adaptation of test goals is an impor-
tant research topic. It would be interesting to also categorize possible test
goal adaptations and identify their impact on the test generation process.
Chapter 6 is focused on test goal prioritizations.

Finally, the presented adaptations resulted from undetected mutants of
one concrete test model, and it is interesting whether they also have an im-
pact on other scenarios. We generated test suites from all the test models
presented in Section 3.2 and measured the impact of the adaptations on
the corresponding mutation scores presented in Section 3.5.2. Additionally,
we applied the adaptation of splitting inequations in guards as presented
in [Wei08]. The adaptations can only have an additional impact to the test
suites that do not already kill all detectable mutants. We sketch the results
for the satisfaction of the strongest control-flow-based coverage criterion Mul-

122

4.2. PRELIMINARIES

tiple Condition Coverage: For the track control, the last remaining mutant
is killed for Java Mutation Analysis. Applying the adaptations also results
in killing five of the seven remaining mutants for Java Mutation Analysis
and both missing mutants for Jumble. For the triangle classification, all five
remaining mutants are killed for Java Mutation Analysis. Table 4.9 shows
the corresponding mutation scores before and after applying the mentioned
adaptations. For all examples except the freight elevator for Java Mutation
Analysis, the application of all mentioned adaptations results in killing all
detectable mutants.

Mutation Sorting Track Freight Triangle
Analysis Machine Control Elevator Classification

Java Mutation Analysis before: 71/71 before: 311/312 before: 79/86 before: 138/143
after: 71/71 after: 312/312 after: 84/86 after: 143/143

Jumble before: 47/47 before: 120/120 before: 61/63 before: 41/41
after: 47/47 after: 120/120 after: 63/63 after: 41/41

Table 4.9: Impact of test model adaptation on mutation analysis for the four
remaining example models.

4.2 Preliminaries
In this section, we present several test model transformations to support
automatic model-based test generation. Motivation is the improved fault
detection capability of test suites generated from transformed test models as
shown in the previous section. As we have seen, model transformations can be
used to increase even the effect of the strongest control-flow-based coverage
criterion. This leads us to the question whether model transformations can
also be used to improve the effect of weaker coverage criteria so that they
correspond to stronger ones.

Model transformations [Küs06] are used to change models. They can
be used to transform almost every model into every other model. The two
models can be instances of different meta models [Fav] or the same one.

A state machine is a behavioral abstraction of the SUT. Two structurally
different state machines can describe the same behavior. A state machine
can be transformed and used afterwards for test generation if the test model
transformation preserves the behavior described by the model. The test
goals generated from the test model and the coverage criterion depend on
the structure of the test model (see Section 2.4.2). Test model transforma-
tions for coverage criteria can be used to accentuate certain parts of the test
model: The idea is that coverage criteria on transformed test models produce

123

CHAPTER 4. TEST MODEL TRANSFORMATION

more test goals that result in more test cases with a higher fault detection
capability.

Coverage criteria are focused on covering model elements and not on de-
tecting failures – the aspect of propagating the error to the outside is left
out (see Section 2.1.1). For the sole satisfaction of such coverage criteria,
it is irrelevant whether the corresponding test cases detect a failure, i.e.,
whether the used model transformation preserves the semantics of the state
machine. In our context, however, the state machines should be used to gen-
erate test suites and, thus, failure detection and semantics preservation are
important. Before thinking about how to preserve the semantics, we have to
define the semantics. This is an issue: First, the UML specification contains
many semantic variation points and, thus, the semantics of state machines
is not defined by the OMG specification. Second, there are many different
definitions of state machine semantics [Har87, HN96, EW00]. Finally, the
proposed test model transformations [Wei09b] are intended to support test
generation tools with a limited ability to satisfy coverage criteria. Developers
of such tools often have their own understandings of state machine seman-
tics, and the tools often do not support the full state machine specification.
For these reasons, it is impossible to define just one kind of state machine
semantics preservation and claim the general applicability of the correspond-
ing model transformations to all existing tools. Instead, we restrict ourselves
to an “intuitive semantics” of state machines and claim that the presented
transformations can be adapted to existing tool semantics. We use Smartest-
ing LTD [Sma] as an example: This tool supports only test generation from
deterministic, untimed, and flat state machines and is restricted to the satis-
faction of All-Transitions on the used test model. According to that, we will
restrict the presented model transformations to such UML state machines
and, amongst others, present model transformations to enhance the effect of
All-Transitions.

In the following, we present definitions of model transformations and
abstract representations of test suites on state machines to compare coverage
criteria applied to different test models. Furthermore, we present semantic-
preserving test model transformation patterns that are used to compose the
transformations in the further sections of this chapter.

4.2.1 Definitions
Here, we present several definitions that are used to clarify the concepts of
coverage criteria, test goals, and satisfying test cases. For that, we extend
the definitions presented in Section 2.4.2. For reasons of clarification, we
show all the used symbols again. All the definitions from step patterns to

124

4.2. PRELIMINARIES

Test Suites: TS
State Machines: SM
State Machine / Model Transformations: MT
Step Patterns: SP
Step Coverage: SPCov
Trace Patterns: TP
Trace Coverage: TPCov
Atomic Test Goals: ATG
Complex Test Goals: CTG
Test Goals: TG
Coverage Criteria: CC
Coverage Criteria Satisfaction: |=
Abstract State Machine Representation: asmr

Figure 4.7: Names and symbols for test model transformations.

coverage criteria satisfaction can be looked up in Section 2.4.2 on page 41 ff.
Here, we only define the additionally presented names.

Test suites TS are sequences of parameterized events that trigger a cer-
tain behavior of the test model and (oracle) information corresponding to
the expected behavior. The corresponding behavior on a state machine is
expressed using the function asmr. Since the considered test models are
untimed, the model instantly reacts to the events and there are no event
conflicts. SM denotes the set of all UML state machines [Obj07, page 519].
All model transformations of state machines are described with MT , which
is a set of functions {mt | mt : sm1→ sm2; sm1 ∈ SM ; sm2 ∈ SM}.

The abstract state machine representation asmr : ts× sm→ TPS (with
ts ∈ TS, sm ∈ SM , and TPS ⊆ TP) is a function that represents the be-
havior of test suites ts on the level of state machines sm as a set of trace
patterns TPS.

We already defined coverage criteria satisfaction in terms of covered trace
patterns in Section 2.4.2. Here, we are interested in test suites whose cor-
responding trace patterns at state machine level should be covered. Like
for the previous definition of coverage criteria satisfaction in Section 2.4.2,
for complex coverage criteria like MC/DC, it is adequate to satisfy only a
sufficient set of included atomic test goals. For that, we present an extended
definition of coverage criteria satisfaction: A coverage criterion cc ∈ CC on
a state machine sm ∈ SM is satisfied by a test suite ts ∈ TS iff all test
goals tg ∈ cc(sm) are covered by the traces of asmr(ts, sm), i.e., at least
one trace pattern tpg of each atomic test goal tg is covered by the traces of
asmr(ts, sm):
asmr(ts, sm) |= cc(sm) iff ∀tg∈cc(sm)∃tpt∈asmr(ts,sm),tpg∈tg : (tpt, tpg) ∈ TPCov.

125

CHAPTER 4. TEST MODEL TRANSFORMATION

4.2.2 Basic Transformation Patterns
In this section, we present basic transformation patterns that are used to
assemble test model transformations of UML state machines. Due to the
afore mentioned restrictions of semantics specification, we restrict ourselves
to show that the provided transformation patterns preserve the intuitive
semantics. As a consequence, all transformations that are composed of
these transformation patterns are also semantic-preserving. All subsequently
shown pseudocodes use the UML notation.

Add Variables.

The transformation Add Variables consists of adding the definition of a new
variable to a transition’s effect. The variable does not influence the control
flow of the state machine. Thus, this transformation preserves the state
machine’s semantics. A test generation postprocessor should be used that
removes these new and artificial variables so that they do not occur in the
generated test suite. Figure 4.8 shows the pseudocode for the corresponding
transformation.

addVariable(Effect ef, Variable var, String value) {
add "var = value" to ef;

}

Figure 4.8: Transformation that inserts a new variable into a transition effect.

Insert Node in Transition.

insertNodeInTransition(Transition t) {
Vertex v = new ChoidePseudoState();
Transition t_new = new Transition();
Vertex target = t.target;
t.target = v; v.incoming = {t}; target.incoming.remove(t);
t_new.source = v; v.outgoing = {t_new};
t_new.target = target; target.incoming.add(t_new);

}

Figure 4.9: Transformation that inserts a choice pseudostate into a transition.

The transformation Insert Node in Transition consists of inserting a
choice pseudostate v into a transition t. Figure 4.9 shows the corresponding
pseudocode. The new node v has only one outgoing transition t_new, which
has no guard, no effect, and leads to the former target state of t. Since t_new

126

4.2. PRELIMINARIES

is connected to t via a pseudostate, both are part of the same compound tran-
sition. Consequently, they are executed in one step, and this transformation
preserves the semantics of the state machine.

Move Effect.

Each transition t of a state machine can contain an effect. The transformation
Move Effect consists of inserting a choice pseudostate v into t (Insert Node
in Transition) and moving the effect ef of t to the new outgoing transition
t_new of v (see Figure 4.9). Both transitions are part of the same compound
transition, t_new has no guard, and after executing this compound transi-
tion, ef will be executed. Thus, this transformation preserves the semantics
of the state machine. The pseudocode that describes this transformation is
shown in Figure 4.10.

moveEffect(Transition t) {
insertNodeInTransition(t);
Transition t_new = t.target.outgoing->get(0);
t_new.effect = t.effect;
t.effect = null;

}

Figure 4.10: Transformation that moves the effect of a transition.

Copy Vertices.

States of a state machine do not necessarily correspond bijectively to variable
value assignments of the SUT. Thus, there are often states that describe a set
of value assignments of the SUT – this is part of the abstraction. But there
may also be several states of the state machine that describe the same set of
value assignments of the SUT. The aim of the atomic transformation Copy
Vertices is to create copies of a vertex v in the state machine that reference
the same set of SUT value assignments as v.

This transformation creates copies of a vertex depending on the number
of its incoming transitions. For each copy c of the original vertex v holds: All
properties (e.g. internal transitions, state invariants, etc.) and all outgoing
transitions are copied. The source vertices of the copied transitions are set
to c – the target states are equal to the target state of the original transition.
Thus, each input event causes the state machine to reach the same target
vertex. Consequently, the behavior is unchanged and this transformation
preserves the semantics. Figure 4.11 shows an algorithm for copying vertices.

127

CHAPTER 4. TEST MODEL TRANSFORMATION

copyVertex(SM sm, Vertex v) {
Vertex c = new Vertex();
set all properties of c to the ones of v;
for all outgoing transitions t of v {

create a copy of t and set its source vertex to c;
} }

Figure 4.11: Transformation that creates copies of state machine vertices.

Exchange Transition Targets for Vertex Copies.

In addition to copying vertices as presented above, the transitions that point
to the original vertex v can also point to any copy c of v or vice versa. Since
v and c imply the same behavior, the effect of traversing any transition is
the same no matter whether the transition’s target vertex is v or c. Thus,
exchanging a transition’s target vertex with a copied vertex preserves the
semantics of the state machine. Figure 4.12 shows the transformation.

exchangeTransitionTarget(Transition t, Vertex new_Target) {
Vertex old_Target = t.target;
if (new_Target is copy of old_Target or vice versa) {

t.target = new_Target;
} }

Figure 4.12: Transformation to exchange a transition’s target vertex.

Create Self-Transitions for Unmodeled Behavior.

Events in UML state machines can trigger transitions. This depends on the
current configuration, i.e., the set of concurrently active states. There may
be states for which no outgoing transition is triggered by a certain event, e.g.,
because the corresponding guard is not satisfied or there is simply no cor-
responding transition. The proposed model transformation pattern Create
Self-Transitions for Unmodeled Behavior consists of creating self-transitions
of states for combinations of events and guard value assignments that ac-
tivate no existing transition. The effect of the transformation is that all
combinations of event and guard value assignment that initially do not re-
sult in traversing transitions now do at least once. To prevent that the new
transitions trigger entry or exit actions of states, their type is set to inter-
nal [Obj07, page 574]. The semantics of the state machine is unchanged and,
thus, the presented model transformation is semantic-preserving. Figure 4.13
shows the pseudocode for the corresponding algorithm.

128

4.2. PRELIMINARIES

addSelfTransitions(SM sm, Vertex v) {
for all pairs of event e and guard conditions g that do not result

in transition traversal from v {
Transition t = new Transition();
t.guard = g; t.event = e; t.source = v; t.target = v;
if (e = null) { // completion transition

create new variable var;
add "var = true" to t.guard;
add "var = false" to t.effect;
add "var = true" to the effect of all incoming transitions of v

that are not self-transitions;
} } }

Figure 4.13: Create self-transitions for unmodeled behavior.

There may be an issue: If such self-transitions are completion transi-
tions [Obj07, page 568], this transformation event has a higher priority than
all other events [Obj07, 569] and can lead to an unlimited loop execution.
To prevent this, a new variable var is created for each newly inserted com-
pletion transition. The value of var is set to false in the effect of the new
self-transitions and to true in the effect of all incoming transitions of the
self-transition’s source state that are not self-transitions. Additionally, the
guards of all newly defined completion self-transitions include var so that
the self-transitions can be traversed just once.

Split Transition.

Each transition of a state machine can contain a guard condition. The model
transformation Split Transition consists of splitting a transition t according
to its guard g: First, t is removed and two copies t1, t2 of t are created that
have the same source vertex, target vertex, event, and effect like t. Then, the
transition guard g is split up into two new complete and mutually exclusive
expressions g1 and g2 (with g1 ∨ g2 = g and g1 ∧ g2 = false). The new
expressions are assigned as guards to t1 and t2, respectively. Since for each
value assignment of t’s guard, exactly one of t1 and t2 has the same effect as
t, this transformation preserves the state machine semantics.

Transitions can also be split into more than two transitions. To create
new guards from the guard of a transition to split, we use the conjunctions
that correspond to the rows in the truth value table of the guard to set the
new guards g1 and g2. For instance, the guard [a ∨ b] can be used to create
the guards [a ∧ b], [a ∧ (¬b)], [(¬a) ∧ b], and [(¬a) ∧ (¬b)]. This set also
contains guards that are satisfied if the original guard is violated. Thus, the

129

CHAPTER 4. TEST MODEL TRANSFORMATION

splitTransition(SM sm, Transition t) {
for all conjunctions c of the truth value table of t.guard {

Transition t_new = new Transition();
t_new.source = t.source;
t_new.event = t.event;
t_new.guard = c;
if(c implies t.guard) {

t_new.target = t.target;
t_new.effect = t.effect;

} else {
t_new.target = t.source;

} } }

Figure 4.14: Split transitions according to their guards.

effect and the target of any newly created transition t1 are only set to the
values of the original t iff the satisfaction of t1.guard implies the satisfaction
of t.guard – otherwise, they are created as self-transitions without effect (see
pattern Create Self-Transtions for Unmodeled Behavior). Figure 4.14 shows
the pseudocode for a model transformation that creates a new transition for
each row of the original guard’s truth value table.

Note that it is necessary to consider also the guards of other outgoing
transitions. Basically, new transition guards must not imply the satisfaction
of an already existing transition guard, if both transitions are triggered by the
same event. Since these problems can be easily solved by just excluding the
mentioned event-guard-pairs, we abstract from such problematic scenarios.

4.3 Simulated Coverage Criteria Satisfaction
The industrial report of Section 4.1 already revealed that model transforma-
tions are a means to increase the fault detection capability of a test suite that
is generated based on a test model. This section contains the definition of
simulated coverage criteria satisfaction [Wei10]. The simulated satisfaction
is an important means to satisfy coverage criteria whose satisfaction is not
directly supported by the used test generator. The basic idea is to transform
the test model in such a way that any test suite that satisfies a supported
coverage criterion on the transformed test model also satisfies the desired but
unsupported coverage criterion on the original test model. Simulated satis-
faction is used to exchange coverage criteria in a way that the satisfaction of
weak coverage criteria can have the same effect as the satisfaction of strong
ones. Furthermore, the simulated satisfaction relations can be used to relate
coverage criteria that are not connected by subsumption.

130

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

4.3.1 Introduction
Throughout the thesis, we considered the whole expressiveness of UML state
machines. In this section, we concentrate on model-based testing with de-
terministic untimed flat UML state machines. All presented transformations
are focused on them. The transformations necessary to deal with timed or
hierarchical state machines are similar but contain many special cases that
we do not explain in detail here. It is impossible to guarantee coverage for
non-deterministic models in general. Such restrictions of our presentation do
not imply restrictions of our general approach. We will also sketch some of
the mentioned special cases and the corresponding solutions.

Model-based coverage criteria can be compared by subsumption if they
are applied to the same model. The subsuming coverage criterion is con-
sidered stronger than the correspondingly subsumed coverage criterion. For
instance, All-Transitions [UL06, page 117] is considered the minimum cover-
age criterion to satisfy. There are many commercial test generators that are
only able to satisfy rather weak coverage criteria [BSV08]. As an example,
Smartesting LTD [Sma] is only able to satisfy All-Transitions. If users of
such tools want stronger coverage criteria to be satisfied, their only choice is
often to buy a new test generator. Here, we present model transformations
such that the satisfaction of a weak coverage criterion on the transformed
test model implies the satisfaction of a stronger one on the original test
model [Wei09b]. This is an important support for (commercial) model-based
test generators that are only able to satisfy a limited set of coverage criteria.

This section is structured as follows. Section 4.3.2 contains the prelimi-
naries. In Section 4.3.3, we present test model transformations that are used
to simulate the satisfaction of coverage criteria. The transformations are
assembled from the transformation patterns presented in Section 4.2.2. We
present a resulting simulated satisfaction graph in Section 4.3.4.

4.3.2 Preliminaries
Here, we present a small example of a parallel coffee dispenser. We use it to
illustrate the results of the presented model transformations. Furthermore,
we formally define the notion of simulated coverage criteria satisfaction.

Example.

Figure 4.15 depicts a UML state machine showing the behavior of a coffee dis-
penser. The details are explained in the following. The left region of the state
machine allows a user of the coffee dispenser to select a beverage (sel_bev).

131

CHAPTER 4. TEST MODEL TRANSFORMATION

idle

beverage
selected

not enough
money

prepare
cup

prepare
beverage

sel_bev

ins_c ins_c

[money and
cup]

[money and
not cup]

[else]

/place_cup

/disp_bev

idle

support
called

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

Figure 4.15: UML state machine describing the behavior of a coffee dispenser.

Afterwards, he has to insert a certain amount of coins (ins_c) until the bev-
erage is paid (money = true). Furthermore, the user can decide to place his
own cup in the dispenser (cup = true) or to use the standard plastic cup (cup
= false). If the user does not use his own cup, then the dispenser places one
on the collection tray (place_cup). Afterwards, the beverage is dispensed
into the cup. The right region of the coffee dispenser describes the support
of the coffee dispenser: Each time a beverage is dispensed (disp_bev), the
coffee dispenser checks whether the cash box is close to being full (box_full
= true) or the boxes with the ingredients for the beverages are almost empty
(ingr_empty = true). In this case, the support is called. The coffee dispenser
remains in this state until the support is provided (supp_prov).

Simulated Satisfaction of Coverage Criteria.

In this section, we propose to compare the satisfaction of coverage criteria on
source and target model of model transformations. All test model transfor-
mations are composed of atomic, semantic-preserving transformations that
were presented in Section 4.2.2. We consider only semantic-preserving model
transformations. As presented in Section 4.2, the semantics of the concrete
state machine depends on the tool to support. Thus, we restrict ourselves to
an intuitive semantics. It can be described as follows. A certain active state
configuration describes the current object state. As the reaction to a trigger,
a transition can be traversed if its guard condition is satisfied. The effect of
a transition can, e.g. change value assignments or trigger further transitions.
Besides this basic description, there are several undefined details concern-
ing simultaneous events or composite states. As mentioned above, the UML
specification [Obj07] refers to such details as semantic variation points. Con-
sequently, vendors of existing test generation tools are free in defining details
of state machine semantics. Since our approach is generally applicable to all

132

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

test generation tools, we do not restrict it to a certain vendor-dependent in-
terpretation but focus our approach on the described intuitive semantics. We
claim, however, that there are only a few modifications necessary to adapt
the model transformations to the semantics of a certain model-based test
generation tool. For this reason and for reasons of simplicity, all subsequent
explanations are just focused on deterministic flat untimed UML state ma-
chines. We will discuss the corresponding restrictions and how to resolve
them in Section 4.6. Here, we present some basic definitions. Many language
semantics are defined by the set of the accepted words. UML state machines,
however, are input enabled, and accept all possible input sequences. Thus,
the semantics is defined as the observed behavior or the assigned attribute
values, respectively.

Definition 31 (Semantics of UML State Machines) The semantics of
a UML state machine is its reaction to all sequences of input stimuli, i.e., the
observed behavior or the attribute values and state invariants of all reached
states.

Definition 32 (Semantic-Preserving Model Transformation) A mod-
el transformation of a UML state machine is semantic-preserving iff the se-
mantics of the source model is equal to the semantics of the corresponding
target model.

Definition 33 (Simulated Satisfaction) We consider semantic-preserv-
ing model transformations mt ∈ MT of state machines sm ∈ SM . The
coverage criterion cc1 is applied to mt(sm) and the coverage criterion cc2 is
applied to sm. If the satisfaction of cc1 on mt(sm) implies the satisfaction of
cc2 on sm for all test suites, then the satisfaction of cc1 is said to simulate
the satisfaction of cc2 with the model transformation mt. If there exists such
a model transformation, we say that cc1 simulates cc2: cc1 V cc2.

Coverage Criterion cc1 Coverage Criterion cc2

Test Goals cc1(mt(sm)) Test Goals cc2(sm)Traces for Test Suites ts

Test Model mt(sm)

determine
satisfy satisfy

simulates

Test Model sm

implies

semantic-preserving
transformation

determine

Figure 4.16: Simulated satisfaction of coverage criteria.

Figure 4.16 depicts the notion of simulated satisfaction. The coverage cri-
terion cc1 simulates the coverage criterion cc2 iff for each semantic-preserving

133

CHAPTER 4. TEST MODEL TRANSFORMATION

model transformation mt, the satisfaction of cc1 on the transformed state ma-
chine implies the satisfaction of cc2 on the original state machine for all test
suites ts ∈ TS:

(cc1 V cc2) iff (∃mt∈MT∀sm∈SM,ts∈T S :
(asmr(ts, mt(sm)) |= cc1(mt(sm)))→ (asmr(ts, sm) |= cc2(sm))).

In the following, we present model transformations that are used to show
the simulation of many coverage criteria from the subsumption hierarchy
presented in Figure 2.5 on page 20.

To show that the transformations have the desired effect, we have to show
(1) that the model transformations preserve the semantics of the state ma-
chine and (2) that the simulated satisfaction relations between the coverage
criteria are valid. For (1), the model transformations we consider are com-
posed of basic transformation patterns that are presented in Section 4.2.2.
The transformation patterns are shown to preserve the state machine se-
mantics. Thus, the composed transformations also do. For (2), we apply
the formal definitions of this section for coverage criteria cc1 and cc2 to
show that the satisfaction of a coverage criterion cc1(mt(sm)) implies the
satisfaction of cc2(sm). We prove this by showing the contraposition, i.e., if
cc2(sm) is not satisfied then cc1(mt(sm)) is also not. Thus, we show that one
unsatisfied test goal (see Section 2.4.2) of cc2(sm) implies that a test goal of
cc1(mt(sm)) is also unsatisfied. This approach has the advantage that we can
use the model transformations for the proof without requiring that the trans-
formations are bidirectional. We desist from defining a formal semantics of
state machines for proving the correctness of the presented transformations.
One reason is that all transformations are simple and intuitive and, thus,
such a formal framework would be overkill. Another one is that, due to the
mentioned issues with state machine semantics definition, all proofs would
have to be adapted for each tool vendor, anyway.

4.3.3 Simulated Satisfaction Relations
In this section, we apply the previously presented state machine transfor-
mation patterns to compose test model transformations that are used to
establish simulated satisfaction relations. All analyzed coverage criteria are
presented in [UL06] and formally defined in Section 2.4.3.

All-Transitions Simulates Multiple Condition Coverage.

A test model transformation to simulate Multiple Condition Coverage (MCC)
by satisfying All-Transitions consists of the following: For each vertex v, we

134

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

split all outgoing transitions t of v (see pattern Split Transition) once for
each value assignment cva of t’s guard. The result of the transformation is a
set of transitions t_new for each t and cva so that only t_new is activated
if t was activated for cva in the original test model.

The corresponding pseudocode is shown in Figure 4.17. Figure 4.18 shows
the transformed test model of the coffee dispenser example.

simulateMCCWithAllTransitions(SM sm) {
for each vertex v in sm {

for each outgoing transition t of v {
splitTransition(sm, t);

} } }

Figure 4.17: Transformation that splits transitions according to guards.

idle

beverage
selected

not enough
money

prepare
cup

prepare
beverage

sel_bev

ins_c

ins_c

[money and
cup]

[money and
not cup]

/place_cup
/disp_bev

idle

support
called

disp_bev

[box_full and
ingr_empty]

supp_prov

[not money
and cup]

[not money
and not cup]

[box_full and
not ingr_empty]

[not box_full and
ingr_empty]

[not box_full and
not ingr_empty]

Figure 4.18: Transformed test model to satisfy MCC by satisfying All-
Transitions.

The presented model transformation justifies the simulation of MCC with
All-Transitions. We prove this by showing the contraposition.

Proof. If MCC is unsatisfied, then there is a transition t and a guard
value assignment cva so that there is an unsatisfied test goal for MCC that
contains the trace pattern (({t.source}, t.events, cva, ?)). The transforma-
tion creates a separate transition ct that is only activated if one event of
t.events is triggered from the state t.source with the condition cva. Thus,
the transformation of (({t.source}, t.events, cva, ?)) results in the trace pat-
tern (({t.source}, t.events, cva, {ct})). Since ct cannot be activated for any
other state, event, or value assignment, the trace pattern ((?, ?, ?, {ct})) is
also not covered by any trace of the test suite. Thus, the test goal of All-
Transitions on mt(sm) that contains this trace pattern is not satisfied, and
also All-Transitions is unsatisfied on the transformed model.

135

CHAPTER 4. TEST MODEL TRANSFORMATION

All-Transitions Simulates All-Transition-Pairs.

To simulate the satisfaction of All-Transition-Pairs with All-Transitions, we
present a model transformation that consists of two phases: In the first phase,
we consider all transitions but self-transitions. For each vertex v with n > 1
incoming transitions, we create n− 1 copies c1 of v and spread the incoming
transitions of v over all c1 and v so that each of these vertices has exactly
one incoming transition (see pattern Copy Vertices). In the second phase, we
create another copy c2 of v for each self-transition st of v and set the target
state st.target = c2 (see pattern Exchange Transition Targets for Vertex
Copies). We also set the target vertex of each copy of st to c2. As a result,
for each pair of adjacent transitions (t1, t2) of the original test model, the
transformed test model contains a copy of t2 that can only be traversed if
a copy of t1 has been traversed before. Figure 4.19 depicts the pseudocode
for this transformation. Figure 4.20 shows one possible transformed model
of the coffee dispenser.

simulateAllTransitionPairsWithAllTransitions(SM sm) {
for each vertex v in sm {

for all but 1 incoming transitions t of v {
copyVertex(sm, v);
c1 = the copy of v;
t.target = c1;
addVerticesForSelfTransitions(c1); }

addVerticesForSelfTransitions(v); }
}

addVerticesForSelfTransitions(Vertex v) {
m = empty map from transition to vertex;
for each self-transition st of v {

take existing copy c2 of v or create a one with copyVertex(sm, v);
set st.target = c2;
m.put(st, c2); } // map for target states of transitions

// set target states for copies of self-transitions
for each new copy c2 of v {

for all copies ct of st that are self-transition of cv {
set ct.target = m.get(st);

} } }

Figure 4.19: Transformation for the simulated satisfaction of All-Transition-
Pairs with All-Transitions.

The satisfaction of All-Transitions on this transformation’s target model
implies the satisfaction of All-Transition-Pairs on the source model. Again,
we prove this by showing the contraposition.

136

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

idle_1

beverage
selected

not enough
money

prepare
cup

prepare
beverage_1

sel_bev

ins_c ins_c

[money and
cup] [money and

not cup]

[else]

/place_cup

/disp_bev

idle_1

support
called

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

idle_2
sel_bev

prepare
beverage_2/disp_bev

idle_2

disp_bev

[money and
cup]

[money and
not cup]

[else]

idle_3
disp_bev

Figure 4.20: Transformed test model to satisfy All-Transition-Pairs by satis-
fying All-Transitions.

Proof. If All-Transition-Pairs on the original state machine is unsatisfied,
then a test goal with the trace pattern ((?, ?, ?, {t1}), (?, ?, ?, {t2})) for the
transitions t1 and t2 is unsatisfied, too. For all adjacent t1 and t2, the
model transformation creates copies of t1 and t2 so that a copy ct2 of t2
can only be traversed after a copy ct1 of t1. The transformation creates
copies of transitions. Traversing a transition copy on the transformed state
machine corresponds to traversing the corresponding original in the original
state machine. Thus, if any ((?, ?, ?, {t1}), (?, ?, ?, {t2})) is not covered, then
all corresponding trace patterns ((?, ?, ?, {ct1}), (?, ?, ?, {ct2})) are also not
covered. The transition ct2 can only be traversed after any copy of t1. Thus,
if all ((?, ?, ?, {ct1}), (?, ?, ?, {ct2})) are not covered, then ((?, ?, ?, {ct2})) is
also not. Consequently, the corresponding test goal is unsatisfied on the
target model and All-Transitions is unsatisfied on the target model, too.

All-Transitions Simulates All-Uses.

In this section, we present a model transformation to simulate All-Uses with
All-Transitions: For each existing transition t_d that defines a variable var,
a new variable var_new is set to true at t_d and to false at all other def-
initions t_rd of var (see pattern Add Variables). For each transition t_u
that includes a use of var, a use of var_new is added: If t_u has an effect
ef, ef is moved (see pattern Move Effect) to the newly created transition
t_u_new. Afterwards, a choice pseudostate c is inserted in t_u (see pat-
tern Insert Node in Transition) and the new outgoing transition of c is split
according to the value of var_new (see pattern Split Transition): One tran-
sition has the guard [var_new] and the other transition has the guard [else].

137

CHAPTER 4. TEST MODEL TRANSFORMATION

The effect is moved to prevent that it has any influence on the evaluation
of [var_new]. The result of this transformation is at least one new transi-
tion t for each def-use-pair (t_d, t_u) for which t can only be traversed if
(t_d, t_u) is tested. Figure 4.21 shows the pseudocode for this model trans-
formation. Figure 4.22 shows the transformation result exemplary for the
coffee dispenser with two new attributes a1 and a2 for the value of money,
which is defined at transitions triggered by ins_c and used in the outgoing
transitions of the adjacent decision state.

simulateAllUsesWithAllTransitions(SM sm) {
for each variable var in sm {

for each transition effect ef that includes a definition of var {
create a new variable var_new;
addVariable(ef, var_new, "true");
for all other defining transition effects ef2 of var {

addVariable(ef2, var_new, "false"); }
}
for each transition t that includes a use of var (guard or effect) {

if t has an effect { moveEffect(t); }
insertNodeInTransition(t);
split the outgoing transitions of t.target according to var;

} } }

Figure 4.21: Transformation for simulating All-Uses with All-Transitions.

idle

beverage
selected

not enough
money

prepare
cup

prepare
beverage

sel_bev ins_c / a1: = true;
a2 := false;

ins_c / a1 := false;
a2 := true;

[money and
cup]

[money and
not cup]

[else]

/place_cup/disp_bev

idle

support
called

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

[else]

[a1]

[a2]

[else]

[a1]

[a2]
[else]

[a1]
[a2]

Figure 4.22: Transformed model to simulate All-Uses with All-Transitions.

We prove that this model transformation witnesses the simulated satis-
faction of All-Uses by All-Transitions by showing the contraposition.

138

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

Proof. If All-Uses is unsatisfied on the original test model, then a test goal
with the trace pattern ((?, ?, ?, {t_d}), (?, ?, ?, {¬t_rd})∗, (?, ?, ?, {t_u})) is
also unsatisfied. The used transformation inserts a new variable v_new and
sets it to true at t_d and to false at each t_rd. Thus, the presented trace pat-
tern expresses for the transformed model that v_new has to be set to true and
never set to false before reaching t_u. Furthermore, a transition t is added to
the same compound transition as t_u. The guard of t is [v_new]. As a result
of this transformation, the value of v_new is true iff the presented trace pat-
tern is covered. Thus, if ((?, ?, ?, {t_d}), (?, ?, ?, {¬t_rd})∗, (?, ?, ?, {t_u}))
is not covered by a test suite trace, then ((?, ?, ?, {t})) also is not. Conse-
quently, the corresponding test goal and All-Transitions are unsatisfied on
mt(sm), too.

All-Defs Simulates All-Uses.

All-Uses subsumes All-Defs. Since there can be several uses for the definition
of a variable var , All-Defs does not necessarily subsume All-Uses. Here, we
present a model transformation mt ∈ MT to show that All-Defs simulates
All-Uses: For each use t_u of a def-use-pair (t_d, t_u) in sm, a newly in-
serted attribute a (see pattern Add Variables) is defined at all definitions t_d
(e.g. set to true) and used at t_u (e.g., by adding the tautology [a or (not a)]
to the corresponding guard). The intention of this transformation is to cre-
ate variables for which there is exactly one use. This is done for all existing
def-use-pairs. Consequently, the satisfaction of All-Defs implies the satis-
faction of All-Uses. Since the new guard imposes no restrictions, the newly
inserted def-use-pairs do not influence the behavior of the test model. Thus,
the semantics of mt(sm) is the same as the semantics of sm.

simulateAllUsesWithAllDefs(SM sm) {
for each t_u of def-use-pairs (t_d, t_u) {

create a new attribute a;
for each t_d that defines the variable that is used in t_u {

addVariable(t_d.effect, a, "true"); }
add the usage of a to t_u (by adding a tautology to the

corresponding guard, e.g., [a or not a]);
} }

Figure 4.23: Transformation for the simulation of All-Uses with All-Defs.

Figure 4.23 depicts the pseudocode for this model transformation. Fig-
ure 4.24 shows a partly transformed test model of the coffee dispenser. Like
for the previous transformation, the focus is on the variable money, which is

139

CHAPTER 4. TEST MODEL TRANSFORMATION

idle

beverage
selected

not enough
money

prepare
cup

prepare
beverage

sel_bev

ins_c
/ a1 := true;

a2 := true;
a3 := true;

[money and cup
and (a1 or not a1)]

[money and not cup
and (a2 or not a2)]

[not money and
(a3 or not a3)]

/place_cup
/disp_bev

idle

support
called

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

ins_c
/ a1 := true;
a2 := true;
a3 := true;

Figure 4.24: Transformed test model to simulate All-Uses with All-Defs.

defined at the transitions triggered by ins_c and used in the three outgoing
transitions of the choice pseudostate.

We prove that using this model transformation leads to the simulated
satisfaction of All-Uses with All-Defs by showing the contraposition.

Proof. If All-Uses is unsatisfied on the original state machine, then a test
goal with a trace pattern ((?, ?, ?, {t_d}), (?, ?, ?, {¬t_rd})∗, (?, ?, ?, {t_u}))
is also unsatisfied. The presented model transformation adds a new variable
that is used only at t_u and defined at t_d and all t_rd. Transitions are
unchanged. Only their guards and effects are changed. Applying All-Defs on
the transformed model results in a set of test goals, one of which is equal to
the presented test goal of All-Uses and, thus, is unsatisfied. Consequently,
All-Defs are unsatisfied on mt(sm), too.

All-States Simulates All-Configurations.

All-Configurations subsumes All-States. A model transformation mt ∈ MT
to witness that All-States simulates All-Configurations consists of transform-
ing each configuration c of parallel states into one state s. All outgoing tran-
sitions of c are copied to the set of s’s outgoing transitions in the target
model. The traversal of one of s’s outgoing transitions t in mt(sm) leads
to a state representing the target state configuration that would have been
reached in the original test model sm. The presented model transformation
does not add or remove any details. Instead, only the representation is not
parallel anymore. The semantics of the state machine is unchanged.

The pseudocode for this transformation is shown in Figure 4.25. Fig-
ure 4.26 shows the transformed test model of the coffee dispenser example.

140

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

simulateAllConfigurationsWithAllStates(SM sm) {
create a new region r in sm;
for each configuration c in sm {

create a new state s in r; }
for each configuration c in sm {

s = the state that was created for c in r;
for all outgoing compound transitions t of c {

copy t (including pseudostates) to s.outgoing;
set the t.target to the state in r that describes the corresponding

target state configuration of traversing t from c;
}
create an initial node in r with an outgoing transition

to the state that corresponds to the initial configuration of sm;
}
remove all regions from sm except for r;

}

Figure 4.25: Transformation for the simulation of All-Configurations with
All-States.

idle_1
beverage

selected_1
not enough

money_1

prepare
cup_1

prepare
beverage_1

sel_bev ins_c ins_c

[money
and cup]

[money and
not cup]

[else]

/place_cup
/disp_bev

idle_2
beverage

selected_2
not enough

money_2

prepare
cup_2

prepare
beverage_2

sel_bev
ins_c ins_c

[money and
cup]

[money and
not cup]

[else]

/place_cup

/disp_bev

supp_prov

disp_bev

[box_full or
ingr_empty]

[else]

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

disp_bev

[box_full or
ingr_empty]

[else]

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

Figure 4.26: Transformed test model to satisfy All-Configurations by satis-
fying All-States.

141

CHAPTER 4. TEST MODEL TRANSFORMATION

All states whose names end with “1” correspond to configurations that in-
clude the state idle of the right region. The “2” stands for the inclusion of
the state support called of the right region.

We will prove that the presented transformation can be used to simulate
All-Configurations with All-States by showing the contraposition.

Proof. If All-Configurations is unsatisfied on the original state machine,
then a test goal with a trace pattern ((c, ?, ?, ?)) for configuration c is also
unsatisfied. The target model of the presented model transformation de-
scribes all configurations of the original model as single states. This means
that all configurations are represented by states and the relations between the
states are the same as the ones between configurations. Thus, there is a state
s in mt(sm) that corresponds to the configuration c in sm so that the test
goal (({s}, ?, ?, ?)) is also unsatisfied for mt(sm). Consequently, All-States is
unsatisfied on mt(sm), too.

All-States Simulates All-Transitions.

All-Transitions subsumes All-States. The model transformation pattern In-
sert Node in Transition is enough to show that All-States simulates All-
Transitions: For each transition t1 of the test model sm, a new choice pseu-
dostate c and a new transition t2 are created with: t2.target := t1.target,
t1.target := c, and t2.source := c. After the transformation, c is the new
target state of t1, t2 points from c to the former target state of t1, t1 is the
only incoming transition of c, and t2 is c’s only outgoing transition. Since c
is a pseudostate with one incoming and one outgoing transition, t2 is part
of the same compound transition as t1 (see “compound transition” [Obj07,
page 568] and “run-to-completion” [Obj07, page 559]). Since t2 has no addi-
tional trigger, guard, nor effect, the model transformation does not impact
the original state machine semantics.

simulateAllTransitionsWithAllStates(SM sm) {
for all transitions t in sm {

insertNodeInTransition(t);
} }

Figure 4.27: Transformation for the simulated satisfaction of All-Transitions
with All-States.

Figure 4.27 depicts the pseudocode that describes the model transforma-
tion. Figure 4.28 shows the transformed test model of the coffee dispenser
example.

142

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

idle

beverage
selected

not enough
money

prepare
cup

prepare
beverage

sel_bev

ins_c ins_c

[money and
cup]

[money and
not cup]

[else]

/place_cup

/disp_bev

idle

support
called

disp_bev

[box_full or
ingr_empty]

[else]

supp_prov

Figure 4.28: Transformed test model to satisfy All-Transitions by satisfying
All-States.

We prove that the presented transformation can be used to simulate All-
Transitions with All-States by showing the contraposition.

Proof. If All-Transitions is unsatisfied on the original state machine, then a
test goal with a trace pattern ((?, ?, ?, {t1})) for the transition t1 is unsatisfied
in sm. The model transformation adds new choice pseudostates c into the
transition of t1. Thus, the trace pattern ((?, ?, ?, {t1}), ({c}, ?, ?, {t2})) is
also unsatisfied in mt(sm). The vertex c can only be reached by traversing
its incoming transition t1. Thus, c is not reached iff t1 is not traversed.
Correspondingly, the test goal with the trace pattern (({c}, ?, ?, ?)) is not
satisfied and All-States is unsatisfied on mt(sm), too.

Condition Coverage Simulates All-Transitions.

Condition Coverage is satisfied if all values for each atomic condition are
tested. Since this does not always imply the satisfaction of the whole guard
condition, not all transitions are necessarily traversed. Thus, Condition Cov-
erage does not subsume All-Transitions. A model transformation mt ∈ MT
that shows that Condition Coverage simulates All-Transitions may consist of
extending each transition t1 by inserting a choice pseudostate and a transi-
tion t2 as described in the pattern Insert Node in Transition. Additionally,
a new attribute a is created and t2’s guard condition is set to a tautology
that includes a, like [a or (not a)]. This guard is always satisfied. Thus,
the transition t2 can always be executed from its source state and does not
impact the state machine semantics.

Figure 4.29 shows the pseudocode for the presented model transformation.
In Figure 4.30, the transformed coffee dispenser test model is shown.

143

CHAPTER 4. TEST MODEL TRANSFORMATION

simulateConditionCoverageWithAllTransitions(SM sm) {
create the new variable a;
for all outgoing transitions t of all initial nodes {

addVariable(t.effect, a, "true"); }
for all transitions t1 in sm {

insertNodeInTransition(t1);
Transition t2 = t1.target.outgoing->get(0);
t2.guard = "[a or (not a)]";

} }

Figure 4.29: Transformation for the simulation of Condition Coverage with
All-Transitions.

idle

beverage
selected

not enough
money

prepare
cup

prepare
beverage

sel_bev

ins_c ins_c

[money and
cup]

[money and
not cup]

[else]

/place_cup/disp_bev

idle

support
called

disp_bev

[box_full or
ingr_empty][else]

supp_prov

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

/ a :=
true

/ a :=
true

Figure 4.30: Transformed test model to simulate All-Transitions with Con-
dition Coverage.

The presented model transformation justifies that Condition Coverage
simulates All-Transitions. We prove this via contraposition.

Proof. If All-Transitions is unsatisfied on the original state machine, then
there is a transition t1 and an unsatisfied test goal with the trace pattern
((?, ?, ?, {t1})). The model transformation adds a transition t2 to each tran-
sition t1. They are connected by a pseudostate and are, therefore, part of
the same compound transition. Each added t2 contains a guard condition
that is always satisfied, i.e., the use of any condition value assignment cva
results in traversing t2. Since t1 is the only incoming transition of t2’s source
state, t1 must be traversed before t2. Since t1 is never traversed and t1 is the
only incoming transition of t1.target, there will be also an unsatisfied test
goal with the trace pattern (({t1.target}, ?, cva, {t2})). As a consequence,
Condition Coverage is unsatisfied on mt(sm).

144

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

All-Def-Use-Paths Simulates All-Paths.

The satisfaction of All-Paths requires to traverse all paths. If the state ma-
chine contains loops, this may result in an infinite number of possible paths.
The same applies to All-Def-Use-Paths. Thus, both coverage criteria are
known to be infeasible. All-Paths subsumes All-Def-Use-Paths. A model
transformation mt ∈ MT that shows that All-Def-Use-Paths simulates All-
Paths is equal to the transformation for the simulated satisfaction of All-
Transitions with Condition Coverage. Thus, it also preserves the intuitive
state machine semantics.

Since the transformation is the same as the previous one, we reference
Figure 4.29 for the pseudocode of this transformation and Figure 4.30 for
the transformed coffee dispenser example. The model transformation also
justifies that All-Def-Use-Paths simulates All-Paths. The proof is given by
showing the contraposition.

Proof. Since each compound transition contains a use of the variable a and
there is only one definition of a in the very first transition, each path is also
a def-use-path. So, if there is a not covered path in the original test model,
there will be a corresponding not covered def-use-path in the transformed
test model. Hence, not satisfying All-Paths on sm implies not satisfying
All-Def-Use-Paths on mt(sm).

All-Defs Simulates All-Transitions.

All-Defs is satisfied iff at least one def-use-pair (t_d, t_u) is tested for each
defining transition t_d of each variable var [UL06, page 115]. Traversing
transitions and testing def-use-pairs are not related. Consequently, neither
All-Defs subsumes All-Transitions nor vice versa. A possible model trans-
formation mt ∈ MT that witnesses that All-Defs simulates All-Transitions
consists of adding a new transition t2 for each transition t1 (see pattern In-
sert Node in Transition) and an attribute a to the test model (see pattern
Add Variables). The new attribute a is defined in each t1 and used in each t2.
As a consequence, traversing any original transition corresponds to defining
and using the new attribute, which has to be done to satisfy All-Defs. This
model transformation adds definitions and uses of a newly defined attribute
that has no impact on the rest of the test model. Consequently, mt does not
change the semantics of the test model sm.

Figure 4.31 shows the corresponding pseudocode for this model trans-
formation. The transformed coffee dispenser test model is depicted in Fig-
ure 4.32.

145

CHAPTER 4. TEST MODEL TRANSFORMATION

simulateAllTransitionsWithAllDefs(SM sm) {
create a new attribute a;
for all transitions t1 in sm {

insertNodeInTransition(t1);
addVariable(t1.effect, a, "true");
Transition t2 = t1.target.outgoing->get(0);
add the use "[a or (not a)]" of a to the guard of t2;

}
}

Figure 4.31: Transformation for the simulated satisfaction of All-Transitions
with All-Defs.

idle

beverage
selected

not enough
money

prepare
cup

prepare
beverage

sel_bev
/ a := true

ins_c
/ a := true ins_c

/ a:= true

[money and
cup]
/ a := true

[money and
not cup]

/ a := true

[else]
/ a := true

/place_cup;
a := true

/disp_bev;
a := true

idle

support
called

disp_bev
/ a := true

[box_full or
ingr_empty]
/ a := true

[else]
/ a := true

supp_prov
/ a := true

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or (not a)] [a or (not a)]

[a or
(not a)][a or

(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

[a or
(not a)]

/ a :=
true

/ a = true

/ a :=
true

/ a = true

Figure 4.32: Transformed test model for the simulated satisfaction of All-
Transitions with All-Defs.

The presented model transformation justifies that All-Defs simulates All-
Transitions. Again, we prove this by showing the contraposition.

Proof. If All-Transitions is unsatisfied, then there is a transition t1 so that
a corresponding test goal with the trace pattern ((?, ?, ?, {t1})) is uncovered.
The presented model transformation adds new transitions t2 to the com-
pound transition of t1 and adds a variable a that is defined at each t1 and
used at each t2. The transition t2 can only be traversed if t1 has been tra-
versed before. If t1 is not traversed, then the test goal with the trace pattern
((?, ?, ?, {t1}), (?, ?, ?, {t2})) is also unsatisfied. Consequently, All-Defs is not
satisfied on the transformed test model mt(sm).

146

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

Decision Coverage Simulates All-Transitions.

As presented in Section 2.1.5, there are several interpretations of subsump-
tion relations between certain coverage criteria. For instance, we state that
Decision Coverage subsumes All-Transitions, but there are also other opin-
ions. Here, we assume that there is no such subsumption relation and briefly
sketch the corresponding simulation relation: The used model transforma-
tion is exactly the one presented for the simulation of All-Transitions with
Condition Coverage. As a result of the transformation, each compound tran-
sition contains at least one transition with a guard. Consequently, satisfying
all guards results in traversing all transitions. Thus, Decision Coverage sim-
ulates All-Transitions.

4.3.4 Simulated Satisfaction Graph
In this section, we combine the presented relations of simulated coverage
criteria satisfaction. We present them as an extension of the correspond-
ing coverage criteria’s subsumption graph. Figure 4.33 shows the simulated
satisfaction graph.

All-Transitions

All-States

All-Transition-Pairs

All-Paths

All-Configurations Decision Coverage Condition Coverage

Decision Condition Coverage

Modified Condition/Decision Coverage

Multiple Condition Coverage

All-Defs

All-Uses

All-Def-Use-Paths

Legend:

simulated satisfaction relation

subsumption relation

Figure 4.33: Simulated satisfaction graph.

Interesting results can be derived from this graph. First, simulated sat-
isfaction relations between coverage criteria partly invert subsumption re-
lations. For instance, All-Transitions simulates Multiple Condition Cov-
erage, which subsumes All-Transitions in turn. All-Transitions simulates
All-Transition-Pairs, which transitively subsumes All-Transitions. There are
more examples. Second, many coverage criteria can be simulated with cov-
erage criteria that are not directly related to them. By combining the cor-
responding model transformations, even more pairs of coverage criteria can

147

CHAPTER 4. TEST MODEL TRANSFORMATION

be used for simulation. For instance, All-States simulates All-Transitions,
and All-Transitions simulates All-Uses. Consequently, All-States simulates
All-Uses with the corresponding concatenated model transformations. Like-
wise, Condition Coverage simulates All-Uses, All-Defs simulates All-Con-
figurations, and Condition Coverage simulates All-Transition-Pairs. That is,
any feasible coverage criterion can be chosen to simulate almost any other
feasible coverage criterion.

There are a few exceptions. For instance, All-Paths and All-Def-Use-
Paths are considered infeasible, because they often return an infinite set of
test goals and also require an infinite test suite to be satisfied. It is impossible
to transform a finite set of test goals into an infinite one with a finite trans-
formation. Thus, there is no generally applicable transformation that admits
the simulation of any infeasible coverage criterion with a feasible one. As
an exception to that, it might be possible to use a step-wise transformation,
e.g., for online testing: For instance, it is possible to repeatedly transform
the model so that visiting a newly generated state corresponds to traversing
a path. This model transformation can be done for an arbitrary number
of paths. Complete execution would take infinite time and, thus, has to be
stopped at some point.

BA
[(X or Y) and Z]

Figure 4.34: Simple guarded transition.

Another example is the simulation of “complex” coverage criteria with
“simple” ones. For instance, All-Transitions simulates MC/DC because All-
Transitions simulates Multiple Condition Coverage, which subsumes MC/DC.
The problem, however, is that Multiple Condition Coverage requires expo-
nential effort whereas MC/DC requires only linear effort depending on the
guard condition size. The task is to keep the additionally introduced test
effort of simulated satisfaction as low as possible. So the question is whether
there are more efficient model transformations. Each test goal for MC/DC
requires the satisfaction of several atomic test goals. This often results in
pairs of test cases that are necessary to satisfy MC/DC. The satisfaction of
All-Transitions, All-Defs, All-Transition-Pairs and alike only require a set of
single test cases to be generated. Depending on the used test model, it might
be hard to find single test cases that have the same effect as pairs of test cases.
For instance, Figure 4.34 shows a simple transition with a guard for which
we want to satisfy MC/DC. Satisfying MC/DC means generating pairs of
test cases that show the isolated impact of all variables. For each pair, there
have to be two distinct transitions, each satisfying one element of the pair.

148

4.3. SIMULATED COVERAGE CRITERIA SATISFACTION

Figure 4.10 shows the truth table for this example. There are several mini-
mal sets of value assignments that can be used to satisfy MC/DC. For the
presented example, it might be sufficient to test the value assignments for
the rows 3, 4, 5, and 7: Rows 3 and 7 show the impact of X, rows 5 and
7 for Y , and rows 3 and 4 for Z. Due to other model elements, however,
testing row 4 might be infeasible. To deal with this problem, we could also
test row 6, which could be used together with row 5 to show the impact of
Z. If, however, rows 4 and 6 are infeasible, then we have to test rows 1 and
2 to show the impact of Z. As we see, a fundamental problem of satisfying
MC/DC is the existence of infeasible value assignments. Due to this prob-
lem, we can only exclude tests for rows that cannot be used in combination
with any other row to show the impact of any variable – only row 8 for this
example. We have to include all other rows. If all the corresponding value
assignments are feasible, however, this results in unnecessary test effort.

Row X Y Z (X or Y) and Z
1 1 1 1 1
2 1 1 0 0
3 1 0 1 1
4 1 0 0 0
5 0 1 1 1
6 0 1 0 0
7 0 0 1 0
8 0 0 0 0

Table 4.10: Truth table for (X or Y) and Z.

Finally, it is easy to see that all subsumption relations are also relations
of simulated satisfaction by using identy as model transformation: We claim
that simulated satisfaction is a more general relation than subsumption, i.e.,
all pairs of coverage criteria that are related by subsumption are also related
by simulated satisfaction.
Theorem 4.3.1 Simulated satisfaction includes subsumption.

We prove this theorem by presenting one corresponding model transfor-
mation:
Proof. The identical transformation results in sm = mt(sm). If both con-
sidered coverage criteria are applied to the same model, then the simulated
satisfaction implies subsumption.

This does not mean that simulated satisfaction is somehow superior to
subsumption. As we see in Figure 4.33, simulated satisfaction is too broad for
comparing coverage criteria. Instead, it can be used to exchange coverage
criteria. It is also a powerful means to support existing model-based test
generators.

149

CHAPTER 4. TEST MODEL TRANSFORMATION

4.4 Further Effects of Model Transformations
Beyond simulated satisfaction of coverage criteria, there can be several fur-
ther effects of test model transformations for coverage criteria that are ap-
plied to UML state machines. In the following, we sketch the combination of
different coverage criteria in Section 4.4.1 and the definition of new coverage
criteria in Section 4.4.2, both of which can also be implemented with model
transformations and existing coverage criteria. We present general consider-
ations about the impact of test model transformations on coverage criteria
satisfaction in Section 4.4.3.

4.4.1 Coverage Criteria Combinations
In this section, we present the use of model transformations for the combi-
nation of coverage criteria. For that, we define different kinds of coverage
criteria combinations. After that, we present concrete test model transfor-
mations to simulate combined coverage criteria with single coverage criteria.

Kinds of Coverage Criteria Combinations.

In this section, we present several interpretations of coverage criteria combi-
nation. Some of them have also been presented in [FSW08]. We define three
kinds of coverage criteria combinations based on their complexity.

Definition 34 (Level-1-Combination) The combination of two or more
coverage criteria by satisfying each of them with a separate test suite and
combining these test suites, afterwards, is a level-1-combination.

Level-1-combinations can be achieved by creating and uniting two or more
test suites that satisfy one the coverage criteria, each. Both may be sup-
ported by the corresponding test generator. Furthermore, the two coverage
criteria can also be simulated, e.g., by satisfying All-Transitions two times
on the correspondingly transformed test models. The advantage of level-
1-combinations is their easy creation. The disadvantage is the overhead of
unnecessarily generated test cases caused by overlapping coverage criteria.

Definition 35 (Level-2-Combination) A level-2-combination of two cov-
erage criteria consists of creating test cases to satisfy the first coverage cri-
terion, monitoring (measuring the satisfaction of) the second coverage crite-
rion, and creating test cases to satisfy only the still unsatisfied test goals of
the second coverage criterion.

150

4.4. FURTHER EFFECTS OF MODEL TRANSFORMATIONS

Just like level-1-combinations, level-2-combinations are focused on com-
bining the isolated satisfaction of two coverage criteria. Since level-2-combi-
nations are monitored, they do not result in the test case overhead of level-1-
combinations. Additionally, all test cases of the first coverage criterion that
are unnecessary because of test cases for the second coverage criterion can be
removed. The monitoring makes the creation of level-2-combinations harder.
Level-2-combinations can also be achieved by satisfying only one coverage
criterion on several transformed test models.

Definition 36 (Level-3-Combination) A level-3-combination consists of
satisfying test goals from one coverage criterion for the test goals of another
coverage criterion.

Level-3-combinations are not focused on the isolated satisfaction of cov-
erage criteria. Instead, the test goals of one coverage criterion are satisfied
for each test goal of another coverage criterion. This can be done, e.g., by
applying the second coverage criterion only on the model elements that are
referenced in the test goals of the first coverage criterion. We presented one
example in Section 4.1.2 that contains the description of choice pseudostate
splitting. This splitting results in satisfying a control-flow-based coverage
criterion, like Decision Coverage for All-Transition-Pairs, by using all guard
value assignments necessary to satisfy Decision Coverage for the second tran-
sition of every pair of adjacent transitions. Another example is the combina-
tion of coverage criteria as described in Chapter 3: A certain boundary-based
coverage criterion is satisfied for the test cases of all test goals of any struc-
tural, e.g., control-flow-based, data-flow-based, or transition-based, coverage
criterion. These two examples show two different approaches. In the first
one, all test goals for the combined coverage criterion can be identified stat-
ically for the state machine. We call this a static combination. For the
second example, the test goals of the boundary-based coverage criterion can
be defined for the input partitions of the generated abstract test cases for
the, e.g., control-flow-based, coverage criterion. Since these paths are not
statically predefined, we call this dynamic combination.

All presented combinations can be executed for more than just two cov-
erage criteria. We assume that level-1-combinations and (to a certain ex-
tent) level-2-combinations are common knowledge and also easy to construct.
In the following, we concentrate on level-3-combinations and sketch how to
achieve them by satisfying only one coverage criterion on a transformed test
model.

151

CHAPTER 4. TEST MODEL TRANSFORMATION

Level-3-Combinations of Coverage Criteria.

In this section, we present several level-3-combinations of transition-based,
control-flow-based, data-flow-based, and boundary-based coverage criteria.

First, we present level-3-combinations of transition-based and control-
flow-based coverage criteria. The purpose of such combinations is to test
all relevant guard value assignments for all considered transition sequences.
A corresponding combination can be achieved by splitting the intermedi-
ate states of the transition sequence as presented in the industrial report in
Section 4.1.2 (Choice Pseudostate Splitting). For all pairs of adjacent tran-
sitions of the original state machine, the transformed test model contains a
single transition that is only traversed by a test case iff the test case tra-
verses also the transition pair of the original state machine. The satisfaction
of any control-flow-based coverage criterion on the transformed test model
corresponds to the satisfaction of the level-3-combination. We present the
level-3-combination of All-Transition-Pairs and Decision Coverage as one ex-
ample: A test suite that satisfies this combined coverage criterion satisfies
and violates each guard condition of the second transition of each pair of
adjacent transitions. We call the level-3-combination of All-Transition-Pairs
and Decision Coverage All-Transition-Pairs-Decisions. To clarify the mean-
ing of All-Transition-Pairs-Decisions, we present a formal definition of this
coverage criterion in Figure 4.35.

P(TG) All-Transition-Pairs-Decisions(SM sm) {
testgoals = All-Transition-Pairs(sm);
for each transition t1 in sm {

for each outgoing transition t2 of the target state of t1 {
Expression positive = "false";
Expression negative = "false";
for each value assignment va for the guard of t2 {

cva = va expressed as a logical formula;
if the guard of t2 is true for va {

positive = positive + "or cva";
} else {

negative = negative + "or cva";
} }
testgoals.add(new ATG(((?, ?, ?, {t1}),

({t2.source}, t2.events, positive, {t2}))));
testgoals.add(new ATG(((?, ?, ?, {t1}),

({t2.source}, t2.events, negative, ?))));
} }
return testgoals; }

Figure 4.35: Definition of All-Transition-Pairs-Decisions.

152

4.4. FURTHER EFFECTS OF MODEL TRANSFORMATIONS

The level-3-combination of transition-based and control-flow-based cov-
erage criteria is a static combination. Figure 4.36 shows one part of a such
transformed model: A copy of the state S3 is created. As a result, the guard
conditions on S3’s outgoing transitions are also copied. Satisfying and vio-
lating the guards on the target model corresponds to satisfying and violating
them for each incoming transition of S3 in the original model.

S2

S3

S4
ev1 [X and Y]S1

S5
ev2 [else] S2

S3_1 S4
ev1

[X and Y]
S1

S5
ev2

[else]

S3_2

[X and Y]

[else]

Figure 4.36: Example for a model transformation to support the level-3-
combination of control-flow-based and transition-based coverage criteria.

Second, we sketch the level-3-combination of transition-based and data-
flow-based coverage criteria. Data-flow-based coverage criteria are focused
on testing def-use-pairs of variables. The corresponding test goals refer to
single transitions. Transition-based coverage criteria are focused on travers-
ing adjacent transition sequences. Combinations of such coverage criteria
may have several results: For instance, for each def-use-pair, all sequences
of adjacent transitions could have to be tested, for which one of them is a
defining or using transition of a def-use-pair. This is a static combination.

Third, control-flow-based coverage criteria can be combined with data-
flow-based ones. As one example, all values of guard conditions that are
referenced by a defining or a using transition have to be tested for each def-
use-pair of the data-flow-based coverage criterion. One result of this combina-
tion would be that all guard value assignments are tested for paths that lead
to the guard-referencing transition. For instance, the level-3-combination of
All-Uses and MC/DC could require that MC/DC is satisfied for each using
transition of each def-use-pair. The effect would be that all possible effects
of variable definitions on the guard evaluation are included, which could be
beneficial. This combination is also static.

We proposed two level-3-combinations with data-flow-based coverage cri-
teria. We note that these level-3-combination have not yet been shown to be
beneficial. For this reason, we desist from considering them in further detail.

A level-3-combination of control-flow-based, data-flow-based, and transi-
tion-based coverage criteria can consist of the following: All guards for all
transition sequences that contain defining and using transitions have to be
tested for each def-use-pair. This combination appears artificial, and the
combined test goals are complex. We just want to point out that more
complex combinations than pair-wise are possible.

153

CHAPTER 4. TEST MODEL TRANSFORMATION

The presented combinations are all static. Furthermore, there are also
ways to combine the mentioned coverage criteria dynamically. For instance,
the test goals of one coverage criterion would have to be satisfied for each test
case that was generated to satisfy a test goal of another coverage criterion.
The combination of boundary value analysis and abstract test case generation
in Chapter 3 is one example. Since satisfying level-3-combinations of control-
flow-based, data-flow-based, or transition-based coverage criteria also results
in abstract test cases, boundary-based coverage criteria can also be combined
with level-3-combinations of the mentioned three kinds of coverage criteria.

4.4.2 Coverage Criteria Definitions
In this section, we describe how to use model transformations to support the
definition and implementation of new coverage criteria. We also present a
few examples for such definitions.

First, we define the new coverage criterion All-Subsequent-Transition-
Pairs. The purpose of this coverage criterion is to cover all transition pairs
that can be executed subsequently. This includes all adjacent transitions
but also transitions from parallel regions or transitions on different hierarchy
levels. Figure 4.37 shows the formal definition of All-Subsequent-Transition-
Pairs using the definitions of Section 2.4.2. The definition is similar to the
one of All-Transition-Pairs on page 45. The first difference is the consider-
ation of all states of one configuration to include parallelism. The second
difference is the consideration of the outgoing transitions of superstates and
the outgoing transition of a composite state’s initial and history states to
include hierarchy.

P(TG) All-Subsequent-Transition-Pairs(SM sm) {
testgoals = All-Transition-Pairs(sm);
for all state configurations c of sm {

S = set of all states that are included in c;
S = S and all initial and history states of the states in S;
S = S and all superstates of the states in S;
for all incoming transitions t1 of states in c {

for all outgoing transitions t2 of states in S {
testgoals.add(new ATG(((?, ?, ?, {t1}), (?, ?, ?, {t2})))); }}}

return testgoals; }

Figure 4.37: Definition of All-Subsequent-Transition-Pairs.

Combining all regions into one and flattening the state machine would
be a alternative model transformation. On the transformed test model, all

154

4.4. FURTHER EFFECTS OF MODEL TRANSFORMATIONS

subsequently executable transitions are also adjacent. Consequently, the sat-
isfaction of All-Transition-Pairs on the transformed test model corresponds to
the satisfaction of All-Subsequent-Transition-Pairs on the original test model
– All-Transition-Pairs simulates All-Subsequent-Transition-Pairs. Likewise,
such criteria can be defined for any length of transition sequences. We call the
corresponding coverage criterion All-n-Subsequent-Transitions. By flattening
the state machine, All-n-Transitions simulates this new coverage criterion.

Furthermore, it might be beneficial to combine guard value assignment
considerations of several transition guards. For instance, the guards of pairs
of adjacent transitions could be considered – all feasible combinations of their
guard value assignments could be tested. We define a corresponding cover-
age criterion Multiple Condition Coverage Pairs in Figure 4.38. Multiple
Condition Coverage Pairs subsumes Multiple Condition Coverage.

P(TG) MultipleConditionCoveragePairs(SM sm) {
testgoals = MultipleConditionCoverage(sm);
for each transition t1 in sm {

for each value assignment condition cva1 for the guard of t1 {
tExec = one transition that is active for cva1 and one event of t1;
for each outgoing transition t2 of the target state of tExec {

for each value assignment condition cva2 for the guard of t2 {
testgoals.add(new ATG((({t1.source}, t1.events, cva1, tExec),

({t2.source}, t2.events, cva2, ?))));
} } } }
return testgoals; }

Figure 4.38: Definition of Multiple Condition Coverage Pairs.

A corresponding model transformation corresponds to the one of simu-
lating Multiple Condition Coverage wih All-Transitions (see Section 4.3.3 on
page 134). The transformed test model would contain transitions that corre-
spond in sum to all guard value assignment of the original test model – one
transition for each assignment. The satisfaction of All-Transition-Pairs on
the transformed test model would result in testing all pairs of guard value
assignments for guards on adjacent transitions.

There are many more examples for new and feasible coverage criteria
definitions. Figure 4.39 shows a subsumption hierarchy that includes the
three newly defined coverage criteria into the existing subsumption hierarchy.
Note that all new coverage criteria can be simulated with existing ones.

155

CHAPTER 4. TEST MODEL TRANSFORMATION

All-Transitions

All-States

All-Transition-Pairs

All-n-Transitions

All-Paths

Decision Coverage Condition Coverage

Decision/Condition Coverage

Modified Condition/Decision Coverage

Multiple Condition Coverage

All-Subsequent-
Transition-Pairs

Multiple Condition Coverage Pairs

All-n-Subsequent-
Transitions

Figure 4.39: Subsumption hierarchy with new coverage criteria.

4.4.3 General Considerations

In this section, we present general considerations about the impact of test
model transformations on coverage criteria satisfaction. We presented sev-
eral transformations that yield coverage criteria simulation relations. All
presented transformations had a positive impact, i.e. the satisfaction of a
certain coverage criterion on the transformed test model always implied the
satisfaction of a stronger or a different kind of coverage criterion. General
examples for test model transformations with a positive impact are the flat-
tening of hierarchical state machines, the removal of parallel regions, or the
creation of unmodeled self-transitions to support sneak path analysis. Such
transformations can be used to increase the effect of several coverage criteria.
However, there is no recommendation to apply certain model transforma-
tions. Testing is still risk management. This also includes the use of test
model transformations with the corresponding gains and costs.

On the other hand, there are also coverage criteria for which the applica-
tion of certain model transformations results in disadvantages. For instance,
inserting nodes into transitions as presented in Section 4.2.2 can be disadvan-
tageous for the coverage criterion All-3-Transitions. Whereas its application
to the original test model results in testing all triples of adjacent transitions,
its application to the target model corresponds only to the satisfaction of
All-Transition-Pairs on the original model. This holds for further transition-
based coverage criteria. As another example, Rajan et al. [RWH08] show that
splitting guards into several ones can result in disadvantages for the satis-
faction of control-flow-based coverage criteria. As a result, transformations
should be selected carefully for each individual pair of coverage criteria.

156

4.5. RELATED WORK

Finally, there are test model transformations that have a positive impact
on some coverage criteria and test model transformations that have a negative
impact. Creating a complete classification of test model transformations or
the corresponding test models is left to future work.

4.5 Related Work
Model transformations have been used for testing before. For instance, Friske
and Schlingloff [FS07] instrument conditions of the state machine’s transi-
tions to simulate (although they used different terms) All-Transition-Pairs
with MC/DC: The authors add variables to the test model so that the
satisfaction of MC/DC on the adapted test model has the same effect as
the satisfaction of All-Transition-Pairs on the original test model. Badban
et al. [BFPT06] use semantic-preserving model transformations to simulate
MC/DC with Decision Coverage. Ranville [Ran03] adapts the test model to
simulate MC/DC with All-Transitions: He splits transitions like presented
in Section 4.2.2. As discussed previously, however, MC/DC is a complex
coverage criterion that cannot be simulated with All-Transitions or Decision
Coverage without unnecessary test effort. Thus, the existing approaches to
simulate MC/DC are either too optimistic to be generally applicable or re-
sult in more effort than necessary to satisfy MC/DC. Rajan et al. [RWH08]
examine the impact of the model’s and the program’s structure on the satis-
faction of MC/DC. Santiago et al. [SVG+08] describe the flattening of state
machines or state charts with a reachability tree generator. The satisfac-
tion of All-Transitions on this reachability tree implies the satisfaction of
All-Configurations on the original state machine. In contrast, this chapter
is not focused on defining single relations between coverage criteria, but on
showing the general relations between model transformations and coverage
criteria: Coverage criteria satisfaction depends on the structure of the test
model. This can be used to simulate coverage criteria, combine them, or
define and implement new ones. Furthermore, Harman et al. [HHH+04] con-
sider source code transformations (testability transformations) as a means
to support evolutionary test generators. The presented transformations are
focused on flag removal, which consists of converting two-valued variables
into many-valued variables, whose values can slowly approximate a certain
optimum. In contrast to our work, however, they do not use transformations
as a means to influence the effect of coverage criteria. This chapter is fur-
thermore not focused on test generation algorithms. Instead, the existence of
such algorithms is assumed. Since most commercial test generators support
the satisfaction of a limited set of coverage criteria [BSV08], the test model

157

CHAPTER 4. TEST MODEL TRANSFORMATION

transformations that yield simulated satisfaction relations are of high value.
In [Wei09b], we present that model transformations can be used to make
coverage criteria interchangeable. The report of the industrial cooperation
has been published in [Wei09a].

Model transformations are used to convert one model into another model.
In order to apply model transformations to all models defined by a meta
model [Fav], the transformations are defined at the meta model level. There
are several connections between testing, model transformations, and meta
models. For instance, we propose a technique to test meta models based
on mutation [SW08]. Küster [Küs06] presents an approach for the sys-
tematic validation of model transformations by translating models to text
and applying rule-based coverage criteria to them. In [CH03], Czarneki and
Helsen compare different approaches to model transformations. Wang et
al. [WKC06] validate model transformations and apply coverage criteria to
the used source and target meta model of the model transformation. Brottier
et al. [BFS+06] propose to apply coverage criteria to meta models in order
to generate tests for model transformations. There are many transformation
languages and tools that support model transformations, e.g. ATL [Ecl09] or
QVT [IKV]. These languages should be considered for the implementation of
the proposed test model transformations. In contrast to the cited work, this
chapter is focused on the use of model transformations to support testing
instead of testing model transformations.

Several commercial model-based test generators are based on UML state
machines and follow the approach of applying a coverage criterion to the
test model to create a set of test-model-specific test goals. For instance, the
Smartesting Test Designer LTD [Sma] supports All-Transitions and handles
each transition as a target. IBM Rhapsody ATG [IBM] creates test suites and
measures coverage criteria satisfaction with calculated test goals [IBM04].

4.6 Conclusion, Discussion, and Future Work
Here, we conclude this chaper, discuss important aspects, and present future
work.

4.6.1 Conclusion
This chapter is focused on the importance of test model transformations for
coverage criteria in model-based testing with deterministic flat untimed UML
state machines. Our main contribution is the definition of simulated coverage
criteria satisfaction. We presented several pairs of coverage criteria (cc1, cc2)

158

4.6. CONCLUSION, DISCUSSION, AND FUTURE WORK

together with model transformations mt for which cc1 applied to each target
model of mt simulates cc2 applied to a corresponding source model of mt.
The presented simulation relations are joint into a corresponding simulated
satisfaction graph that contains the known subsumption hierarchy. This
graph contains cycles and shows that each feasible coverage criterion can be
used to simulate any other feasible coverage criterion. We used the formal
definitions of coverage criteria in Section 2.4.3 to prove the correctness of the
presented model transformations. The results of an industrial cooperation
show the importance of test model transformations for realistic scenarios.

One interesting aspect of simulated satisfaction of coverage criteria is
that stronger coverage criteria can be simulated with weaker ones. This
is especially useful for model-based test generators that satisfy only a re-
stricted set of rather weak coverage criteria. For instance, Smartesting Test
Designer [Sma] only supports the satisfaction of All-Transitions. The pre-
sented model transformations enable users of this tool to satisfy, e.g., Multi-
ple Condition Coverage, All-Configurations, or All-Uses. We consider this an
important contribution for existing model-based test generation tools. Fur-
thermore, the impact of coverage-criteria-based comparisons of model-based
test generation tools like presented in [BSV08] should be reconsidered. We
defined several kinds of coverage criteria combinations. The satisfaction of
All-Transitions is sufficient to satisfy a level-3-combination of, e.g., control-
flow-based and data-flow-based, coverage criteria. With the approach pre-
sented in Chapter 3, it is furthermore possible to combine these criteria with
boundary-based coverage criteria like Multi-Dimensional.

As we also presented in Section 4.4.3, test model transformations do not
necessarily influence model-based test generation in a positive manner, but
can also result in disadvantages. So, they have to be chosen carefully.

4.6.2 Discussion
The presented model transformations and the obtained results leave room
for discussion. For instance, coverage criteria have properties aside from the
fault detection capability, e.g., the necessary test effort to satisfy them. The
presented test model transformations, however, are just focused on efficient
results for certain pairs of coverage criteria. As an example, we presented a
model transformation to show that All-Transitions simulates Multiple Con-
dition Coverage. Multiple Condition Coverage subsumes MC/DC and, thus,
All-Transitions also simulates MC/DC. However, Multiple Condition Cover-
age requires exponential test effort whereas MC/DC requires only linear test
effort relative to the condition size. Correspondingly, the transformation for
simulating Multiple Condition Coverage with All-Transitions leads to expo-

159

CHAPTER 4. TEST MODEL TRANSFORMATION

nential space complexity depending on the transition guards. All transfor-
mations are based on adding elements to the test model. Thus, test model
transformations should be selected carefully to prevent them from adding
unnecessary complexity to the test model. The best solution is to define a
separate model transformation for each pair of coverage criteria. There may
be exceptions like MC/DC, for which we showed that its simulation with
All-Transitions results in unnecessary complexity.

Our aim was not to create efficient model transformations, but to show
their impacts at all. Beyond that, each model transformation is aimed at
transforming the structure of the state machine so that the test goals of
a complicated coverage criterion are presented in a way that also simple
coverage criteria include them. Thus, we think that the number of test
goals is almost unchanged by the model transformation. At least for the
presented coverage criteria simulation relations, we think the corresponding
model transformations do not result in unnecessary test effort.

Another interesting question is whether there are further relations be-
tween the original and the transformed state machine. For instance, strong
or weak (bi-)simulations [Par81] are means to compare state-based behav-
ioral descriptions. Since there are several transformations that insert states
in the state machine, strong (bi-)simulation does not have to be satisfied.
Furthermore, there are basic transformation patterns like Move Effect that
spread the behavior of one transition to two transitions. Thus, the transitions
really differ and, thus, also weak (bi-)simulation does not necessarily have to
be satisfied. The fundamental reason is that the transformations are focused
on preserving the semantics of compound transitions and not of single ones.
If we interpreted bisimulation correspondingly, there could be corresponding
relations between the original and the transformed test model.

We presented All-Transitions as the minimum coverage criterion to sat-
isfy and showed how to use it to simulate other coverage criteria. It was
also very interesting to simulate All-Transitions with even weaker coverage
criteria like All-States [UL06, page 117], e.g., by applying the transformation
pattern Insert Node in Transition: A new choice pseudostate is inserted in a
transition so that it is visited if and only if the transition is traversed. Since
each feasible coverage criterion can be used to simulate any other feasible
one, another result is that there is no need to define a minimal coverage
criterion to satisfy for an appropriately transformed test model.

Furthermore, there may be interpretations of All-States that require to
visit all states but no pseudostates. In this case, the presented model trans-
formation to establish the simulated satisfaction of All-Transitions with All-
States is not sufficient. The main reason for this are compound transi-
tions [Obj07, page 568] that represent semantically complete paths from one

160

4.6. CONCLUSION, DISCUSSION, AND FUTURE WORK

state to another and that may contain pseudostates. They can only be ex-
tended by inserting pseudostates, but not by inserting states. The insertion
of a real state may also be sufficient because completion transitions have a
higher priority than explicitly triggered transitions [Obj07, 569]. Further-
more, most commercial model-based tools are able to satisfy at least All-
Transitions and, thus, this issue is no threat to this chapter’s contribution.
Moreover, we can think of a model transformation that creates a tree-like
state machine with at most one incoming transition (|v.incoming| ≤ 1) for
each vertex v: for each test goal tg of any feasible coverage criterion (with
a finite test goal set) there could be a path with a separate target state to
achieve tg. Although this might result in large test models with no room
for efficient test suite generation, the satisfaction of All-States on the trans-
formed test model would be sufficient to satisfy any other feasible coverage
criterion – or even an infeasible one in a step-wise online test generation
process.

Moreover, we consider model transformations as an answer to many open
discussions about coverage criteria. For instance, the existence of composite
states leads to discussions about the interpretation of All-Transitions: Are
outgoing (high-level) transitions [Obj07, page 568] to be traversed for each
included substate or just once? By applying a model transformation that
flattens the state machine, this question can be settled. Furthermore, All-
Transition-Pairs is defined for adjacent transitions. As we explained for the
case study, there are pairs of subsequently traversed transitions that are
not adjacent. We also sketched a corresponding model transformation that
transforms initial states into entry points. Many alike discussions can easily
be abolished by transforming the used test model and applying a formally
defined coverage criterion to the resulting target test model.

We restricted ourselves to flat UML state machines to show the feasi-
bility of our approach without making the presented transformations too
complex. Since state machines can be flattened, however, this means no gen-
eral restriction to our approach. Hierarchical state machines contain some
elements that result in a higher effort. For instance, transitions inside a
composite state have a higher priority than transitions on the outside of that
state [Obj07, page 561]. The transformation shown in Section 4.2.2 can insert
new transitions for missing guard conditions of internal transitions. These
new transitions, however, would override outer transitions. A more compli-
cated transformation would be necessary to show that these new internal
transitions have the same effect as the existing outer transitions. The same
holds for tricky elements of composite states like history states.

The application of constraints to the test model may result in problems.
For instance, the OCL expression oclIsInState [Obj05a, page 139] may refer

161

CHAPTER 4. TEST MODEL TRANSFORMATION

to states for which copies are created (see pattern Copy Vertices). Although
these copies show the same behavior as the original state, they are not the
original state and, thus, the OCL expression that returns true for the original
state returns false for a copy. A solution may consist in moving the original
state and all its copies into a new composite state, which is named like (and
identified with) the original state. Since all the moved states are substates
of this composite state, the self object is the composite state if one of the
moved state is active. Thus, the oclIsInState will return true for all of them.
There may be further issues like time events, for which we are also confident
that solutions based on model transformations can be found.

Model transformations can be used to increase the generated test suite’s
fault detection capability and size. As stated in Section 4.4.3, testing is a
risk management. Thus, the additional gain has to be traded against the
additional cost, and there can be no general recommendation for applying
certain model transformations.

4.6.3 Future Work
We presented theoretic results about the effects of test model transformations
on coverage criteria satisfaction and coverage criteria combination. Some of
the presented test model transformations are already implemented in the pro-
totype test generation tool ParTeG. A corresponding industrial case study
showed the advantages of these transformations. In order to make these ad-
vantages available to users of commercial test generators, we plan to create
an independent test model transformator that can be applied in a test gener-
ation preprocessing step. For that, we already created the sourceforge project
Coverage Simulator [Weia] and started the work. Our goal is to implement
all proposed model transformations and to make them available to users of
model-based testing tools.

This thesis is focused on model-based test generation and, in particular,
on test models and coverage criteria that are applied to them. The pre-
sented contributions can also be transferred to other testing fields like source
code-based testing. An interesting work would be an automatic source code
transformator that transforms the source code of a SUT in order to support
the application of coverage criteria to source code.

Coverage criteria can be compared by subsumption relations. There are
several subsumption hierarchies. We presented several model transforma-
tions and showed some of their positive and negative impacts. We think that
a classification of test models according to their structures and the transfor-
mations that are advantageous when satisfying a certain coverage criterion
may also be beneficial. Accordingly, we plan to compare test model struc-

162

4.6. CONCLUSION, DISCUSSION, AND FUTURE WORK

tures with respect to certain coverage criteria to satisfy. One result would
be a complete coverage-criterion-oriented survey of advantageous and disad-
vantageous model transformations.

163

CHAPTER 4. TEST MODEL TRANSFORMATION

164

Chapter 5

Test Model Combination

In this chapter, we propose the combination of several UML models for au-
tomatic test generation. Such combinations have the advantage of providing
more information to the test generation process and, thus, increasing the
generated test suite’s fault detection capability. We consider this chapter
the third contribution of the thesis. It enhances all already presented con-
tributions. The presented approaches are partly implemented in the test
generator ParTeG and were already used for automatic test generation.

We focus on two scenarios. In both scenarios, UML state machines play
an important role. First, we describe the combination of state machines
and class diagrams. The approach of Section 3 already included the auto-
matic test generation from a state machine that describes the behavior of
one class. Here, we extend this approach to a class hierarchy represented
in a class diagram. Second, we describe the combination of state machines
with interaction diagrams. Interaction diagrams are often used in combi-
nation with use cases and are, therefore, closer to requirements than state
machines. We show how to use state machines to combine interaction se-
quences automatically. The two approaches are quite different according to
the used techniques, the intentions, and the achieved goals. For that reason,
we present related work and discussion separately.

5.1 State Machines and Class Diagrams
In this section, we describe the combination of UML state machines with
UML class diagrams. The idea of combining state machines and class dia-
grams is to reuse state machines with context classes that are derived from
the original class. This approach can be especially useful for test generation
in the context of product lines.

165

CHAPTER 5. TEST MODEL COMBINATION

This section is structured as follows. In Section 5.1.1, we provide an in-
troduction to the combination of state machines and class diagrams. We
introduce state machine inheritance as a way of using state machines and
class diagrams together in Section 5.1.2. We present related work in Sec-
tion 5.1.3 and conclusion, discussion, and future work in Section 5.1.4.

5.1.1 Introduction
In this section, we provide an introduction to the combination of state ma-
chines and class diagrams. First, we introduce feature models as a means
to describe product lines. Then, we present an example of a product line
for a car audio system. This example is not listed in the previous chapter
because it is only used to clarify the approach, but no test suites have been
created from it. Finally, we present “150% models” as a means to present
more information in one model than could ever be used in one execution.

Feature Models.

A product line consists of products, e.g., software or hardware with essen-
tial similar features. The dissimilar features are known as product varia-
tion points. Activating or deactivating different variation points results in
different product variants. Product lines are common in mass production.
German car industry provides a good example for the possible complexity
of such product lines: Given the number of possible car product variants
and the number of sold cars, statistically, for each product variant there is
only one car. If a feature should be used in a certain product variant, the
feature is said to be active. Features can be activated in all products or
just some of them. The activation of one feature can prohibit the activation
of another one. Correspondingly, the possible features are classified as ei-
ther common, optional, or alternative. The application of product lines to
software products results in software product lines (SPLs), which are sets of
similar software products. Feature models are a popular means to describe
features of a product line [LKL02]. They are used to relate the basic product
and the features. For developing and testing product lines, it is beneficial to
deal with their similar features prior to their dissimilar features. SPLs are
subject to model-based testing [McG01, McG05, OG05].

Figure 5.1 depicts an example feature model. The uppermost rectangle
with the name “Product” describes the basic product feature. All other
rectangles represent features or subfeatures. The arcs between the rectangles
depict relations between features: A filled black circle depicts a common
feature, i.e. the feature at the end of the black circle is always active if the

166

5.1. STATE MACHINES AND CLASS DIAGRAMS

Product

Feature A Feature C

Feature C.2 Feature C.3

Feature B

Feature B.2

Feature C.1

Feature B.1
<0-1>

<0-1>

Legend:

common feature relation

optional feature relation

feature activation depends on

multiplicities for alternatives

Figure 5.1: Example of a feature model.

other feature is active, too. For instance, “Feature A” is active in every
product variant. An empty circle represents an optional feature, i.e. the
feature can be active but does not have to. In Figure 5.1, “Feature B” is
optional. Dotted arcs with an arrow depict dependencies between feature
activations. For instance, “Feature B.2” can only be activated if “Feature
C.2” is activated. Arcs without circles and arrows represent alternatives.
The attached numbers show possible multiplicities. In the example, zero or
one feature among “Feature C.2” and “Feature C.3” can be activated.

Example: Product Lines for Car Audio Systems.

Here, we present an example for the combination of state machines and class
diagrams: a car audio system. Such a system has several possible features,
many of which are common to all product variants. Therefore, the car audio
system can be appropriately described with a feature model. Figure 5.2
shows a feature model with some reasonable features of car audio systems.

Radio

Control

Title / Channel
Selection

Forward/
Backward

Volume

Switch

Playback

CD Cassette

Navigation System

Map Data via
CD

USB

Map Data via
USB

<1-1>

Traffic
Message
Channel

Wheel Control

Figure 5.2: Feature model of car audio systems.

167

CHAPTER 5. TEST MODEL COMBINATION

For instance, the basic controls are common to all radios: A radio must
provide an option to switch its mode, e.g., to toggle radio and playback
media. It must allow the selection of channels or tracks, the change of the
volume, and the search for new channels or new tracks. Depending on the
current mode and received events (e.g. emergency messages via the traffic
message channel), the basic controls like forward and backward search can
have different meanings. Furthermore, the choice of playback media (CD or
cassette player) also influences the behavior. Whereas a forward event for a
cassette player results in winding the tape, a forward event for a CD player
results in the immediate selection of the next track. The traffic message
channel is common to all car audio systems. The availability of a USB
port, the wheel control, and the navigation system are optional features.
Depending on the playback media, the update of map data for the navigation
system is an optional feature.

150% Models.

Testing consumes a large amount of the overall development costs. High
effort is put into keeping costs for testing as low as possible. In model-based
testing, test maintenance costs are comparably low. The test model creation
effort is high. The reuse of certain artifacts, e.g., like test suites in regression
testing, helps reducing development and maintenance costs. In the field of
model-based testing, the reuse of test models also significantly contributes
to reducing such costs.

As stated above, industrial product lines from the automotive domain
can contain thousands of product variants. Creating and maintaining all
corresponding behavioral and structural models is infeasible. Instead, 150%
models are proposed as a solution for reusing models [GKPR08, DW09]: A
150% model contains more information than necessary for one instance. It
integrates all the information of all product variants. Separate configura-
tion files supplement these models and determine the actually used model
elements. In [DW09], the use of 150% models is illustrated with real appli-
cations.

A state machine describes the behavior of a class. The goal of combining
state machines and class diagrams is to create 150% state machines and
use classes to configure them. Classes can influence the behavior of state
machines with their attributes (e.g. for guard conditions), their operations
(e.g. for the effect of state machine transitions), or their relations to other
concrete classes and their properties.

168

5.1. STATE MACHINES AND CLASS DIAGRAMS

5.1.2 State Machine Inheritance

UML state machines [Obj07] are often used to model the behavior of prod-
uct variants. In our context, they are used as test models to automatically
generate test suites. There are many ways to reuse these state machines as
test models in order to reduce the costs for test development and test main-
tenance. In this section, we present two ways to reuse UML state machines
for test case generation: the one proposed by the Object Management Group
(OMG) and our own approach. We sketch advantages and disadvantages of
both approaches in the context of product line testing.

The OMG proposes to generalize and specialize state machines for UML.
Rationale of this is to enable the redefinition of a general classifier’s be-
havior [Obj07, page 561]: “A specialized state machine is an extension of
the general state machine, in that regions, vertices, and transitions may be
added; regions and states may be redefined (extended: simple states to com-
posite states and composite states by adding states and transitions); and tran-
sitions can be redefined.” Furthermore, the specification [Obj07, page 562]
states: “A submachine state may be redefined. The submachine state ma-
chine may be replaced by another submachine state machine, provided that
it has the same entry/exit points as the redefined submachine state machine,
but it may add entry/exit points. Transitions can have their content and
target state replaced, while the source state and trigger are preserved.”

In principle, the specialized state machine is read similarly to “non-
specialized” state machines. Interesting features can be added when it is
necessary and, consequently, agile development is supported. Nonetheless,
some important problems are unsolved. For instance, transitions can be re-
defined but there is no way to mark them as reused. Consequently, all tran-
sitions have to be re-drawn in the specialized state machine. Changes can
have significant effects on the whole state machine. The relations between
the general and the specialized state machine are not defined. Consequently,
the effects of changes in the general state machine on the specialized state
machines are also undefined: Does the change of a state in the general state
machine also change the corresponding inherited state in the specialized state
machine? Do reused elements, in turn, reference their general original? Sub-
machine state machines, transitions, and regions can be replaced, added, or
redefined. Summing up, the proposed way to specialize state machines is fo-
cused on structural aspects and behavioral aspects are not considered. Even
for small examples, it is obvious that the development as well as the main-
tenance of such descriptions are costly because the basic behavior has to be
adapted and re-drawn for each product variant. To our knowledge, there is
no tool support for this approach.

169

CHAPTER 5. TEST MODEL COMBINATION

Our approach to reuse state machines leaves the state machine unchanged
but changes its context class. As specified in [Obj07], the context of a state
machine is a class; transitions of the state machine can refer to properties and
operations of this class via events, guards, and effects. Instead of using an
inheritance relationship between state machines, we propose to use the inher-
itance relationship between classes and reuse a state machine as a behavioral
description of these classes. For that, we define one state machine as a 150%
model for a general class. Since all specialized classes contain the same oper-
ations, attributes, and associations, this state machine can also describe the
behavior each specialized class. A motivation for this approach is Liskov’s
substitution principle [Lis88]. This principle states that all properties of a
class also have to hold for its subclasses. Obviously, the behavior of a class
is such a property. Since a state machine is the model of a class’ behavior,
it is also a model of a class’ properties and can, thus, be a model for the be-
havior of each subclass. Consequently, each subclass of the state machine’s
originally defined context class is a possible context class (see Figure 5.3).

S1

S2

State Machine SuperClass

SubClass 1 SubClass 2

SubClass 1.1 SubClass 2.1 SubClass 2.2

<context class>

Figure 5.3: Each class can be the context of the state machine.

In the test generation approach presented in Chapter 3, the referred prop-
erties and the postconditions of the operations in the selected context class
influence the behavior of the state machine via guard, transition effects, and
state invariants. Consequently, the behavior described by the state machine
depends on the selected context class and the modeled behavior changes with
the selection of a new context class. By using submachine states, the clarity
of the test model is kept even for large systems. Figure 5.4 shows a reusable
state machine for our example, and Figure 5.5 shows corresponding context
classes. Note that our approach is not only feasible for testing one class, but
also for systems with many classes. For each product variant, each active
class is then described by a state machine.

This state machine describes a part of the car audio system’s complete
behavior. Each car audio system is in one of two states: On or Off. The state
On is a composite state and contains two regions. The upper region deals
with the common feature Switch between sources of the current playback:
Users can switch between several sources. A TMCEvent is triggered if a

170

5.1. STATE MACHINES AND CLASS DIAGRAMS

Off

switchOff

switchOn

/ enableTrackControl()

TMCActivated

Radio Player USB

H

switch() switch() [enableUSB]

switch()[else]

SourceSelection

TMCEvent [bTMCEnabled]
/ disableTrackControl()

TMCEvent
/ enableTrackControl()

Playing

Searching

increaseVolumeEvent
/ increaseVolume()

decreaseVolumeEvent
/ decreaseVolume()

backwardEvent [trackControlEnabled] / trackDown()

forwardEvent [trackControlEnabled] / trackUp()

[(currentMode = RadioMode.cd) or
(currentMode = RadioMode.usb)] [else]

foundTrack

Figure 5.4: A state machine describing an extract of the general car audio
system behavior.

traffic-relevant message is received. If the traffic message control is activated
(bTMCEnabled = true), then the input media will change to the traffic mes-
sage channel. If the message broadcast is finished or the radio is turned off
and on again, then the radio is reset to the state SourceSelection. The lower
region describes some of the remaining common control features, like volume
control or track control. Both regions are handled in parallel. Depending on
the active states of the car audio system, the effects of the events differ. For
instance, if the radio receives a traffic message, the volume is set to a higher
value and the track control is disabled. Receiving the switch event in the
state Player results in entering the state USB iff the value of enabledUSB
is true, which depends on the selected context class. Furthermore, the han-
dling of the features Forward and Backward depends on the current product
variant: For USB and CD, the corresponding events result in the immedi-
ate selection of a new track; all other modes include searching (scanning for
radio, winding for cassette player).

As described above, product variants are described with single classes.
The class diagram in Figure 5.5 shows several context classes, two of which
describe one product variant, each: DefaultRadioConfiguration and Comfort-
RadioConfiguration. The class AbstractRadioConfiguration contains all at-
tributes and operations that are referenced by the state machine. Each spe-
cialized class describes one product variant and can redefine the attributes

171

CHAPTER 5. TEST MODEL COMBINATION

AbstractRadioConfiguration

+currentMode : RadioMode
+isInSearchMode : Boolean
+bTMCEnabled : Boolean
+enabledUSB : Boolean = false
+enabledCD : Boolean = false
+wheelControlAvailable : Boolean = false
+navigationSystemAvailable : Boolean = false

+switch()
+increaseVolume()
+decreaseVolume()
+trackUp()
+trackDown()
+selectTrack(i : Integer)
+enableTrackControl()
+disableTrackControl()

RadioMode

+radio : Integer
+cd : Integer
+cassette : Integer
+usb : Integer

DefaultRadioConfiguration

+navigationSystemAvailable : Boolean = true

+switch()
+increaseVolume()
+decreaseVolume()
+trackUp()
+trackDown()
+selectTrack(i : Integer)
+enableTrackControl()
+disableTrackControl()

ComfortRadioConfiguration

+enableUSB : Boolean = true
+enableCD : Boolean = true
+wheelControlAvailable : Boolean = true
+navigationSystemAvailable : Boolean = true

+switch()
+increaseVolume()
+decreaseVolume()
+trackUp()
+trackDown()
+selectTrack(i : Integer)
+enableTrackControl()
+disableTrackControl()

context DefaultRadioConfiguration::trackUp()
post: if((currentMode@pre =
RadioMode.radio) or (currentMode@pre =
RadioMode.cassette)) then isInSearchMode = true
else isInSearchMode = false endif

context ComfortRadioConfiguration::trackUp()
post: if(currentMode@pre =
RadioMode.radio) then isInSearchMode = true
else isInSearchMode = false endif

Figure 5.5: Extract of classes describing two product configurations for a car
audio system.

172

5.1. STATE MACHINES AND CLASS DIAGRAMS

and operations of the base class necessary to adapt the behavior. For in-
stance, the default values of enabledUSB show that USB support is activated
for the configuration ComfortRadioConfiguration, whereas DefaultRadioCon-
figuration offers no support for USB. Changed operation effects are expressed
by different postconditions.

5.1.3 Related Work
In this section, we present related work on the combination of state machines
and class diagrams. State machines have often been used for automatic test
generation [CK93, BDAR97, OA99, SHS03, BLC05]. In this section, however,
the focus is on the combination with class diagrams for product lines. There
are many model-based approaches that aim at reducing test execution costs.
We think that it is possible to combine such techniques with our technique
to further reduce test costs.

We introduced a possibility to reuse test models for product lines. In
order to derive tests for a product variant, a behavioral description of this
variant is required. For instance, Kishi and Noda [KN04] model one state
machine for each feature-supporting component. Kahsai et al. [KRS08] con-
centrate on adding features to an existing software product line. Geppert
et al. [GLRW04] introduce a decision model for feature selection and use it
for test selection. In our approach, we describe the behavior of all product
variants with one state machine. There are several other approaches focused
on product lines. For instance, El-Fakih et al. [EFYvB02] consider testing
during product life cycle. They reduce the test effort by testing only the
modified elements of a new product version. Since different product variants
of a product line may be developed simultaneously, this approach is not able
to reduce test costs for product variants of product lines. In contrast, our
approach allows to test all products of a product line based on one behavioral
150% test model. However, a combination of our approach with the approach
of El-Fakih et al. seems to be reasonable. In [McG01], McGregor points out
the importance of a well-defined process for testing software product lines.
Kolb [Kol03] discusses the problem of selecting a suitable software product
line testing strategy that takes the reuse of variable elements into account.
As an extension to that, we focus on the reuse of models for automatic test
generation to reduce test development costs. Furthermore, Gomaa [Gom04]
introduces the PLUS models and method. He uses Boolean feature condi-
tions to activate product line features. In contrast, our approach is not re-
stricted to Boolean values or complete activation of features, but is also able
to adapt feature details deep inside the behavioral specification. Olimpiew
and Gomaa [OG05] deal with test generation from product lines and inter-

173

CHAPTER 5. TEST MODEL COMBINATION

action diagrams. In contrast to that, we focus on UML state machines, OCL
constraints, and class inheritance relationships. Pohl and Metzger [PM06]
discuss the advantages of software product line testing and emphasize the
preservation of variability in test artifacts. As we generate test cases from
reused models automatically, this variability is preserved. Most interesting,
Dziobek and Weiland [DW09] implemented a similar approach to ours for
Simulink models one year after the publication of our approach [WSS08].
They also create 150% models and use external files to configure the single
product variants, and they apply this approach to industrial projects.

Liskov [Lis88] defines the substitution principle for types and subtypes.
We apply this approach by interpreting a state machine as a property of its
context class and using it to describe the behavior of this class’ subclasses. As
a consequence, the state machine has to describe the behavior of all product
variants, which makes it a 150% model. McGregor and Dyer present a note
on inheritance and state machines in [MD93]. They show how to build a
state machine for a class incrementally by assembling the state machines of
the class’ base classes. The authors claim that this approach reduces the
modeling effort. Our approach differs in that we do not focus on the creation
of the test model but on its use for automatic test generation for product
lines. However, the approach can be combined with our approach to create
the test models before generating test suites.

5.1.4 Conclusion, Discussion, and Future Work
Here, we present the conclusion of this section, a corresponding discussion,
and possible future work.

Conclusion.

In this section, we proposed a new technique to reuse state machines for
automatic model-based test generation. This reuse is enabled by inheriting
state machines along inheritance relationships between classes: A state ma-
chine describes the behavior of a class. Behavior is a property of the class
and can be inherited to the class’ subclasses. The main idea is to create a
state machine as a 150% model and use its possible context classes as con-
figurations. The details of each configuration are expressed as elements that
are referenced from the state machine, e.g. OCL pre-/postconditions of op-
erations or default values of attributes of the context classes. We applied the
approach to generate test suites for product lines. Each product variant can
be described by a configuration class. Corresponding class hierarchies can
also be created. We implemented the presented approach in ParTeG.

174

5.1. STATE MACHINES AND CLASS DIAGRAMS

Discussion.

The presented approach supports the reuse of test models. Together with
automatic test generation, a reasonable amount of test effort can be saved
by using the presented method. Corresponding case studies still have to be
carried out. Here, we present some additional points to discuss.

For instance, the approach of the OMG to inherit state machines is only
focused on structural aspects of the state machine. It neglects the behav-
ioral semantics of the state machine and, thus, Liskov’s subsitution princi-
ple [Lis88]. In comparison to that, we reuse the same state machine and let
details of it be influenced by settings of the selected context class. Theoreti-
cally, these aspects should also be conform to Liskov’s principle. However, if
they are not, our approach faces the same problem as the one of the OMG:
Two state machines that describe totally different behaviors.

Another point to discuss is that the generated test suite for a particular
context class is only applicable to this certain class. Thus, this test suite can
only be used for one product variant. Our approach, however, aims at the
reuse of test models instead of test suites. A whole new test suite can be
generated automatically from the same state machine for each context class.
Consequently, a set of test suites can be automatically generated for a set of
context classes.

Another important issue is the derivation of class hierarchies from prod-
uct lines. Is it possible to derive a class hierarchy similar to the hierarchy
between features of a feature model? For the example in Figure 5.2, it is
possible to define a basic class with all optional features deactivated. There-
fore, two subclasses can be derived by activating either the feature Wheel
Control or Navigation System. The definition of a class that activates both
features seems to be an issue. For reasons of manageability, it is often un-
desirable to derive every class directly from the base class. Thus, the new
class should inherit from the classes defined for the features Wheel Control
and Navigation System. This leads to multiple inheritance, which has some
disadvantages connected to the redefinition of class operations. Such prob-
lems are well known from C++. Another solution might be the use of aspect
orientation [WFPW07], where each feature corresponds to a certain aspect.

Our approach includes the complete specification of all features in one
state machine. The modeling effort for a state machine describing all product
line features exceeds the effort for a state machine describing just one product
variant. On the one hand, this means higher initial modeling effort because
all dependencies between product variants are included. On the other hand,
this is advantageous for two reasons: First, the inclusion of all features in
one model forces the modeler to think about the SUT more thoroughly.

175

CHAPTER 5. TEST MODEL COMBINATION

Second, the state machine is unchanged and reused for each product variant,
which reduces the modeling effort significantly. We assume that this requires
considerably less effort than modeling and maintaining an individual state
machine for each product variant of a product line. One reason is that
common features have to be modeled just once overall instead of once per
product variant.

Testing product variants via models that are developed for just one prod-
uct variant faces several problems. For instance, the accidental inclusion of
a feature in the SUT cannot be discovered because the model contains no
information about that feature. Pohl and Metzger [PM06] confirm this prob-
lem. Since our approach generates test cases for the whole state machine
with all feature descriptions included, the generated test suites can discover
corresponding failures.

Furthermore, the created 150% state machine can be quite large. The
question arises whether it can still be manually created and understood by
testers. As a solution, state machines can be nested, which provides the
possibility to separate parts of the state machine in submachine state ma-
chines [Obj07]. In distributed development processes, these submachine state
machines can then be worked on by different engineering teams. State ma-
chines can grow quite large, and using nested state machines is state of the
art.

Finally, the presented explanations deal with each product variant as one
class. In more complex systems, product variants are influenced by more
than one class. Since our approach can be applied to each of these classes,
however, this means no general restriction of our approach.

Future Work.

A possible future activity is to perform case studies to substantiate the ad-
vantages of our method. Another important aspect is the satisfaction of
different coverage criteria that are based on state machines and class dia-
grams. How can coverage criteria be combined so that even product lines
with large class diagrams can be tested with reasonable effort?

5.2 State Machines and Interaction Diagrams
In the previous section, we combined structural and behavioral diagrams.
Here, we focus on combining two behavioral diagrams: state machines and
interaction diagrams. Interaction diagrams are often used to describe use
cases. Thus, they are close to requirements. In most cases, however, only a

176

5.2. STATE MACHINES AND INTERACTION DIAGRAMS

small set of test cases can be derived from them. The proposed combination
of state machines and interaction diagrams allows to automatically combine
several interaction diagrams. We also present new coverage criteria that are
focused on combined interaction diagrams.

5.2.1 Motivation

Model-driven engineering starts with requirements analysis. A requirements
use case is often supplemented with an interaction diagram. Each interac-
tion diagram can represent a few possible behavior interactions of the SUT,
and there are usually only a few test cases for each use case. This supports
traceability from requirements to test cases. For such reasons, interaction
diagrams are popular to model test cases. One issue about interaction dia-
grams, however, is that they just consist of a sequence of interactions without
any notion of state. Thus, determining the starting point for the execution
of interaction diagrams is an issue [Nag04, Sok06b]. Furthermore, missing
state information prevents the concatenation of interaction diagrams by, e.g.,
executing the described traces consecutively.

State machines are a more complex means to model behavior than in-
teraction diagrams. In contrast to an interaction diagram, a state machine
is used to describe a large and potentially infinite set of behavior traces.
Coverage criteria are used as a stop criterion for test generation. Since the
described behavior can be complex and the generated test cases are also
determined by the used coverage criteria, the application of state machines
makes traceability hard.

In this section, we present a technique to combine state machines and
interaction diagrams in order to combine their advantages. In our approach,
the behavior of interaction diagrams is retraced in state machines. The cor-
responding transition sequences are then combined based on state informa-
tion. This approach can be seen as the test counterpart of sequence-based
specification [PP03]. The contribution of this approach is the automatic con-
catenation of manually defined requirements specifications. There are further
advantages:

First, by using state information of the state machine, this approach
provides test oracles in the form of state invariants to test cases derived from
interaction diagrams.

Second, the concatenation of interaction diagrams results in longer and
possibly fewer test cases. In environments like embedded systems, the ini-
tialization of test cases causes higher costs than the test execution. Thus,
the combination of many short test cases into a few long ones can save costs.

177

CHAPTER 5. TEST MODEL COMBINATION

Third, the concatenation of interaction diagrams can result in the de-
tection of faults that are undetected by the execution of single interaction
diagrams. Concatenated interaction diagrams can be used to test the con-
catenated behavior of several sequences as well as their repeatability.

Finally, the presented possibility of interaction diagram concatenation al-
lows to define new coverage criteria for the quality measurement of executing
interaction diagrams. Until now, only the sole execution of an interaction di-
agram can be measured, e.g., with the coverage criterion All-Paths Sequence
Diagram Coverage [UL06, page 122].

5.2.2 Interaction Diagram Concatenations
Interaction diagrams are often used to describe test cases manually (see e.g.
UML Testing Profile [Obj05b] and TTCN-3 [SG03]) where a message to a
given lifeline is considered as test input to the corresponding object under
test. In this section, we describe how to concatenate interaction diagrams
by tracing them as transition sequences in state machines and how to take
advantage of this concatenation. For that, we define several states as follows.

Definition 37 (Initial State) The initial state is the initial pseudo state
of the state machine as defined in the UML specification [Obj07, page 521].

Other states are used to refer to the state machine’s possible start or the
end of an interaction sequence described in an interaction diagram:

Definition 38 (Start State) A start state of an interaction sequence is a
state in the state machine from which it is allowed to start the execution of
the sequence.

Definition 39 (End State) An end state of an interaction sequence is a
state in the state machine at which the execution of an interaction sequence
can end.

This section contains the descriptions of how to concatenate interaction
diagrams by concatenating corresponding transition sequences of a state ma-
chine. For that, we have to derive state machine transition sequences from
interaction diagrams. We present a corresponding algorithm that produces
transition sequences for each combination of interaction diagram and state
machine. Afterwards, we show how to concatenate the transition sequences.

In [Sok06b], Sokenou describes a method to derive a set of possible start
states for the execution of behavior defined in interaction diagrams. In con-
trast, this section is focused on deriving and comparing transition sequences

178

5.2. STATE MACHINES AND INTERACTION DIAGRAMS

instead of single states. Thus, we present an algorithm to derive transi-
tion sequences from a state machine that reflect the described behavior of
an interaction diagram. Figure 5.6 shows the algorithm of the correspond-
ing function findTransitionSequences: For each possible start state of the
state machine (line 06), the algorithm aims at executing the behavior of the
interaction diagram (line 09). It returns a set of corresponding transition se-
quences (lines 21, 24). The pseudocode leaves out some aspects of transition
matching such as transition guards, post conditions, or state invariants. We
are, however, aware that information about the current system state (i.e. sys-
tem attribute value assignment) is important to determine certain aspects of
transition matching, e.g., the satisfaction of transition guards.

01 findTransitionSequences (InteractionDiagram id, SM sm) {
02 sequences = empty set; // return value
03 msg = first message of id;
04 startStates = all states of sm with outgoing transitions
05 triggered by msg;
06 for each(s in startStates) {
07 tmpS = s;
08 transitionSequence = empty sequence;
09 for(i = 0; i < number of messages of id; ++i) {
10 msg = id.messages[i];
11 if(tmpS has outgoing transition t triggered by msg) {
12 tmpS = target state of t;
13 add t to transitionSequence;
14 }
15 else {
16 transitionSequence = empty sequence;
17 break;
18 }
19 }
20 if(transitionSequence is not empty) {
21 add transitionSequence to sequences;
22 }
23 }
24 return sequences;
25 }

Figure 5.6: Algorithm for detecting all state machine transition sequences
corresponding to an interaction diagram.

For each interaction diagram, we retrace its described behavior as possible
transition sequences in the state machine. Afterwards, we concatenate these
transition sequences to combine the corresponding interaction diagrams: For
two transition sequences ts1, ts2 with ts1 assumed to be executed before ts2,
we consider four cases: 1) The transitions of ts1 and ts2 do not overlap, and

179

CHAPTER 5. TEST MODEL COMBINATION

ts1 does not include a transition whose target state is the start state of ts2. In
this case, both sequences cannot be concatenated. 2) The target state of the
last transition in ts1 is equal to the source state of the first transition in ts2.
3) A transition subsequence ts1B of ts1 is equal to a transition subsequence
ts2A of ts2 (e.g., see Figure 5.7). For these two cases, ts2 can be executed
after ts1 (without executing the overlapping transitions in ts1B/ts2A twice).
4) Two subsequences of ts1 and ts2 are overlapping, and both transition
sequences describe different behavior after the overlapping transitions. In
this case, the combination algorithm can choose the transitions from one of
both sequences. There are many more complicated ways of overlappings.
In the considered case study, however, we were only confronted with rather
simple overlappings as described for the cases 2 and 3.

ts1

ts2

ts1A ts1B / ts2A ts2B

Figure 5.7: Overlapping transition sequences.

Interaction sequences that can be combined using the proposed approach
are called adjacent.

Definition 40 (Adjacent Interaction Sequences) If two interaction se-
quences are overlapping and can be executed in succession, they are called
adjacent.

5.2.3 Coverage Criteria Definitions
In this section, we define new coverage criteria that describe the degree to
which the possible concatenations of interaction diagrams are used. For
instance, interaction diagrams can often be executed from several start states.
Furthermore, interaction sequences can be combined to pairs or triples. In
the following, we present several corresponding coverage criteria.

Definition 41 (All-Sequences) The coverage criterion All-Sequences is
satisfied iff all interaction sequences are executed at least once.

In Figure 5.8, we formally define All-Sequences. The function findTran-
sitionSequences is defined in Figure 5.6 on page 179. For each interaction
diagram id, the function is used to derive all transition sequences of the state

180

5.2. STATE MACHINES AND INTERACTION DIAGRAMS

machine that describe the behavior of id. Subsequently, all the transition
sequences are described with trace patterns and combined into one complex
test goal. The satisfaction of this complex test goal requires the test suite to
traverse at least one described transition sequence.

P(TG) All-Sequences(SM sm, InteractionDiagrams ids) {
testgoals = empty set;
for all interaction diagrams id in ids {

transitionSequences = findTransitionSequences (id, sm);
CTG ctg = false; // new complex test goal - default: false
for all transition sequences ts in transitionSequences {

TP tracepattern = new TP(); // container for traced transitions
for i=0 to ts.length-1 { // add all transitions

tracepattern.add((?, ?, ?, {ts.get(i)}));
}
ATG atg1 = new ATG(tracepattern);
ctg = ctg or atg1; // add atomic test goal atg to ctg

}
if(ctg is not empty)

testgoals.add(ctg);
}
return testgoals;

}

Figure 5.8: Definition of All-Sequences.

Definition 42 (All-Context-Sequences) All-Context-Sequences is a cov-
erage criterion that is satisfied iff each transition sequence derived from an
interaction diagram is executed from all of its start states.

The coverage criterion All-Context-Sequences is similar to All-Sequences.
The difference is that All-Context-Sequences requires to include all possible
transition sequences that can be derived from a certain interaction diagram.
Correspondingly, we define one atomic test goal for each transition sequence.
Figure 5.9 shows the corresponding definition.

Definition 43 (All-Sequence-Pairs) The coverage criterion All-Sequence-
Pairs is satisfied iff all sequences of adjacent interaction sequences up to
length 2 are executed at least once.

Like presented for the coverage criteria in Section 2.1.5, “up to length 2”
comprises all pair-wise combinations of interaction sequences as well as the

181

CHAPTER 5. TEST MODEL COMBINATION

P(TG) All-Context-Sequences(SM sm, InteractionDiagrams ids) {
testgoals = empty set;
for all interaction diagrams id in ids {

transitionSequences = findTransitionSequences (id, sm);
for all transition sequences ts in transitionSequences {

TP tracepattern = new TP(); // container for retraced transitions
for i=0 to ts.length-1 { // add all transitions

tracepattern.add((?, ?, ?, {ts.get(i)})); }
testgoals.add(new ATG(tracepattern));

} }
return testgoals;}

Figure 5.9: Definition of All-Context-Sequences.

P(TG) All-Sequence-Pairs(SM sm, InteractionDiagrams ids) {
testgoals = All-Sequences(sm, ids);
for all interaction diagrams id1 in ids {

transitionSequences1 = findTransitionSequences (id1, sm);
for all interaction diagrams id2 in ids with id1 != id2 {

transitionSequences2 = findTransitionSequences (id2, sm);
if transitionSequences1 and transitionSequences2 overlap {

for each overlapping pair of sequences seq1 and seq2 {
CTG ctg = false; // new complex test goal - default: false
tsA = the initial transition sequence of seq1;
tsAB = the overlapping transition sequence of seq1 and seq2;
tsB = the end transition sequence of seq2;
TP tracepattern = new TP(); // list of retraced transitions
for i=0 to tsA.length-1 { // add all initial transitions

tracepattern.add((?, ?, ?, {tsA.get(i)})); }
for i=0 to tsAB.length-1 { // add all overlapping transitions

tracepattern.add((?, ?, ?, {tsAB.get(i)})); }
for i=0 to tsB.length-1 { // add all end transitions

tracepattern.add((?, ?, ?, {tsB.get(i)})); }
ATG atg = new ATG(tracepattern);

}
ctg = ctg or atg; // add atomic test goal atg to ctg

} } }
if(ctg is not empty)

testgoals.add(ctg); }
return testgoals;}

Figure 5.10: Definition of All-Sequence-Pairs.

182

5.2. STATE MACHINES AND INTERACTION DIAGRAMS

sole interaction sequences. Figure 5.10 shows the formal definition of All-
Sequence-Pairs. We leave out the details of identifying the overlapping tran-
sitions because they make the pseudocode more complicated without helping
to understand the defined coverage criterion.

Accordingly, we could also formally define coverage criteria that are fo-
cused on longer sequences like All-n-Sequences for sequences of length n and
All-Sequence-Paths for combinations of arbitrary length.

Definition 44 (All-n-Sequences) Similar to All-Sequence-Pairs, the cov-
erage criterion All-n-Sequences is satisfied iff all sequences of adjacent in-
teraction sequences up to length n are tested.

Definition 45 (All-Sequence-Paths) The new coverage criterion All-Se-
quence-Paths is satisfied iff all paths of interaction sequences are tested.

Corresponding to these definitions, we sketch the definitions of the cov-
erage criterion All-Context-Sequence-Pairs that is focused on combining all
adjacent transition sequences for all their start states.
Definition 46 (All-Context-Sequence-Pairs) The new coverage criteri-
on All-Context-Sequence-Pairs is satisfied iff all sequences of interaction se-
quences up to length 2 are tested from each of its start states.

Several additional definitions of such coverage criteria can be thought
of. For instance, All-Context-Sequence-Pairs can be extended to sequences
of length n, which results in the coverage criterion All-Context-n-Sequences.
The presented coverage criteria are related by subsumption relations. Fig-
ure 5.11 shows the corresponding subsumption hierarchy.

All-Sequence-Paths

All-n-Sequences

All-Sequence-Pairs

All-Sequences

All-Context-Sequences

All-Context-Sequence-Pairs

All-Context-n-Sequences

Figure 5.11: Subsumption hierarchy for interaction sequence combinations.

These new coverage criteria might be useful for evaluating the test suites
derived from a state machine and a set of interaction diagrams. Their use,
however, still has to be evaluated in case studies.

183

CHAPTER 5. TEST MODEL COMBINATION

5.2.4 Case Study
In this section, we present an industrial scenario in which interaction dia-
grams were derived from requirements of an automated teller machine (ATM)
and applied to create test cases for the ATM. Furthermore, these interaction
diagrams are composed to a state machine. Originally, test cases were only
derived directly from requirements use cases. In the following, we show how
to use our approach to generate more complex test cases for such scenarios.
In the following figures, AC stands for Account Check, and AR stands for
Authorization System.

Waiting for
Money Removal

2:ec_removed / ec_trials = trials@pre

3:t(5sec) / ec_trials=trials@pre and ec_collected

Waiting for
Amount

EC Validation

AC Validation

Withdraw
Cancelation

Amount Check

Idle

Error EC Count

Waiting for AC

Display
Account

Statement

Selection

15:enter_digit
[ac_count<4]
/ ac_count=

ac_count@pre+1
17:ok [ac_count<4]

16:ok 18:enter_digit [ac_count>=4]

25:ac_not_ok [trials<3]

24:ok [ac_count=4] /
trials = trials@pre+1

23:ac_ok
[own_customer] /

trials=0

22:selection_account_statement

20:selection_withdrawal

21:ac_ok
[foreign_customer]

/ trials=0

EC Ejected

5:ac_not_ok
[trials = 3]

19:enter_amount

13:amount_withdrawn

6:ec_invalid

7:withdrawal_canceled

8:money_removed

9:t(5sec)
[foreign_customer]

10:amount_too_high [foreign_customer]
11:amount_not_withdrawn

12:atm_load_too_low

14:ec_ok /
ac_count=0

4:ec_inserted /
trials=

ec_trials@pre
1:cancel

26:t(5sec) [own_customer]

Figure 5.12: State Machine of ATM

The state machine is shown in Figure 5.12. All transitions of the state
machine are numbered so it is easier to describe transition sequences in the

184

5.2. STATE MACHINES AND INTERACTION DIAGRAMS

ec_inserted

: Customer : ATM : AR

ec_ok

request_pin

enter_number

enter_number

enter_number

enter_number

ok
check_ac

ac_ok

request_selection

Figure 5.13: Sequence 1: Interaction diagram for inserting the EC card.

selection_withdrawal

: Customer : ATM atmBank : BANK

request_amount

enter_amount

money_removed

withdraw_amount

amount_withdrawn

eject_money

Figure 5.14: Sequence 2: Interaction diagram for withdrawing money.

money_removed

: Customer : ATM

eject_ec

ec_removed

Figure 5.15: Sequence 3: Interaction diagram for removing money and EC
card.

185

CHAPTER 5. TEST MODEL COMBINATION

following. A possible behavior of a customer that enters his PIN (4 digits)
and withdraws money is described for instance by the following transition
sequence: (4, 14, 15, 15, 15, 15, 24, 23, 20, 19, 13, 8, 2). Note that the state
machine describes just the behavior of the ATM. Thus, some messages of the
interaction diagrams are not included in the state machine.

All interaction diagrams are directly derived from requirements use cases.
Example sequences are shown for inserting the EC card and entering the PIN
in Figure 5.13, for withdrawing money in Figure 5.14, and for removing EC
card and money in Figure 5.15. Sequence 1 is an initializing sequence as it
can be executed from the initial state of the state machine, state Idle. The
message ec_inserted can only be executed in state Idle. Thus, the algorithm
in Figure 5.6 starts with transition 4:ec_inserted in the state machine. Fol-
lowing the algorithm, transition sequences for Sequence 1 are: transseqs1.1
= (4, 14, 15, 15, 15, 15, 24, 23) and transseqs1.2 = (4, 14, 15, 15, 15, 15,
24, 21). The last transitions of both sequences depend on the values of the
attributes own_customer and foreign_customer. For Sequence 2, only one
transition sequence can be found: transseqs2 = (20, 19, 13, 8). There is also
only one transition sequence for Sequence 3: transseqs3 = (8, 2).

ec_inserted

: Customer : ATM : AR

ec_ok

request_pin

enter_number

enter_number

enter_number

enter_number

ok
check_ac

ac_ok

request_selection

atmBank : BANK

selection_withdrawal

request_amount

enter_amount

withdraw_amount

amount_withdrawn

eject_money

money_removed

eject_ec

ec_removed

Figure 5.16: Concatenated interaction diagram.

186

5.2. STATE MACHINES AND INTERACTION DIAGRAMS

The target state of the last transition of transseqs1.1 is the same as
the source state of first transition of transseqs2. Thus, both can be con-
catenated to build a new scenario and a resulting new transition sequence
transseqs1.1,s2 = (4, 14, 15, 15, 15, 15, 24, 23, 20, 19, 13, 8). As the transi-
tion sequence transseqs2 ends with the same transition as transseqs3 starts,
also Sequence 3 can be concatenated to the others. The resulting transition
sequence is transseqs1.1,s2,s3 = (4, 14, 15, 15, 15, 15, 24, 23, 20, 19, 13, 8,
2). Corresponding to the transition sequences, we concatenated the interac-
tion diagrams and created longer test cases. Figure 5.16 shows the resulting
interaction diagram.

As we expected, several faults can be detected by longer interaction dia-
grams. For instance, the combined sequence is the only sequence in the case
study that contains a scenario from inserting EC card until money and EC
removal. Furthermore, we found a sequence that was not covered by execut-
ing only the original interaction diagrams but can be derived by combining
interaction diagrams: The original interaction diagrams only describe that
a customer enters a wrong PIN three times without removing the EC card
in between. However, there is no interaction diagram for a customer that
inserts an EC card three times, enters the PIN incorrectly just once, and
cancels the operation afterwards. With the repetition of several complete
scenarios for interactions of customer and ATM, such scenarios can be cov-
ered. We found these improvements by manual inspection. Furthermore, the
proposed coverage criteria are not applied, yet. It would be interesting to
automate this approach to identify and evaluate further advantages.

5.2.5 Related Work
State machines and interaction diagrams of the UML [Obj07] are often used
to model test cases. As one example, Nebut et al. [NFTJ03] derive test cases
from contracts such as use cases and interaction diagrams. As another exam-
ple, Abdurazik and Offutt provide an approach for automatic test generation
from state machines [OA99]. In contrast to that, we aim at the combined
use of both diagrams to generate test suites.

There has also been work about the combination of interaction diagrams
and state machines. From the very beginning, it was clear that interac-
tion diagrams can describe single transition sequences of a state machine.
Bertolino et al. [BMM05] combine both diagrams to derive “reasonably”
complete test models to achieve early results for partially modeled systems.
Sokenou [Sok06b] and Nagy [Nag04] showed furthermore, that the state ma-
chine’s start states to execute interaction diagrams can be important. We
extend these approaches by identifying matching transition sequences instead

187

CHAPTER 5. TEST MODEL COMBINATION

of start states. Additionally, we combine several interaction diagrams by
matching start and end sequences of the corresponding transition sequences
to build new and more complex sequences, and we defined coverage criteria
based on interaction diagram combinations.

5.2.6 Conclusion, Discussion, and Future Work
This section completes the combination of interaction diagrams and state
machines by providing conclusion, discussion, and future work.

Conclusion.

We presented an approach to combine interaction diagrams by retracing their
described behavior as transition sequences in a state machine and concate-
nating these transition sequences. We presented an algorithm, listed several
advantages of this approach, defined resulting coverage criteria, and showed
the applicability of our approach to an industrial case study.

Discussion.

We identified some discussion points for our approach. For instance, the
semantics of the used state machine is important for this approach. Input-
enabled state machines can react to every sequence of events and, thus, all
states would be start states for each event sequence. In this section, however,
we focused just on explicitly modeled transitions like in protocol state ma-
chines [Obj07, page 529]. So, each event of the event sequence has to trigger
at least one transition.

The combination of sequences can result in a lot of new and more complex
test cases. They can reduce the test effort but increase the effort to identify
the faults manually later on. To reduce complexity, the number of these test
cases might be reduced using the proposed coverage criteria.

It might also be feasible to define limitations on the algorithm. It does
not seem to make sense to combine interaction diagrams that overlap in all
transitions except one. Or does it? What would be the maximum overlap
that should be taken into consideration? Should it be defined absolutely or
relatively to the sequences absolute length?

In the presented case study, the state machine was manually derived with
the help of the interaction sequences. It would be interesting to identify ways
to derive such state machines automatically. There are, however, several is-
sues like the identification of state machine transition loops that are hard

188

5.3. CONCLUSION

to handle: Since each interaction sequence is finite – how can a correspond-
ing algorithm be sure that a loop with a theoretically unlimited number of
iterations is meant?

We also defined new coverage criteria and presented a corresponding sub-
sumption hierarchy. This hierarchy has no connection to other coverage
criteria. The reason is that we have no general knowledge about the covered
behavior of the interaction diagrams. The only exception is the coverage
criterion All-Paths, which subsumes each of the defined criteria anyway.

We used states to describe the retraced behavior of interaction sequences.
In parallel state machines, these states would have to be replaced by state
configurations. However, this poses no restriction to our approach.

Finally, interaction diagrams are used to manually describe typical sce-
narios. Thus, the effort to describe a sufficient test suite with interaction
diagrams is high. They often do not define conditions for the initial state
of execution and describe only parts of a scenario. Thus, the presented con-
catenation of interaction diagrams is a good way to create more complex test
cases while avoiding to initialize each sequence separately before its execu-
tion. This concatenation can be automated and, thus, no additional manual
effort is necessary.

Future Work.

In the future, we plan to implement the presented approach, e.g., as an ex-
tension of the tool ParTeG [Weib]. We want to use the tool to automatically
create test cases for concatenated interaction diagrams. Here, we will take
also the proposed new coverage criteria on interaction diagrams into account.

5.3 Conclusion
In this chapter, we presented two approaches to combine different test models
for automatic test generation. We showed one example of combining behav-
ioral and structural models and one example of combining two behavioral
models. We showed advantages and application fields for each of these com-
binations. The first combination of test models is already implemented in
ParTeG. For the latter combination, we proposed coverage criteria to mea-
sure the extent to which possible combinations are used.

In general, the combination of models is a helpful technique. Each time
one model or two unconnected models are not sufficient, they might be com-
bined somehow. There is other work besides the presented approaches to
combine different models. For instance, Kösters et al. [KSW01] use re-

189

CHAPTER 5. TEST MODEL COMBINATION

fined activity graphs to combine use cases and class diagrams. Schroeder
et al. [SKAB03] present a technique to combine behavior and data mod-
els. Corresponding case studies indicate that the combination of models has
advantages over the single application of models.

190

Chapter 6

Test Suite Efficiency

For automatic model-based test generation, coverage criteria can be applied
to state machines. They return an unordered set of test-model-specific test
goals (see Section 2.4). In this chapter, we investigate the effect of the test
goal order on the test suite’s efficiency. We consider this the fourth contri-
bution of this thesis. All previously presented contributions are also focused
on model-based test generation with coverage criteria. Thus, the results of
this chapter can be combined with all the other contributions.

6.1 Introduction
This thesis is focused on coverage criteria that are applied to UML state
machines for automatic model-based test generation. As explained above, a
wide-spread approach to test suite generation is to use a coverage criterion
to produce a set of test-model-specific test goals and to generate test cases
that cover the corresponding trace patterns (see Section 2.4.2). Since each
test case usually also covers trace patterns of other test goals, it satisfies the
corresponding test goals, too. Consequently, the satisfaction of a certain test
goal often results in the satisfaction of other test goals.

Most existing approaches to influence test execution efficiency focus on
changing an existing test set for regression testing. Since the test suite is gen-
erated anew for each new version of the system, this is no adequate approach
in model-based testing. Instead, one has to influence the test generation
process. Our approach is focused on changing the order of test goals for
test generation. The set of test goals returned by the coverage criterion is
a priori unordered. This chapter describes an investigation of the impact of
test goal order on test suite execution by defining and evaluating several test
goal orders. The relations between test goals and the generated test suite

191

CHAPTER 6. TEST SUITE EFFICIENCY

depend on many aspects of the test suite generation process. We focus on the
following aspects: different kinds of satisfied coverage criteria, different kinds
of test path search strategies, and the application of online or offline test-
ing. Finding the best test goal order by permuting all test goals is infeasible.
Consequently, we propose heuristic test goal prioritizations to generate test
goal orders. We motivate all prioritizations with the small example of the
freight elevator that is introduced in Section 3.2.2 and evaluate them based
on the industrial test model presented in Section 3.2.5.

The chapter is structured as follows. The preliminaries are described in
Section 6.2. Section 6.3 contains the description of test goal prioritizations.
Their evaluation with the industrial test model of the train control is pre-
sented in Section 6.4. Section 6.5 contains the related work. The final section
comprises conclusion, discussion, and future work.

6.2 Preliminaries

This section contains all preliminaries for the presented test goal prioriti-
zations. The subsections contain descriptions of the idea of test goal pri-
oritization and the applied search algorithm. Further subsections contain
reflections of our understanding of online/offline testing.

6.2.1 Idea of Test Goal Prioritization

Each coverage criterion is a function that returns a set of test goals. For
each test goal, a test case is created that covers the traces referenced by
the test goal. The goal of our investigations is the deduction of general
advantages of certain test goal orders for the efficiency of a test suite, i.e., the
average effort necessary to detect a failure. Like presented in Section 3.3.1,
we say that the test case satisfies the corresponding test goal intentionally.
Each test case often covers several other state machine elements. We say
that the test case satisfies the corresponding test goals accidentally. For
each intentionally satisfied test goal, we are interested in the corresponding
accidentally satisfied test goals. There can be several test cases to satisfy a
test goal intentionally. We consider the applied search algorithm the most
important aspect to determine the accidentally satisfied test goals of a test
case.

192

6.2. PRELIMINARIES

6.2.2 Applied Search Algorithm
The basic search algorithm of our approach starts at the trace patterns refer-
enced by the test goal to satisfy intentionally and searches for a way backward
to the initial node. As described in Chapter 3, this approach has some ad-
vantages, e.g., the combination of structural (e.g. control-flow-based) and
boundary-based coverage criteria [WS08a].

This chapter contains the description of a tool-independent approach.
We neglect the details of the applied tool ParTeG and focus on common
properties of test path search algorithms. Independent of the concrete search
engine, each created test case has two important properties: the number of
covered test goals and its length, e.g. given in lines of code. In this section,
the focus is on the test case length. All test cases are roughly subdivided into
comparatively short and comparatively long test cases. The applied search
algorithm uses a corresponding short path strategy or a long path strategy
to support the creation of rather short or long test cases.

The following terms are defined to clarify the notion of both strategies.
Each state s has a graph-theoretic distance, which roughly describes the num-
ber of visited states on a shortest path from the initial node to s. The initial
node and s can be connected by several paths with different lengths. Fur-
thermore, composite states can contain complex behavior descriptions that
can be executed or skipped if the composite state is left before completing
its internal behavior. How should composite states influence the distance of
a state? The following definitions take care for this issue: Each state has a
distance value. The default distance value of each state (simple state, pseu-
dostate, and composite state) is 1. The distance between two states along a
path is the sum of all the states’ distance values on the path between them.

Definition 47 (Minimal Distance) The minimal distance of a state ma-
chine’s state s is the minimum of all possible distances between the state
machine’s initial node and s. The minimal distance of a state machine’s
transition t is equal to the minimal distance of t’s source state.

Definition 48 (Maximal Distance) The maximal distance of a state ma-
chine’s state s is the maximum of all possible distances between the initial
node and s for all paths that contain both states without loops. The distance
value of each composite state cs is redefined as the maximum of all maximal
distances between cs’s initial state or entry point and an arbitrary state within
cs’s submachine. The maximal distance of a state machine’s transition t is
equal to the maximal distance of t’s source state.

One aim of our investigations is to create short and long test cases, i.e.,
investigate properties of test cases with minimal distances and maximal dis-

193

CHAPTER 6. TEST SUITE EFFICIENCY

tances, respectively. We define two corresponding test path strategies. Both
strategies differ in the selection of the next transition to traverse backward.

Definition 49 (Short Path Strategy (SPS)) If more than one transition
can be selected to be traversed backward, the short path strategy always
prefers the transition with the smallest minimal distance.

Definition 50 (Long Path Strategy (LPS)) If more than one transition
can be selected to be traversed backward, the long path strategy always prefers
the transition with the largest maximal distance.

The effects of both strategies are obvious: The application of SPS results
in the creation of comparatively short test cases. Since short test cases satisfy
a small number of test goals, SPS results in a large number of test cases.
Contrary, the application of LPS results in a small number of long test cases.
Both path strategies depend on the applied test generation technique, in this
case, search-based test generation. The results of applying these strategies
(the properties of generated test cases concerning their lengths) are tool- and
technique-independent. The only exception are random approaches, which
are not guided by the selected coverage criterion.

6.2.3 Online/Offline Testing
This section contains a short description of online/offline testing [UPL06].
In offline testing, the test generator is disconnected from the SUT and the
generated test suite is executed on the SUT after complete creation. The
whole test suite can be optimized after its creation. In online testing, the
test generator and the SUT are connected and all commands are directly
executed on the SUT. The test cases are usually generated and executed one
after the other. For this reason, there is no post-optimization of the test
suite. Online testing is also often used as explorative testing without a given
test specification. In this case, however, we apply the given test model.

There are various reasons for performing online and offline testing, re-
spectively. These reasons can be space limitations of the target environment.
For instance, the test suite may be too large to fit into memory. As an
example, the size of a test suite for road trials created in cooperation with
DaimlerChrysler exceeded 10 gigabyte. Test efficiency may also be a reason:
The process of test suite generation usually takes some time. If we are only
interested in quickly detecting at least one fault (e.g. in smoke testing – see
page 14), then online testing may detect faults faster because of the immedi-
ate execution of test cases. The selection of offline testing, however, results

194

6.3. TEST GOAL PRIORITIZATIONS

in explicit test suites which can be repeatedly executed, managed in version
control systems, and reused in regression testing.

All in all, there are pros and cons for both testing techniques. We inves-
tigate the impact of test goal prioritization for both of them.

6.3 Test Goal Prioritizations
This section contains the descriptions of the proposed test goal prioritiza-
tions. Each prioritization is adapted to a different aspect of the state ma-
chine’s elements referenced by the test goals of the used coverage criteria: the
distance to the state machine’s initial state, the branching factor of the ref-
erenced elements, the size of guard conditions, and the number of positively
evaluated atomic conditions in guard conditions. All of the used terms are
explained in the following. For each mentioned aspect of the state machine’s
elements, two opposite test goal prioritizations are defined. The freight el-
evator example from Section 3.2.2 is used to provide a motivation for most
prioritizations. The random test goal prioritization is used for comparison:
Each advantageous prioritization should at least result in a better test suite
execution evaluation than random prioritization.

6.3.1 Random Prioritization (RP)
Random prioritization results in random test goal order. It can be applied to
all investigated coverage criteria. An effective prioritization should at least
result in a better evaluation outcome than random prioritization.

6.3.2 Far Elements (FEF/FEL)
The prioritization far elements first (FEF) sorts test goals according to their
referenced model element’s distance in descending order. In Section 6.2.2,
minimal and maximal distance are defined. The selected kind of distance
corresponds to the chosen search strategy: Minimal distance is used for short
path strategy (SPS) because SPS is focused on short paths. Since long path
strategy (LPS) is focused on long paths, maximal distance is used for LPS.
A test goal’s distance describes the approximated length of the transition
sequence to satisfy it. The intention of FEF is that paths from the initial
node to a test model element with a high distance are comparably longer.
Thus, they have a higher chance to satisfy more test goals accidentally. The
opposite prioritization to FEF is far elements last (FEL). FEL results in

195

CHAPTER 6. TEST SUITE EFFICIENCY

comparatively short test cases. Both prioritizations can be applied to all of
the examined coverage criteria.

In our example of a freight elevator control, FEF for All-States has the
following consequences: A path that leads to the state move slow has to
pass the states idle, button pressed, and start moving. As a consequence, the
first generated test case satisfies already four of five test goals. The test case
for the remaining test goal also satisfies four test goals, three of which are
already satisfied by the first test case. Without postoptimization, FEL for
All-States would result in separate test cases for all five test goals. Thus, the
test execution effort might be considerably higher for FEL.

6.3.3 Branching Factor (HBFF/HBFL)
The prioritization high branching factor first (HBFF) sorts all test goals
according to the branching factor of each test goal’s referenced model element
in descending order. For the opposed prioritization high branching factor
last (HBFL), the elements are sorted in ascending order. The branching
factor of a state s is equal to the ratio of s’s outgoing transitions to s’s
incoming transitions. The branching factor of a transition t is the ratio
of the outgoing and incoming transitions of t’s target state. The idea of
HBFL is that an element e with a high branching factor is probably already
accidentally satisfied by a longer test case for another test goal that contains
e. Thus, the test case generation for elements with high branching factors
should be delayed as far as possible in order to prevent the unnecessary
creation of test cases. Both can be applied to all coverage criteria. We know
no motivation for HBFF. Since we deal with heuristics, however, we evaluate
both approaches.

In the freight elevator example, the states move fast and move slow have
the lowest branching factor and – similar to FEF – should be used first for
test case generation with HBFL. For test goals that reference transitions,
all incoming transitions of the state idle have the lowest branching factor:
idle has three outgoing and five incoming transitions. As a consequence, test
cases for the two transitions from the states move fast and move slow are
created first, which is also preferred with FEF.

6.3.4 Atomic Conditions (MACF/MACL)
The prioritization many atomic conditions first (MACF) sorts all test goals
according to the size of the referenced guard condition in descending order.
This results in the preferred creation of test cases with many atomic con-
ditions to satisfy. The idea is that the satisfaction of many atomic guard

196

6.3. TEST GOAL PRIORITIZATIONS

conditions results in the traversation of many transitions. Consequently,
the created test case is longer, and more test goals are accidentally satisfied
by it. The opposed prioritization of MACF is many atomic conditions last
(MACL). Since both prioritizations are focused on guard conditions, they
can be applied to control-flow-based coverage criteria.

In the example of the elevator control, the transition triggered by press-
Button has the highest number of atomic expressions. Since there are many
test goals that need to traverse this transition, it does not seem to be a good
idea to start with this transition. The transitions triggered by reachFloor
should be used for test path generation first, but the referenced guard con-
dition is empty. Thus, MACL seems to be the better choice for the example.
Nevertheless, both prioritizations seem to be interesting and we include both
prioritizations in our evaluation.

6.3.5 Positive Assignment Ratio (HPARF/ HPARL)

For several coverage criteria, the satisfaction depends on the value assign-
ments of guards’ atomic conditions. For each guard, we call the number
of positive value assignments divided by the total number of atomic guard
conditions the positive assignment ratio.

The prioritization high positive assignment ratio last (HPARL) sorts all
test goals according to their positive assignment ratio in ascending order.
The motivation for this prioritization is that the guards of all traversed tran-
sitions of a valid test case are satisfied. So, except for sneak path analysis,
there are probably more satisfied guards than violated guards in a test case.
Consequently, each test case probably satisfies many test goals that refer-
ence a satisfied transition guard. The corresponding opposed prioritization
is high positive assignment ratio first (HPARF). The idea of both prioriti-
zations is similar to the distance estimation in [FW08a]. In our evaluation,
both prioritizations are available for control-flow-based coverage criteria.

In the example of a freight elevator, the satisfaction of a guard condi-
tion often results in the violation of another guard condition. For instance,
the satisfaction of [actualWeight = minWeight] results in the violation of
[actualWeight > minWeight]. As an exception, the guard of the transition
triggered by pressButton is satisfied by other longer test cases, whereas it is
not violated by others. It seems that the success of both proposed prioriti-
zations also depends on the test model’s structure.

197

CHAPTER 6. TEST SUITE EFFICIENCY

6.4 Evaluation
In the previous sections, we used the freight elevator example to motivate the
proposed test goal prioritizations. Here, we evaluate the prioritizations on
the industrial test model presented in Section 3.2.5. The evaluation results
of our experiments are influenced by the presented test goal prioritizations,
the selected coverage criterion, the search strategy, and online/offline testing.
The combination of these aspects results in 92 different experiment setups
– we present only the results for a few representatives. For each setup, we
created and executed a test suite 50 times with ParTeG. The evaluation
values comprise arithmetic average, worst case, and standard deviation. We
consider the coverage criteria All-States, Decision Coverage, and masking
MC/DC. The evaluation of the case study provided prioritization-specific
results as well as general results concerning test suite evaluation. First, we
introduce the used effect measurement in the industrial case study. Then, we
present the evaluation results for each selected coverage criterion and give a
recommendation about when to use which prioritization. Finally, we show
results concerning test suite evaluation and results about the influence of test
generation aspects such as search strategy and online/offline testing.

6.4.1 Effect Measurement for Industrial Test Model
Test goal prioritization influences the test suite generation process as well
as the execution of the generated test suite. The presented evaluation is
focused on the latter one. To evaluate the fault detection capability and
the efficiency of the test suites, we conduct mutation analysis on source code
level as presented in Section 2.1.5. The application of the presented mutation
operators results in 280 mutants, 268 of which show a different behavior than
the original SUT. Note that these numbers are different from the extreme
values of the efficient and the redundant SUT used in Section 4.1. The reason
is simply that the used SUT is not an extreme SUT.

During test suite execution, we measured the number of test cases and
function calls that were necessary to detect a failure. We call the measured
value test effort and its inverse value test suite efficiency: a smaller test
effort corresponds to a higher test suite efficiency, and means that a smaller
number of executed test cases and function calls (lines of code) to detect
faults. We also consider the absolute test suite’s fault detection capability.
Since test goal prioritization just sorts test goals but does not alter them,
however, no prioritization is expected to have an impact on the test suite’s
fault detection capability.

198

6.4. EVALUATION

For the presented case study with the German supplier of railway sig-
naling solutions Thales, we generated test suites based on the UML state
machine that is shown in Sections 3.2.5 and 4.1. Due to the large number of
possible experimental setups, we present just the results for a few of them.
The results of the other setups are similar, yet not as plain as the results of
the selected setups.

6.4.2 All-States
The evaluation for All-States brought the following results: For offline test-
ing, both distance-dependent prioritizations FEF and FEL depend on the
selected path search strategy. The application of FEL for SPS and FEF for
LPS result in efficient test suites. For online testing, the number of acciden-
tally satisfied guards and the resulting test suite size have a greater impact
than the path search strategy: Independent of the selected path strategy, the
application of FEF results in a greater test suite efficiency in online testing.
FEF and FEL are the only distance-dependent prioritizations. This might
be a reason for that the path search strategy does not influence the other
test goal prioritizations. For All-States, the application of HBFL results in
a more efficient test suite execution than the application of HBFF.

RP FEF FEL HBFF HBFL
Test Cases 3,43 3,35 3,68 3,68 3,35
Function Calls 83,39 82,34 87,90 87,89 82,20

3,43 3,35 3,68 3,68 3,35

83,39
87,90 87,89 82,2082,34

0

50

100

RP FEF FEL HBFF HBFL

Test Cases

Function
Calls

Figure 6.1: Average test effort for All-States with LPS and offline testing.

The application of FEF or HBFL results in the most efficient test suites,
which seems to be caused by a large number of accidentally satisfied test
goals and the resulting small test suite size. Figure 6.1 depicts the average
test effort for LPS and offline testing as the average number of executed
test cases and the number of function calls necessary to detect a mutant.
The application of, e.g., FEF instead of FEL reduces the test effort from
87,9 function calls down to 82,34 (-6,3%) and from 3,68 test cases to 3,35
(-9%). Another result of the experiments are the differences of the standard
deviations: the standard deviations for FEF and HBFL are smaller than the

199

CHAPTER 6. TEST SUITE EFFICIENCY

RP FEF FEL HBFF HBFL
Test Cases 7,39 3,36 7,56 6,48 3,94
Function Calls 174,35 84,27 115,29 166,75 94,17

7,39 3,36 7,56 6,48 3,94

174,35

115,29

166,75

94,17
84,27

0

50

100

150

200

RP FEF FEL HBFF HBFL

Test Cases

Function
Calls

Figure 6.2: Worst-case test effort for All-States with LPS and online testing.

standard deviations for the other prioritizations. The lower average effort
for HBFL and FEF is not crucial. However, we also analyzed the worst case
scenario, which revealed much greater advantages for both prioritizations.
In Figure 6.2, the worst absolute measured test effort for LPS and online
testing is presented. The application of, e.g., FEF instead of RP decreases
the worst-case test effort in terms of necessary test cases and function calls
down to 45,5% and 48,3%, respectively.

6.4.3 Decision Coverage
Test goals for Decision Coverage differ from those for All-States. Likewise,
the evaluation of test goal prioritization brought different results: For Deci-
sion Coverage, the application of FEF or HBFL results in an inefficient test
suite. Instead, the application of MACF, HBFF, or HPARF results in an
efficient test suite.

RP FEF FEL HBFF HBFL MACF
Test Cases 17,9 19,5 20,6 17,6 19,9 16,2
Function Calls 348,3 421,4 334,8 337,6 387,2 315,8

334,9

393,2

17,9 19,5 20,6 17,6 19,9 16,2 21,9 16,6 21,2

348,3
334,8 337,6

387,2

315,8

421,4 428,1

0

100

200

300

400

500

RP FEF FEL HBFF HBFL MACF MACL HPARF HPARL

Test Cases

Function
Calls

Figure 6.3: Average test effort for LPS and offline testing for Decision Cov-
erage.

Figure 6.3 shows that the application of MACF instead of MACL de-
creases the average function calls to 73,7% and the test cases to 74,0% for

200

6.4. EVALUATION

RP FEF FEL HBFF HBFL MACF
Test Cases 19,9 25,7 21,9 18,7 22,6 18,8
Function Calls 240,2 344,0 210,6 217,2 269,3 220,2

244,4

19,9 25,7 21,9 18,7 22,6 18,8 24,1 19,3 21,9

242,5240,2
210,6 217,2

269,3

220,2

344,0

286,4

0

100

200

300

400

RP FEF FEL HBFF HBFL MACF MACL HPARF HPARL

Test Cases

Function
Calls

Figure 6.4: Average test effort for SPS and offline testing for Decision Cov-
erage.

RP FEF FEL HBFF HBFL MACF
Test Cases 24,1 20,6 44,4 20,0 23,2 19,0
Function Calls 474,4 449,6 495,1 388,4 457,9 394,5

24,1 20,6 44,4 20,0 23,2 19,0 31,4 21,8 30,8

572,2

444,2
474,4 495,1

388,4

457,9
394,5

449,6

601,8

0

100

200

300

400

500

600

700

RP FEF FEL HBFF HBFL MACF MACL HPARF HPARL

Test Cases

Function
Calls

Figure 6.5: Worst test effort for LPS and online testing for Decision Coverage.

LPS and offline testing. In comparison to RP, MACF reduces the number
of function calls to 90,7% and the number of test cases to 83,1%. Figure 6.4
shows similar results for SPS and offline testing. Here, the proper selection of
a test goal prioritization can reduce the test effort. Applying FEL instead of
FEF results in a reduction of the average number of function calls to 61,2%
and of test cases to 85,2%. For HBFF instead of FEF, the number of function
calls is reduced to 63,1% and the number of test cases to 72,8%. Applying
FEL instead of RP results in a lower number of function calls but a higher
number of test cases. Figure 6.5 depicts the test effort for the worst case. In
contrast to All-States, the possible test effort reduction for the worst case is
similar to the average test effort reduction: The selection of HBFF instead
of MACL reduces the worst-case number of function calls to 64,5% and the
number of executed test cases to 63,7% for LPS and online testing.

In comparison to All-States, the application of FEF still results in a large
number of accidentally satisfied test goals. Moreover, inspections showed
that the first executed test cases are capable of detecting a large number of
mutants. However, since these sets of mutants are overlapping, many mutants

201

CHAPTER 6. TEST SUITE EFFICIENCY

are detected later and the test effort for FEF is large (see Figure 6.4). Note
that - just like for All-States - the application of FEL results in low test effort
for SPS and offline testing.

6.4.4 Masking MC/DC
Like Decision Coverage, masking MC/DC is focused on the guard conditions
of transitions. Thus, it is not surprising that the evaluation results for mask-
ing MC/DC are similar to the ones for Decision Coverage. The best test goal
prioritizations are again MACF, HBFF, and HPARF.

RP FEF FEL HBFF HBFL MACF
Test Cases 20,6 19,0 43,6 19,1 23,1 17,9
Function Calls 414,1 424,6 461,1 368,8 452,4 370,1

20,6 19,0 43,6 19,1 23,1 17,9 27,6 18,0 26,7

500,6

375,5
414,1

461,1

368,8

452,4

370,1
424,6

540,8

0

100

200

300

400

500

600

RP FEF FEL HBFF HBFL MACF MACL HPARF HPARL

Test Cases

Function
Calls

Figure 6.6: Average test effort for LPS and online testing for masking
MC/DC.

RP FEF FEL HBFF HBFL MACF
Test Cases 19,4 25,7 22,9 18,6 23,4 19,0
Function Calls 230,5 347,8 217,9 215,0 271,3 216,1

19,4 25,7 22,9 18,6 23,4 19,0 25,1 19,1 22,6

246,0239,8230,5
217,9 215,0

271,3

216,1

347,8

296,0

0

100

200

300

400

RP FEF FEL HBFF HBFL MACF MACL HPARF HPARL

Test Cases

Function
Calls

Figure 6.7: Average test effort for SPS and offline testing for masking
MC/DC.

Figure 6.6 shows the average test effort for masking MC/DC with LPS and
online testing. The selection of, e.g., HBFF instead of RP or MACL results in
a decrease of the function calls down to 89,1% and 68,2%, respectively. The
number of executed test cases is reduced to 92,7% and 69,2%, respectively.
The results for SPS and offline testing in Figure 6.7 are similar: The test

202

6.4. EVALUATION

RP FEF FEL HBFF HBFL MACF
Test Cases 25,3 19,3 44,9 19,4 24,6 19,2
Function Calls 496,9 441,5 507,0 386,1 498,1 408,5

25,3 19,3 44,9 19,4 24,6 19,2 31,5 20,4 29,6

561,0

426,6

496,9 507,0

386,1

498,1

408,5
441,5

612,7

0

100

200

300

400

500

600

700

RP FEF FEL HBFF HBFL MACF MACL HPARF HPARL

Test Cases

Function
Calls

Figure 6.8: Worst test effort for LPS and online testing for masking MC/DC.

suites derived with MACF or HBFF have a low test effort, whereas RP
or MACL results in a test suite with high test effort. For instance, the
application of HBFF instead of MACL results in a function call decrease to
72,6% and a decrease of test cases to 74,1%. Again, the application of FEL
for SPS results in low test effort. Figure 6.8 shows the worst case results
for LPS and online testing: The application of MACF, HBFF, or HPARF
results in efficient test suites. For instance, the selection of MACF instead of
RP or MACL results in a function call reduction down to 82,2% and 66,7%,
respectively, and a reduction of executed test cases to 75,9% and 61,0%,
respectively.

6.4.5 Application Recommendation
In this section, we give an application recommendation of test goal prioriti-
zations based on the results of the previous sections. All subsequent table
rows list the recommended prioritizations corresponding to the resulting test
suite’s efficiency in descending order. The application of any of the recom-
mended test goal prioritizations results in a good test suite efficiency with a
comparatively small standard deviation. Note that all results are based on
just one test model. Threats to generalization will be discussed in Section 6.6.

For All-States, we recommend in most cases to use FEF and HBFL (see
Table 6.1). If the search strategy is SPS and offline testing is used, then we
recommend to apply FEL instead of FEF. The recommendation of HBFL for
All-States is not restricted to a certain path search strategy.

The results for Decision Coverage are completely different. As Table 6.2
shows, the application of MACF or HBFF results in test suites with high
efficiency for all combinations of search strategy and online/offline testing.
Additionally, FEL results in efficient test suites only for offline testing. The
application of HPARF is only recommended for the search strategy LPS.

203

CHAPTER 6. TEST SUITE EFFICIENCY

Search Strategy Online/ Offline Recommendation
LPS Offline FEF, HBFL
LPS Online FEF, HBFL
SPS Offline HBFL, FEL
SPS Online FEF, HBFL

Table 6.1: Recommendations of test goal prioritizations for All-States.

Search Strategy Online/ Offline Recommendation
LPS Offline MACF, HPARF, HBFF, FEL
LPS Online MACF, HBFF, HPARF
SPS Offline FEL, HBFF, MACF
SPS Online MACF, HBFF

Table 6.2: Test goal prioritizations recommendations for Decision Coverage.

Although masking MC/DC is considered more complex than Decision
Coverage, the evaluation results for both coverage criteria are similar (see
Table 6.3). This might be caused by the fact that both coverage criteria
are focused on the control flow. There are only a few differences between
the results for both coverage criteria. The standard deviation values of the
evaluation results for masking MC/DC are greater than the ones for Deci-
sion Coverage. As a consequence, the worst-case evaluation values of the
recommended prioritizations exceed or come close to the average value of
RP (cf. Figures 6.6 and 6.8).

Search Strategy Online/ Offline Recommendation
LPS Offline MACF, HPARF, FEL, HBFF
LPS Online HBFF, MACF, HPARF
SPS Offline HBFF, MACF, FEL
SPS Online MACF, HBFF

Table 6.3: Test goal prioritization recommendations for masking MC/DC.

6.5 Related Work
There are already several publications about the prioritization of test cases.
For instance, Jones and Harrold [JHS03] deal with the prioritization of test
cases for the coverage criterion MC/DC. This topic is complex because, unlike
for other coverage criteria, test goals for MC/DC can often only be satisfied
by pairs of test cases. Elbaum et al. [EMR02] present several case studies
about the prioritization of test cases for regression testing. They compare the

204

6.5. RELATED WORK

impact of several prioritization techniques. Bauer et al. [BSME08] present a
risk-based approach for test case prioritization. The deciding aspect of the
cited approaches is that the prioritized test cases already exist. Consequently,
the prioritization is influenced by information of previous test runs such as
a test case’s fault detection capability or coverage criteria satisfaction. In
contrast, our approach is aimed at prioritizing test goals without knowledge
about the resulting test cases. Furthermore, our approach is applied to au-
tomatic test suite generation, whereas the presented related work is focused
on regression testing with existing test suites.

To our knowledge, there is little work about the prioritization of test
goals. As an exception, Fraser and Wotawa [FW08a] order test goals and
create test suites with a model checker. They propose two different metrics
for test goal ordering, and they measure the impact on the test suite creation
time and on the number of generated test cases. The evaluation is done with
experiments for several coverage criteria and several standard examples. The
fundamental result is that the used test goal order matters less than expected.
In contrast to this approach, we measure the impact of the test goal order
on the test suite efficiency. Thus, we do not see our work contradicting the
work of Fraser and Wotawa, but as a complement to it. We measure the fault
detection effort instead of the test suite size. To measure this effort, we use
mutation operators to inject faults in a correct SUT and count the number
of executed test cases and function calls until the faults are detected. The
result of our investigations is that test goal prioritization matters for test
suite execution. Our approach is based on our prototype implementation
ParTeG, yet it is generally applicable to all model-based test generators for
state-based test models. As mentioned above, the only exception are random
test generators.

As presented in Section 3.6, there are many commercial tools that sup-
port model-based test generation based on UML state machines and coverage
criteria. Many of them follow the chosen approach of using a coverage crite-
rion to generate a set of test goals. For instance, the Rhapsody ATG [IBM]
creates test suites based on calculated test goals [IBM04]. Furthermore, the
Smartesting Test Designer [Sma] supports All-Transitions and handles each
transition as a target. For the presented case study, we use our prototype im-
plementation ParTeG, which is based on the same approach. All mentioned
tools could support test goal prioritization. In contrast to the mentioned
commercial tools, however, ParTeG is the only tool that supports the prior-
itization of test goals.

205

CHAPTER 6. TEST SUITE EFFICIENCY

6.6 Conclusion, Discussion, and Future Work
Here, we conclude and discuss the presented approach. We also sketch pos-
sible future work.

Conclusion.

In this chapter, we proposed several test goal prioritizations and evaluated
their impact on test suite execution using a test model from an industrial
case study. The results depend on many different factors like the applied
path search strategy, the selected coverage criterion, and online/offline test-
ing. The evaluation showed that the selection of a proper test goal priori-
tization has an impact on the test suite efficiency. For instance, the choice
of test goal prioritization can decrease test effort below 70% for both con-
sidered control-flow-based coverage criteria. These results are encouraging.
We suggest more case studies to determine the degree of the result’s prior-
itization specificity and the impact of test model characteristics. Although
unintended, we identified some results concerning test suite evaluation. For
instance, in combination with a satisfied coverage criterion, the number of
test cases and function calls (absolute – not per test case!) are often used as
indicators for a test suite’s efficiency. However, they can provide different re-
sults. For instance, Figure 6.3 shows that the average function calls for FEL
are lower than for FEF but the average number of test cases is higher. The
same phenomenon can be seen in Figure 6.6 for the prioritizations FEL and
MACL. Thus, both measures of test suite efficiency should be used carefully.

As we expected, the selected search strategy influences the test suite size
and the test suite efficiency. In contrast to SPS, the application of LPS results
in test suites with a comparably small number of longer test cases. This
directly influences the test suite efficiency. In general, test suites generated
with LPS need less test cases but more function calls to detect a mutant than
test suites generated with SPS (compare, e.g., Figures 6.3 and 6.4).

The selected prioritization has almost no impact on the mutation score.
The test model contains linear ordered types and inequations and, thus, even
the application of the strongest control-flow-based coverage criterion Multiple
Condition Coverage (MCC) does not result in the detection of all mutants.
The satisfaction of the boundary-based coverage criterion Multi-Dimensional
(MD) and MCC as provided by ParTeG is the only combination (MDMCC)
that results in killing all detectable mutants.

206

6.6. CONCLUSION, DISCUSSION, AND FUTURE WORK

Furthermore, we realized that test goal prioritization is especially impor-
tant for online testing. The main reason for this is the missing test suite post-
optimization. Although we applied monitoring as a means to prevent test
case generation for already satisfied test goals as an in-process-optimization,
online testing results in considerably less efficient test suites than offline test-
ing and is strongly influenced by test goal prioritization.

Discussion.

There is room for discussion. For instance, the proper selection of the exam-
ined coverage criterion is important. On the one hand, All-States is a bad
choice because it is considered too weak and rarely used in industry whereas
MC/DC is actually recommended in the standard RTCA/DO-178B [RTC92].
On the other hand, the comparison of both is a good means to evaluate the
impact of the coverage criterion’s complexity.

The presented evaluations are focused on test suite execution. We mea-
sured the quality of a test suite by the necessary fault detection effort. Since
the sheer test suite size is also often used as an indicator of the test suite’s
quality, our research could be put into question. Our investigations showed,
however, that there are differences between both measures. Although our
experiments are not focused on the adequacy of the test suite size as a test
suite efficiency indicator, they show that the test suite size is no indicator for
the efficiency of a test suite in offline testing. This is quite obvious because
a change of test case order has an impact on the efficiency of a test suite but
almost no impact on its size in lines of code. For instance, Figure 6.4 shows
different test efficiencies for test suites that are all of similar size.

We used the numbers of executed test cases and function calls to measure
the test suite execution effort. An interesting result is that the two measured
values sometimes indicate different results. For instance, both values for
MACL and FEL in Figure 6.8 are diverse: The number of executed test cases
for MACL is lower than for FEL. For the number of function calls, it is the
other way round. Since the number of executed test cases is always connected
to the length of each test case, we consider the absolute number of function
calls a more appropriate means of test effort measurement. However, the
importance of both means depends on the application domain. For instance,
test case initialization is costly in embedded systems and, thus, a low number
of executed test cases can be more important then a low number of function
calls.

After introducing pairs of possible test goal prioritizations, we expected
that always at least one of the two alternatives results in an efficient test suite.
For Decision Coverage and masking MC/DC, however, we did not always rec-

207

CHAPTER 6. TEST SUITE EFFICIENCY

ommend one prioritization of each pair because they provided worse results
than random prioritization (e.g., HPARF/HPARL for SPS in Table 6.3).

Furthermore, our experiments were executed with our prototype imple-
mentation ParTeG. All the used aspects of test generation, e.g., the mini-
mal/maximal path distance are independent of the tool and can be trans-
ferred to others as long as the approach of transforming coverage criteria into
test goals is realized.

We used only one test model for the evaluation. Although other test mod-
els may indicate a different application recommendation, we showed that test
goal prioritization has an impact on the efficiency of the generated test suite.
With the results presented in Chapter 4, we identified some issues of the
presented test goal prioritizations: There may be semantic-preserving test
model transformations that have an influence on the test goal order. For
instance, the insertion of nodes into transitions as presented in Section 4.2.2
on page 126 can influence the distance measures for FEF and FEL. Further-
more, complex guard conditions can be expressed in a more complicated way
(e.g. ((a ∧ b) ∨ (a ∧ ¬b)) instead of a), which makes the single guards more
complex and increases their weight, e.g. for MACF. The same holds for the
positive assignment ratio when variables are negated. It would be interest-
ing to repeat the test effort measurement for simulated coverage criteria on
transformed test models.

Finally, the effort to sort the test goals took just a few milliseconds.
Therefore, the gain of test goal prioritization outweighs its costs.

Future Work.

First of all, we plan to evaluate the impact of test goal prioritization for
other test models. This will give more information about the validity of the
presented application recommendation.

Next, we plan to investigate other means to improve the generated test
suite. This can be achieved by, e.g., applying a new search strategy of the
test case generation algorithm. The algorithm can be influenced, e.g., by
already generated test cases and the correspondingly satisfied test goals. For
instance, instead of generating short or long test cases, the path search strat-
egy can be focused on satisfying unsatisfied test goals. Test suites for test
models with several transition loops or for sneak path analysis often contain
equal transition sequences that differ just in the last transition, which could
be easily integrated in other test cases. Thus, this test generation approach
would be especially useful for such scenarios.

Furthermore, we recognized a high standard deviation of the test suite ef-
ficiency resulting from the recommended prioritizations for masking MC/DC.

208

6.6. CONCLUSION, DISCUSSION, AND FUTURE WORK

We plan to reduce this deviation, e.g., by combining different prioritizations.
For instance, a second prioritization can be applied locally to all test goals
with the same priority of the first prioritization.

Finally, all presented prioritizations are applied to test goals. Especially
for control-flow-based coverage criteria, these goals can be satisfied by one of
many different value assignments. It would be interesting to investigate the
effects of prioritizing these value assignments, too.

209

CHAPTER 6. TEST SUITE EFFICIENCY

210

Chapter 7

Conclusions

The presented thesis is focused on test models and coverage criteria for au-
tomatic model-based test generation with UML state machines. We describe
improvements for the whole process of automatic model-based test genera-
tion: The first contribution is a new test generation algorithm that is a com-
bination of guided depth-first graph search and backward abstract interpreta-
tion. It allows to combine control-flow-based, data-flow-based, or transition-
based coverage criteria with boundary-based coverage criteria. The second
contribution are test model transformations as a means to influence the im-
pact of coverage criteria that are applied to test models. Most important,
we present the simulated coverage criteria satisfaction as a means to sat-
isfy a coverage criterion on the original test model by satisfying another
(e.g. weaker or unrelated) coverage criterion on the transformed test model.
We define coverage criteria combinations, define new coverage criteria, and
also show how to use model transformations to implement both. Together
with the first contribution, this allows to satisfy a combination of control-
flow-based, transition-based, data-flow-based, and boundary-based coverage
criteria. As the third contribution, we show how to combine test models to
decrease test costs, to support better coverage of requirements, and to pro-
vide more information for the model-based test generation algorithm. The
presented test generation algorithm can be applied to combined test models.
The fourth contribution is an investigation of the impact of the test goal or-
der on test suite efficiency. All contributions are focused on improvements for
automatic model-based test generation. We showed that they can be used in
conjunction to combine their advantages. The fifth and final contribution is
the corresponding prototype implementation and the experiences from gen-
erating test suites for the presented standard examples, the academic test
models, and the test model of the industrial cooperation.

211

CHAPTER 7. CONCLUSIONS

212

Bibliography

[AADO00] Abdurazik, Aynur; Ammann, Paul; Ding, Wei; Offutt,
Jeff: Evaluation of Three Specification-Based Testing Crite-
ria. In: IEEE International Conference on Engineering of
Complex Computer Systems, p. 179, 2000. doi:http://doi.
ieeecomputersociety.org/10.1109/ICECCS.2000.873943.

[AB00] Ammann, Paul; Black, Paul E.: Test Genera-
tion and Recognition with Formal Methods. cite-
seer.ist.psu.edu/ammann00test.html, 2000.

[AB05] Artho, Cyrille; Biere, Armin: Combined Static and Dynamic
Analysis. In: AIOOL’05: Proceedings of the 1st International
Workshop on Abstract Interpretation of Object-Oriented Lan-
guages, ENTCS. Elsevier Science, Paris, France, 2005.

[ABDPL02] Antoniol, Giuliano; Briand, Lionel C.; Di Penta, Massimiliano;
Labiche, Yvan: A Case Study Using the Round-Trip Strategy
for State-Based Class Testing. In: ISSRE’02: Proceedings of
the 13th International Symposium on Software Reliability En-
gineering, p. 269. IEEE Computer Society, Washington, DC,
USA, 2002. ISBN 0-8186-1763-3.

[ABL05] Andrews, James H.; Briand, Lionel C.; Labiche, Yvan: Is Mu-
tation an Appropriate Tool for Testing Experiments? In:
ICSE’05: Proceedings of the 27th International Conference
on Software Engineering, pp. 402–411. ACM, New York, NY,
USA, 2005. ISBN 1-59593-963-2. doi:http://doi.acm.org/10.
1145/1062455.1062530.

[ABLN06] Andrews, James H.; Briand, Lionel C.; Labiche, Yvan; Namin,
Akbar S.: Using Mutation Analysis for Assessing and Com-
paring Testing Coverage Criteria. In: IEEE Transactions on
Software Engineering, volume 32:pp. 608–624, 2006.

213

BIBLIOGRAPHY

[ABM98] Ammann, Paul E.; Black, Paul E.; Majurski, William: Us-
ing Model Checking to Generate Tests from Specifications.
In: ICFEM’98: Proceedings of the Second IEEE International
Conference on Formal Engineering Methods, p. 46. IEEE Com-
puter Society, Washington, DC, USA, 1998. ISBN 0-8186-9198-
0.

[Abr07] Abrial, Jean-Raymond: Formal Methods: Theory Becoming
Practice. In: Journal of Universal Computer Science, vol-
ume 13(5):pp. 619–628, 2007.

[AFGC03] Andrews, Anneliese Amschler; France, Robert B.; Ghosh,
Sudipto; Craig, Gerald: Test Adequacy Criteria for UML De-
sign Models. In: Software Testing, Verification Reliability, vol-
ume 13(2):pp. 95–127, 2003.

[AO00] Abdurazik, Aynur; Offutt, Jeff: Using UML Collaboration Di-
agrams for Static Checking and Test Generation. In: Evans,
Andy; Kent, Stuart; Selic, Bran, editors, UML 2000 - The
Unified Modeling Language. Advancing the Standard. Third In-
ternational Conference, York, UK, October 2000, Proceedings,
volume 1939, pp. 383–395. Springer, 2000.

[AO08] Ammann, Paul; Offutt, Jeff: Introduction to Software Testing.
Cambridge University Press, New York, NY, USA, 2008. ISBN
9780521880381.

[AOH03] Ammann, Paul; Offutt, Jeff; Huang, Hong: Coverage Criteria
for Logical Expressions. In: ISSRE’03: Proceedings of the 14th
International Symposium on Software Reliability Engineering,
p. 99. IEEE Computer Society, Washington, DC, USA, 2003.
ISBN 0-7695-2007-3.

[Arc08] Arcuri, Andrea: On the Automation of Fixing Software Bugs.
In: ICSE Companion’08: Companion of the 30th International
Conference on Software Engineering, pp. 1003–1006. ACM,
New York, NY, USA, 2008. ISBN 978-1-60558-079-1. doi:
http://doi.acm.org/10.1145/1370175.1370223.

[AS05] Aichernig, Bernhard K.; Salas, Percy Antonio Pari: Test
Case Generation by OCL Mutation and Constraint Solving.
In: International Conference on Quality Software, pp. 64–71,

214

BIBLIOGRAPHY

2005. ISSN 1550-6002. doi:http://doi.ieeecomputersociety.org/
10.1109/QSIC.2005.63.

[ATF09] Afzal, Wasif; Torkar, Richard; Feldt, Robert: A System-
atic Review of Search-based Testing for Non-functional Sys-
tem Properties. In: Information and Software Technology,
volume 51(6):pp. 957–976, 2009. ISSN 0950-5849. doi:http:
//dx.doi.org/10.1016/j.infsof.2008.12.005.

[ATP+07] Alekseev, Sergej; Tollkühn, P.; Palaga, P.; Dai, Zhen R.; Hoff-
mann, A.; Rennoch, Axel; Schieferdecker, Ina: Reuse of Classi-
fication Tree Models for Complex Software Projects. In: Con-
ference on Quality Engineering in Software Technology (CON-
QUEST). 2007.

[AUW08] Aydal, Emine G.; Utting, Mark; Woodcock, Jim: A Compari-
son of State-Based Modelling Tools for Model Validation. In:
TOOLS (46), pp. 278–296. 2008.

[Bar03] Baral, Chitta: Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003. ISBN 9780521818025.

[BB00] Basanieri, Francesca; Bertolino, Antonia: A Practical Ap-
proach to UML-based Derivation of Integration Tests. In: 4th
International Software Quality Week Europe. November 2000.

[BBH02] Benattou, Mohammed; Bruel, Jean-Michel; Hameurlain,
Nabil: Generating Test Data from OCL Specification. In:
ECOOP’2002 - Workshop on Integration and Transformation
of UML models (WITUML’02). 2002.

[BBM] Basanieri, Francesca; Bertolino, Antonia; Marchetti, Eda:
CoWTeSt: A Cost Weighted Test Strategy. cite-
seer.ist.psu.edu/basanieri01cowtest.html.

[BBM+01] Basanieri, Francesca; Bertolino, Antonia; Marchetti, Eda; Ri-
bolini, Alberto; Lombardi, Gaetano; Nucera, Giovanni: An Au-
tomated Test Strategy Based on UML Diagrams. In: Proceed-
ing of the Ericsson Rational User Conference, October 2001.

[BBvB+01] Beck, Kent; Beedle, Mike; van Bennekum, Arie; Cockburn, Al-
istair; Cunningham, Ward; Fowler, Martin; Grenning, James;

215

BIBLIOGRAPHY

Highsmith, Jim; Hunt, Andrew; Jeffries, Ron; Kern, Jon; Mar-
ick, Brian; Martin, Robert C.; Mellor, Steve; Schwaber, Ken;
Sutherland, Jeff; Thomas, Dave: Manifesto for agile software
development. http://www.agilemanifesto.org/, 2001.

[BDAR97] Bourhfir, C.; Dssouli, R.; Aboulhamid, E.; Rico, N.: Auto-
matic Executable Test Case Generation for Extended Finite
State Machine Protocols. In: International Workshop on Test-
ing Communicating Systems (IWTCS’97), pp. 75–90. 1997.

[BDG+07] Baker, Paul; Dai, Zhen Ru; Grabowski, Jens; Haugen, Øystein;
Schieferdecker, Ina; Williams, Clay: Model-Driven Testing: Us-
ing the UML Testing Profile. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007. ISBN 3540725628.

[BDL05] Basin, David; Doser, Jürgen; Lodderstedt, Torsten: Model
Driven Security. In: Broy, Manfred; Grünbauer, Johannes;
Harel, David; Hoare, Tony, editors, Engineering Theories of
Software Intensive Systems, pp. 353–398. Springer, 2005.

[BDOS08] Barrett, Clark; Deters, Morgan; Oliveras, Albert; Stump,
Aaron: Design and results of the 3rd annual satisfiability mod-
ulo theories competition (SMT-COMP 2007). In: International
Journal on Artificial Intelligence Tools, volume 17(4):pp. 569–
606, 2008.

[Bec00] Beck, Kent: Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000. ISBN 978-0201616415.

[Bec02] Beck, Kent: Test Driven Development: By Example. Addison-
Wesley Professional, November 2002. ISBN 0321146530.

[Bei90] Beizer, Boris: Software Testing Techniques. John Wiley &
Sons, Inc., New York, NY, USA, 1990. ISBN 0442245920.

[Bel91] Bell Labs: SPIN Model Checker. http://www.spinroot.com/,
1991.

[BEN04] Berkelaar, Michel; Eikland, Kjell; Notebaert, Peter: lp_solve
5.1. http://lpsolve.sourceforge.net/5.5/, 2004.

[Ber00] Bertolino, A.: Knowledge Area Description of Software Testing
SWEBOK. http://www.swebok.org, 2000.

216

BIBLIOGRAPHY

[BFG00] Bozga, Marius; Fernandez, Jean-Claude; Ghirvu, Lucian: Us-
ing Static Analysis to Improve Automatic Test Generation. In:
TACAS’00: Proceedings of the 6th International Conference
on Tools and Algorithms for Construction and Analysis of Sys-
tems, pp. 235–250. Springer-Verlag, London, UK, 2000. ISBN
3-540-67282-6.

[BFJT02] Baudry, Benoit; Fleurey, Franck; Jezequel, Jean-Marc; Traon,
Yves Le: Automatic Test Cases Optimization Using a Bacteri-
ological Adaptation Model: Application to .NET Components.
In: Proceedings of ASE’02: Automated Software Engineering,
Edinburgh. 2002.

[BFPT06] Badban, Bahareh; Fränzle, Martin; Peleska, Jan; Teige,
Tino: Test automation for hybrid systems. In: Proceed-
ings of the 3rd international workshop on Software quality
assurance, SOQUA ’06, pp. 14–21. ACM, New York, NY,
USA, 2006. ISBN 1-59593-584-3. doi:http://doi.acm.org/10.
1145/1188895.1188902. URL http://doi.acm.org/10.1145/
1188895.1188902.

[BFS+06] Brottier, Erwan; Fleurey, Franck; Steel, Jim; Baudry, Benoit;
Traon, Yves Le: Metamodel-based Test Generation for Model
Transformations: an Algorithm and a Tool. In: ISSRE’06:
Proceedings of the 17th International Symposium on Software
Reliability Engineering, pp. 85–94. IEEE Computer Society,
Washington, DC, USA, 2006. ISBN 0-7695-2684-5. doi:http:
//dx.doi.org/10.1109/ISSRE.2006.27.

[BGM91] Bernot, Gilles; Gaudel, Marie Claude; Marre, Bruno: Software
Testing Based on Formal Specifications: A Theory and a Tool.
In: Software Engineering Journal, volume 6(6):pp. 387–405,
1991. ISSN 0268-6961.

[BGN+03] Barnett, Michael; Grieskamp, Wolfgang; Nachmanson, Lev;
Schulte, Wolfram; Tillmann, Nikolai; Veanes, Margus: To-
wards a Tool Environment for Model-Based Testing with
AsmL. In: Proceedings of Formal Approaches to Testing of
Software (FATES), pp. 252–266. 2003.

[BHvMW09] Biere, Armin; Heule, Marijn; van Maaren, Hans; Walsh, Toby,
editors: Handbook of Satisfiability, volume 185 of Frontiers in

217

http://doi.acm.org/10.1145/1188895.1188902
http://doi.acm.org/10.1145/1188895.1188902

BIBLIOGRAPHY

Artificial Intelligence and Applications. IOS Press, 2009. ISBN
978-1-58603-929-5.

[Bin99] Binder, Robert V.: Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999. ISBN 0-201-80938-9.

[BJK05] Broy, Manfred; Jonsson, Bengt; Katoen, Joost P.: Model-
Based Testing of Reactive Systems: Advanced Lectures (Lecture
Notes in Computer Science). Springer, August 2005. ISBN
3540262784. doi:http://dx.doi.org/http://dx.doi.org/10.1007/
b137241.

[BLC05] Briand, Lionel C.; Labiche, Yvan; Cui, Jim: Automated Sup-
port for Deriving Test Requirements from UML Statecharts.
In: Software and Systems Modeling, volume V4(4):pp. 399–423,
November 2005. doi:10.1007/s10270-005-0090-5.

[BLL05] Briand, Lionel C.; Labiche, Yvan; Lin, Qing: Improving Stat-
echart Testing Criteria Using Data Flow Information. In: IS-
SRE’05: Proceedings of the 16th IEEE International Sympo-
sium on Software Reliability Engineering, pp. 95–104. IEEE
Computer Society, Washington, DC, USA, 2005. ISBN 0-7695-
2482-6. doi:http://dx.doi.org/10.1109/ISSRE.2005.24.

[BM83] Bird, David L; Munoz, Carlos Urias: Automatic Generation of
Random Self-Checking Test Cases. In: IBM Systems Journal,
volume 22(3):pp. 229–245, 1983. ISSN 0018-8670.

[BMM05] Bertolino, Antonia; Marchetti, Eda; Muccini, Henry: Introduc-
ing a Reasonably Complete and Coherent Approach for Model-
based Testing. In: Electronic Notes in Theoretical Computer
Science, volume 116:pp. 85–97, 2005.

[Bow88] Bowser, John H.: Reference Manual for Ada Mutant Opera-
tors. Technical Report GIT-SERC-88/02, Georgia Institute of
Technology, 1988.

[BOY00] Black, Paul E.; Okun, Vadim; Yesha, Yaacov: Mutation Op-
erators for Specifications. In: ASE’00: Proceedings of the 15th
IEEE International Conference on Automated Software Engi-
neering, p. 81. IEEE Computer Society, Washington, DC, USA,
2000. ISBN 0-7695-0710-7.

218

BIBLIOGRAPHY

[BRJ98] Booch, Grady; Rumbaugh, Jim; Jacobson, Ivar: The Unified
Modeling Language User Guide. Addison-Wesley, 1998. ISBN
0-201-57168-4.

[Bro87] Brooks, Frederick P., Jr.: No Silver Bullet: Essence and Ac-
cidents of Software Engineering. In: Computer Journal, vol-
ume 20(4):pp. 10–19, 1987.

[BSME08] Bauer, Thomas; Stallbaum, Heiko; Metzger, Andreas; Es-
chbach, Robert: Risikobasierte Ableitung und Priorisierung
von Testfällen für den modellbasierten Systemtest. In: Her-
rmann, Korbinian; Brügge, Bernd, editors, Software Engineer-
ing, volume 121 of Lecture Notes in Informatics, pp. 99–111.
GI, 2008. ISBN 978-3-88579-215-4.

[BSST09] Barrett, Clark W.; Sebastiani, Roberto; Seshia, Sanjit A.;
Tinelli, Cesare: Satisfiability modulo theories. In: Biere et al.
[BHvMW09], pp. 825–885.

[BSV08] Budnik, Christof J.; Subramanyan, Rajesh; Vieira, Marlon:
Peer-to-Peer Comparison of Model-Based Test Tools. In:
Hegering, Heinz-Gerd; Lehmann, Axel; Ohlbach, Hans Jürgen;
Scheideler, Christian, editors, GI Jahrestagung (1), volume 133
of Lecture Notes in Informatics, pp. 223–226. GI, 2008. ISBN
978-3-88579-227-7.

[Bur01] Burton, Simon: Automated Generation of High Integrity Tests
from Graphical Specifications. Ph.D. thesis, University of York,
2001.

[CC92] Cousot, Patrick; Cousot, Radhia: Comparing the Galois Con-
nection and Widening/Narrowing Approaches to Abstract In-
terpretation, invited paper. In: Bruynooghe, M.; Wirsing,
M., editors, Proceedings of the International Workshop Pro-
gramming Language Implementation and Logic Programming
(PLILP ’92), Leuven, Belgium, 13–17 August 1992, Lecture
Notes in Computer Science 631, pp. 269–295. Springer-Verlag,
Berlin, Germany, 1992.

[CC04] Cousot, Patrick; Cousot, Radhia: Basic Concepts of Abstract
Interpretation, pp. 359–366. Kluwer Academic Publishers,
2004.

219

BIBLIOGRAPHY

[CCF+03] Cousot, Patrick; Cousot, Radhia; Feret, Jérôme; Mauborgne,
Laurent; Miné, Antoine; Rival, Xavier: ASTRÉE Static Ana-
lyzer. http://www.astree.ens.fr/, 2003.

[CCL98] Canfora, Gerardo; Cimitile, Aniello; Lucia, Andrea De: Condi-
tioned Program Slicing. In: Information & Software Technol-
ogy, volume 40(11-12):pp. 595–607, 1998.

[Cer01] Certification Authorities Software Team: Position Paper-6:
Rationale for Accepting Masking MC/DC in Certification
Projects, 2001.

[CGP00] Clarke, Edmund M.; Grumberg, Orna; Peled, Doron A.: Model
Checking. MIT Press, 2000. ISBN 0-262-03270-8.

[CH03] Czarnecki, Krzysztof; Helsen, Simon: Classification of Model
Transformation Approaches. In: OOPSLA 2003 Workshop on
Generative Techniques in the context of Model Driven Archi-
tecture. October 2003.

[Chi01] Chilenski, John Joseph: MCDC Forms (Unique-Cause, Mask-
ing) versus Error Sensitivity. In: white paper submitted to
NASA Langley Research Center under contract NAS1-20341.
January 2001.

[Cho95] Chow, Tsun S.: Testing Software Design Modeled by Finite-
State Machines. In: Conformance testing methodologies and
architectures for OSI protocols, pp. 391–400, 1995.

[CHR82] Clarke, Lori A.; Hassell, Johnette; Richardson, Debra J.:
A Close Look at Domain Testing. In: IEEE Transac-
tions on Software Engineering, volume 8(4):pp. 380–390, 1982.
ISSN 0098-5589. doi:http://doi.ieeecomputersociety.org/10.
1109/TSE.1982.235572.

[CIvdPS05] Calame, Jens R.; Ioustinova, Natalia; van de Pol, Jaco;
Sidorova, Natalia: Data Abstraction and Constraint Solving for
Conformance Testing. In: APSEC ’05: Proceedings of the 12th
Asia-Pacific Software Engineering Conference, pp. 541–548.
IEEE Computer Society, Washington, DC, USA, 2005. ISBN
0-7695-2465-6. doi:http://dx.doi.org/10.1109/APSEC.2005.57.

220

BIBLIOGRAPHY

[CK93] Cheng, Kwang Ting; Krishnakumar, A. S.: Automatic Func-
tional Test Generation Using the Extended Finite State Ma-
chine Model. In: DAC’93: Proceedings of the 30th Inter-
national Conference on Design Automation, pp. 86–91. ACM
Press, New York, NY, USA, 1993. ISBN 0-89791-577-1. doi:
http://doi.acm.org/10.1145/157485.164585.

[CKM+02] Cook, Steve; Kleppe, Anneke; Mitchell, Richard; Rumpe, Bern-
hard; Warmer, Jos; Wills, Alan: The Amsterdam Manifesto on
OCL. In: Object Modeling with the OCL, The Rationale behind
the Object Constraint Language, pp. 115–149. Springer-Verlag,
London, UK, 2002. ISBN 3-540-43169-1.

[CLOM06] Ciupa, Ilinca; Leitner, Andreas; Oriol, Manuel; Meyer,
Bertrand: Object Distance and Its Application to Adap-
tive Random Testing of Object-Oriented Programs. In:
RT’06: Proceedings of the 1st International Workshop on Ran-
dom Testing, pp. 55–63. ACM Press, New York, NY, USA,
2006. ISBN 1-59593-457-X. doi:http://doi.acm.org/10.1145/
1145735.1145744.

[CLOM07] Ciupa, Ilinca; Leitner, Andreas; Oriol, Manuel; Meyer,
Bertrand: Experimental Assessment of Random Testing for
Object-Oriented Software. In: ISSTA’07: Proceedings of the
International Symposium on Software Testing and Analysis
2007, pp. 84–94. 2007.

[CM94] Chilenski, John Joseph; Miller, Steven P.: Applicability of
Modified Condition/Decision Coverage to Software Testing. In:
Software Engineering Journal, Issue, volume 9, pp. 193–200.
September 1994.

[CN00] Cavalcanti, Ana; Naumann, David A.: A Weakest Pre-
condition Semantics for Refinement of Object-Oriented Pro-
grams. In: IEEE Transactions on Software Engineering, vol-
ume 26(8):pp. 713–728, 2000. ISSN 0098-5589. doi:http:
//doi.ieeecomputersociety.org/10.1109/32.879810.

[Con] Conformiq: Qtronic. http://www.conformiq.com/.

[Con09] Consortium, OW2: Sat4j 2.1. http://www.sat4j.org/, 2009.

221

BIBLIOGRAPHY

[Cou00] Cousot, Patrick: Abstract Interpretation Based Program Test-
ing. In: In Proc. SSGRR 2000 Computer & eBusiness Interna-
tional Conference, Compact disk paper 248 and electronic pro-
ceedings http://www.ssgrr.it/en/ ssgrr2000/proceedings.htm,
2000. Scuola Superiore G. Reiss Romoli. 2000.

[Cou03] Cousot, Patrick: Automatic Verification by Abstract Interpre-
tation. In: VMCAI’03: Proceedings of the 4th International
Conference on Verification, Model Checking, and Abstract In-
terpretation, pp. 20–24. Springer-Verlag, London, UK, 2003.
ISBN 3-540-00348-7.

[CPL+08] Ciupa, Ilinca; Pretschner, Alexander; Leitner, Andreas; Oriol,
Manuel; Meyer, Bertrand: On the Predictability of Random
Tests for Object-Oriented Software. In: ICST’08: Proceedings
of the First International Conference on Software Testing, Ver-
ification and Validation. April 2008.

[CPRZ85] Clarke, Lori A.; Podgurski, Andy; Richardson, Debra J.; Zeil,
Steven J.: A Comparison of Data Flow Path Selection Criteria.
In: ICSE’85: Proceedings of the 8th International Conference
on Software Engineering, pp. 244–251. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1985. ISBN 0-8186-0620-7.

[CS05] Csallner, Christoph; Smaragdakis, Yannis: Check ’n’ Crash:
Combining Static Checking and Testing. In: ICSE’05: Pro-
ceedings of the 27th International Conference on Software En-
gineering, pp. 422–431. ACM, New York, NY, USA, 2005.
ISBN 1-59593-963-2. doi:http://doi.acm.org/10.1145/1062455.
1062533.

[CSE96] Callahan, John; Schneider, Francis; Easterbrook, Steve: Auto-
mated Software Testing Using Model-Checking. In: Proceed-
ings 1996 SPIN Workshop. August 1996. Also WVU Technical
Report NASA-IVV-96-022.

[CTF02] Chevalley, Philippe; Thevenod-Fosse, Pascale: A Mutation
Analysis Tool for Java Programs. In: STTT: Interna-
tional Journal on Software Tools for Technology Transfer, vol-
ume 5:pp. 90–103, 2002.

[DDB+05] Dai, Zhen Ru; Deussen, Peter H.; Busch, Maik; Lacmene, Lau-
rette Pianta; Ngwangwen, Titus; Herrmann, Jens; Schmidt,

222

BIBLIOGRAPHY

Michael: Automatic Test Data Generation for TTCN-3 using
CTE. In: International Conference Software and Systems En-
gineering and their Applications (ICSSEA). December 2005.

[DEFT09] Drechsler, Rolf; Eggersglüß, Stephan; Fey, Görschwin; Tille,
Daniel: Test Pattern Generation using Boolean Proof Engines.
Springer, 2009. ISBN 978-90-481-2359-9.

[DF93] Dick, Jeremy; Faivre, Alain: Automating the Generation and
Sequencing of Test Cases from Model-Based Specifications. In:
FME’93: Proceedings of the First International Symposium of
Formal Methods Europe on Industrial-Strength Formal Meth-
ods, pp. 268–284. Springer-Verlag, London, UK, 1993. ISBN
3-540-56662-7.

[Dij76] Dijkstra, Edsger W.: A Discipline of Programming. Prentice-
Hall, 1976.

[dL01] de Lucia, Andrea: Program Slicing: Methods and Applications.
In: First IEEE International Workshop on Source Code Anal-
ysis and Manipulation, pp. 142–149. IEEE Computer Society
Press, Los Alamitos, California, USA, November 2001.

[DLS78] DeMillo, Richard A.; Lipton, Richard J.; Sayward, Fred G.:
Hints on Test Data Selection: Help for the Practicing Pro-
grammer. In: Computer Journal, volume 11(4):pp. 34–41,
1978. ISSN 0018-9162. doi:http://dx.doi.org/10.1109/C-M.
1978.218136.

[DM96] Delamaro, Márcio E.; Maldonado, José C.: Proteum - A Tool
for the Assessment of Test Adequacy for C Programs. In:
PCS96: Conference on Performability in Computing Systems,
pp. 79 – 95. July 1996.

[DV09] Dahl, Joachim; Vandenberghe, Lieven: CVXOPT 1.1.1.
http://abel.ee.ucla.edu/cvxopt/, 2009.

[DVB+09] Denecker, Marc; Vennekens, Joost; Bond, Stephen; Gebser,
Martin; Truszczyński, Miroslaw: The Second Answer Set Pro-
gramming Competition. In: Erdem, E.; Lin, F.; Schaub,
T., editors, Proceedings of the Tenth International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’09), volume 5753 of Lecture Notes in Artificial Intelli-
gence, pp. 637–654. Springer-Verlag, 2009.

223

BIBLIOGRAPHY

[DW09] Dziobek, Christian; Weiland, Jens: Variantenmodellierung und
-konfiguration eingebetteter automotive Software mit Simulink.
In: MBEES’09: Model-Based Development of Embedded Sys-
tems. April 2009.

[Ecl05] Eclipse: Eclipse Object Constraint Language (OCL) Plu-
gin. http://www.eclipse.org/modeling/mdt/?project=ocl#ocl,
2005.

[Ecl07a] Eclipse: Eclipse Modeling Framework Project (EMF).
http://www.eclipse.org/emf/, 2007.

[Ecl07b] Eclipse: Model Development Tools (MDT) - UML2.
www.eclipse.org/uml2/, 2007.

[Ecl09] Eclipse: Atlas Transformation Language (ATL) 3.0.0.
http://www.eclipse.org/m2m/atl/, 2009.

[EFYvB02] El-Fakih, Khaled; Yevtushenko, Nina; von Bochmann, Gregor:
FSM-based Re-Testing Methods. In: TestCom’02: Proceedings
of the IFIP 14th International Conference on Testing Commu-
nicating Systems XIV, pp. 373–390. Kluwer, B.V., Deventer,
The Netherlands, 2002. ISBN 0-7923-7695-1.

[EG06] Erich Gamma, Kent Beck: JUnit 4.1 - A Testing Framework
for Java. http://www.junit.org, 2006.

[Elm73] Elmendorf, W. R.: Cause-Effect Graphs in Functional Testing,
1973. doi:TR-00.2487.

[EM04] Engler, Dawson; Musuvathi, Madanlal: Static Analysis
Versus Software Model Checking for Bug Finding. cite-
seer.ist.psu.edu/engler04static.html, 2004.

[EMR02] Elbaum, Sebastian; Malishevsky, Alexey; Rothermel, Gregg:
Test Case Prioritization: A Family of Empirical Studies. In:
IEEE Transactions on Software Engineering, volume 28:pp.
159–182, 2002.

[Ern03] Ernst, Michael D.: Static and dynamic analysis: Synergy and
duality. In: WODA’03: ICSE Workshop on Dynamic Analysis,
pp. 24–27. Portland, Oregon, USA, May 9, 2003.

[Eve09] Eve Software Utilities: Emma 1.0.
http://www.eveutilities.com/products/emma, 2009.

224

BIBLIOGRAPHY

[EW00] Eshuis, Rik; Wieringa, Roel: Requirements-Level Semantics
for UML Statecharts. In: Fourth International Conference
on Formal Methods for Open Object-based Distributed Systems,
pp. 121–140. Kluwer Academic Publishers, Norwell, MA, USA,
2000. ISBN 0-7923-7923-3.

[Fav] Favre, Jean-Marie: Meta-Model and Model Co-
evolution within the 3D Software Space. cite-
seer.ist.psu.edu/favre03metamodel.html.

[FDMM94] Fabbri, S.C. Pinto Ferraz; Delamaro, Marcio Eduardo; Maldon-
ado, Jose Carlos; Masiero, P.C.: Mutation Analysis Testing for
Finite State Machines. In: Proceedings of the 5th International
Symposium on Software Reliability Engineering. 1994.

[FHH+01] Fox, Chris; Harman, Mark; Hierons, Rob; Ph, Ub; Danicic, Se-
bastian: Backward Conditioning: A new Program Specialisa-
tion Technique and its Application to Program Comprehension.
citeseer.ist.psu.edu/fox01backward.html, 2001.

[Fin00] Finger, Frank: Design and Implementation of a Modular OCL
Compiler. Diploma Thesis, Dresden University of Technology,
Germany, 2000.

[FS07] Friske, Mario; Schlingloff, Holger: Improving Test Coverage for
UML State Machines Using Transition Instrumentation. In:
Saglietti, Francesca; Oster, Norbert, editors, SAFECOMP’07:
The International Conference on Computer Safety, Reliability
and Security, volume 4680 of Lecture Notes in Computer Sci-
ence, pp. 301–314. Springer, 2007. ISBN 978-3-540-75100-7.

[FSW08] Friske, Mario; Schlingloff, Holger; Weißleder, Stephan: Compo-
sition of Model-based Test Coverage Criteria. In: MBEES’08:
Model-Based Development of Embedded Systems. 2008.

[FW88] Frankl, Phyllis G.; Weyuker, Elaine J.: An Applicable Family
of Data Flow Testing Criteria. In: IEEE Transactions on Soft-
ware Engineering, volume 14(10):pp. 1483–1498, 1988. ISSN
0098-5589. doi:http://dx.doi.org/10.1109/32.6194.

[FW08a] Fraser, Gordon; Wotawa, Franz: Ordering Coverage Goals in
Model Checker Based Testing. In: ICSTW’08: Proceedings of
the 2008 IEEE International Conference on Software Testing

225

BIBLIOGRAPHY

Verification and Validation Workshop, pp. 31–40, 2008. doi:
http://doi.ieeecomputersociety.org/10.1109/ICSTW.2008.31.

[FW08b] Fraser, Gordon; Wotawa, Franz: Using Model-Checkers to
Generate and Analyze Property Relevant Test-Cases. In: Soft-
ware Quality Journal, 16 (2), pp. 161–183, 2008.

[Gel08] Gelfond, Michael: Answer Sets. In: Lifschitz, Vladimir; van
Hermelen, Frank; Porter, Bruce, editors, Handbook of Knowl-
edge Representation, chapter 7. Elsevier, 2008.

[GG93] Grochtmann, Matthias; Grimm, Klaus: Classification Trees for
Partition Testing. In: STVR: Software Testing, Verification
and Reliability, volume 3(2):pp. 63–82, 1993.

[GH99] Gargantini, Angelo; Heitmeyer, Constance: Using Model
Checking to Generate Tests from Requirements Specifica-
tions. In: ACM SIGSOFT Software Engineering Notes, vol-
ume 24(6):pp. 146–162, 1999. ISSN 0163-5948. doi:http:
//doi.acm.org/10.1145/318774.318939.

[Gim85] Gimpel Software: PC-Lint for C/C++.
http://www.gimpel.com/, 1985.

[GJK+09] Gent, Ian; Jefferson, Chris; Kotthoff, Lars; Miguel, Ian; Moore,
Neil; Nightingale, Peter; Petrie, Karen; Rendl, Andreas: MIN-
ION 0.9. http://minion.sourceforge.net/, 2009.

[GKPR08] Grönninger, Hans; Krahn, Holger; Pinkernell, Claas; Rumpe,
Bernhard: Modeling Variants of Automotive Systems using
Views. In: Modellierung08. Humboldt-University of Berlin,
2008.

[GLRW04] Geppert, Birgit; Li, J. Jenny; Rößler, Frank; Weiss, David M.:
Towards Generating Acceptance Tests for Product Lines. In:
ICSR: International Conference on Software Reuse: Methods,
Techniques and Tools, pp. 35–48. 2004.

[GMS98] Gupta, Neelam; Mathur, Aditya P.; Soffa, Mary Lou: Au-
tomated Test Data Generation Using an Iterative Relaxation
Method. In: SIGSOFT’98/FSE-6: Proceedings of the 6th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 231–244. ACM, New York, NY, USA,

226

BIBLIOGRAPHY

1998. ISBN 1-58113-108-9. doi:http://doi.acm.org/10.1145/
288195.288321.

[GMS99] Gupta, Neelam; Mathur, Aditya P.; Soffa, Mary Lou: UNA
Based Iterative Test Data Generation and its Evaluation. In:
ASE’99: Proceedings of the 14th IEEE International Confer-
ence on Automated Software Engineering, p. 224. IEEE Com-
puter Society, Washington, DC, USA, 1999. ISBN 0-7695-0415-
9.

[GNRS09] Götz, Helmut; Nickolaus, Markus; Roßner, Thomas;
Salomon, Knut: iX-Studie: Modellbasiertes Testen.
http://www.heise.de/kiosk/special/ixstudie/09/01/, 2009.

[Gom04] Gomaa, Hassan: Designing Software Product Lines with
UML: From Use Cases to Pattern-based Software Architectures.
Addison-Wesley, 2004. ISBN 978-0201775952.

[Gri81] Gries, David: The science of programming. Springer, 1981.

[Gut99] Gutjahr, Walter J.: Partition Testing vs. Random Testing: The
Influence of Uncertainty. In: IEEE Transactions on Software
Engineering, volume 25(5):pp. 661–674, 1999. ISSN 0098-5589.
doi:http://dx.doi.org/10.1109/32.815325.

[GW85] Girgis, Moheb R.; Woodward, Martin R.: An Integrated Sys-
tem for Program Testing Using Weak Mutation and Data Flow
Analysis. In: Proceedings of the 8th International Conference
on Software Engineering. 1985.

[GWZ94] Goldberg, Allen; Wang, Tie-Chen; Zimmermann, David: Ap-
plications of Feasible Path Analysis to Program Testing. In:
ISSTA’94: International Symposium on Software Testing and
Analysis, pp. 80–94. 1994.

[HAA+06] Holt, Nina E.; Anda, Bente C. D.; Asskildt, Knut; Briand, Li-
onel C.; Endresen, Jan; Frøystein, Sverre: Experiences with
Precise State Modeling in an Industrial Safety Critical System.
In: CSDUML’06: Critical Systems Development Using Model-
ing Languages, pp. 68–77. Springer, 2006. ISBN 0809-1021.

[Ham77] Hamlet, Richard G.: Testing Programs with the Aid of a
Compiler. In: IEEE Transactions on Software Engineer-
ing, volume 3(4):pp. 279–290, 1977. ISSN 0098-5589. doi:
http://dx.doi.org/10.1109/TSE.1977.231145.

227

BIBLIOGRAPHY

[Har87] Harel, David: Statecharts: A Visual Formalism for Com-
plex Systems. In: Science of Computer Programming, vol-
ume 8(3):pp. 231–274, 1987. ISSN 0167-6423. doi:http://dx.
doi.org/10.1016/0167-6423(87)90035-9.

[HCH+99] Hamie, Ali; Civello, Franco; Howse, John; Kent, Stuart J. H.;
Mitchell, Richard: Reflections on the Object Constraint Lan-
guage. In: Muller, Pierre-Alain; Bézivin, Jean, editors, Pro-
ceedings of the International Conference on the Unified Mod-
elling Language (UML) 1998, Mulhouse, France, 1618, pp. 162–
172. Springer-Verlag, 1999.

[HD95] Harman, Mark; Danicic, Sebastian: Using Program Slicing to
Simplify Testing. In: Software Testing, Verification & Reliabil-
ity, volume 5(3):pp. 143–162, 1995.

[HFH+02] Harman, Mark; Fox, Chris; Hierons, Rob; Hu, Lin; Danicic, Se-
bastian; Wegener, Joachim: VADA: A Transformation-Based
System for Variable Dependence Analysis. In: IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation,
p. 55, 2002. doi:http://doi.ieeecomputersociety.org/10.1109/
SCAM.2002.1134105.

[HG97] Harel, David; Gery, Eran: Executable Object Modeling with
Statecharts. In: IEEE Computer Journal, volume 30:pp. 31–42,
1997.

[HGK06] Hammer, C.; Grimme, M.; Krinke, J.: Dynamic path condi-
tions in dependence graphs. In: Workshop on Partial Evalua-
tian and Program Manipulation. 2006.

[HHF+02] Hierons, Robert M.; Harman, Mark; Fox, Chris; Ouarbya, Lah-
cen; Daoudi, Mohammed: Conditioned Slicing Supports Parti-
tion Testing. In: Software Testing, Verification and Reliability.
2002.

[HHH+04] Harman, Mark; Hu, Lin; Hierons, Rob; Wegener, Joachim;
Sthamer, Harmen; Baresel, André; Roper, Marc: Testability
Transformation. In: IEEE Transactions on Software Engi-
neering, volume 30(1):pp. 3–16, 2004. ISSN 0098-5589. doi:
http://dx.doi.org/10.1109/TSE.2004.1265732.

228

BIBLIOGRAPHY

[HHL+07] Harman, Mark; Hassoun, Youssef; Lakhotia, Kiran; McMinn,
Phil; Wegener, Joachim: The Impact of Input Domain Re-
duction on Search-Based Test Data Generation. In: ESEC-
FSE’07: Proceedings of the the 6th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT
symposium on The Foundations of Software Engineering, pp.
155–164. ACM, New York, NY, USA, 2007. ISBN 978-1-59593-
811-4. doi:http://doi.acm.org/10.1145/1287624.1287647.

[HHS03] Hierons, Robert M.; Harman, Mark; Singh, Harbhajan: Au-
tomatically Generating Information from a Z Specification to
Support the Classification Tree Method. In: Bert, Didier;
Bowen, Jonathan P.; King, Steve; Waldén, Marina A., edi-
tors, ZB’03: Formal Specification and Development in Z and
B, Third International Conference of B and Z Users, Turku,
Finland, June 4-6, 2003, Proceedings, volume 2651 of Lecture
Notes in Computer Science, pp. 388–407. Springer, 2003. ISBN
3-540-40253-5.

[HLL94] Horgan, Joseph R.; London, Saul; Lyu, Michael R.: Achieving
Software Quality with Testing Coverage Measures. In: Com-
puter Journal, volume 27(9):pp. 60–69, 1994. ISSN 0018-9162.
doi:http://dx.doi.org/10.1109/2.312032.

[HLSC01] Hong, Hyoung; Lee, Insup; Sokolsky, Oleg; Cha, Sung: Auto-
matic Test Generation from Statecharts Using Model Check-
ing. In: In Proceedings of FATES’01 Workshop on Formal
Approaches to Testing of Software, volume NS-01-4 of BRICS
Notes Series. 2001.

[HM90] Horgan, Joseph R.; Mathur, Aditya P.: Weak Mutation is
Probably Strong Mutation. Technical Report SERC-TR-83-
P, Software Engineering Research Center, Purdue University,
1990.

[HM07] Harman, Mark; McMinn, Phil: A Theoretical & Empirical
Analysis of Evolutionary Testing and Hill Climbing for Struc-
tural Test Data Generation. In: ISSTA’07: Proceedings of the
2007 International Symposium on Software Testing and Anal-
ysis, pp. 73–83. ACM, New York, NY, USA, 2007. ISBN
978-1-59593-734-6. doi:http://doi.acm.org/10.1145/1273463.
1273475.

229

BIBLIOGRAPHY

[HN96] Harel, David; Naamad, Amnon: The STATEMATE Semantics
of Statecharts. In: ACM Transactions on Software Engineering
and Methodology, volume 5(4):pp. 293–333, 1996. ISSN 1049-
331X. doi:http://doi.acm.org/10.1145/235321.235322.

[HN04] Hartman, Alan; Nagin, Kenneth: The AGEDIS Tools for
Model Based Testing. In: ACM SIGSOFT Software Engineer-
ing Notes, volume 29(4):pp. 129–132, 2004. ISSN 0163-5948.
doi:http://doi.acm.org/10.1145/1013886.1007529.

[Hon01] Hong, Hyoung S. and Lee, Insup: Automatic Test Generation
from Specifications for Control-flow and Data-flow Coverage
Criteria. In: Monterey Workshop, California: Naval Postgrad-
uate School, pp. 230–246. June 2001.

[Hop47] Hopper, Grace Murray: The First Computer
Bug was a Moth. http://www-history.mcs.st-
andrews.ac.uk/Biographies/Hopper.html, 1947.

[How76] Howden, William E.: Reliability of the Path Analysis Test-
ing Strategy. In: IEEE Transactions on Software Engineering,
volume 2(3):pp. 208–214, September 1976.

[How82] Howden, William E.: Weak Mutation Testing and Complete-
ness of Test Sets. In: IEEE Transactions on Software Engi-
neering, volume 8(4):pp. 371–379, 1982.

[HT90] Hamlet, Dick; Taylor, Ross: Partition Testing Does Not In-
spire Confidence (Program Testing). In: IEEE Transactions
on Software Engineering, volume 16(12):pp. 1402–1411, 1990.
ISSN 0098-5589. doi:http://dx.doi.org/10.1109/32.62448.

[HVL+99] Havelund, Klaus; Visser, Willem; Lerda, Flavio; Pasareanu,
Corina; Penix, John; Mansouri-Samani, Masoud; O’Malley,
Owen; Giannakopoulou, Dimitra; Mehlitz, Peter; Dillinger, Pe-
ter: Java PathFinder. http://javapathfinder.sourceforge.net/,
1999.

[IBM] IBM (Telelogic): Rhapsody Automated Test Generation.
http://www.telelogic.com/products/rhapsody.

[IBM04] IBM (Telelogic) I-Logix: Rhapsody Automatic Test Generator,
Release 2.3, User Guide, 2004.

230

BIBLIOGRAPHY

[IKV] IKV++ Technologies AG: medini QVT. http://projects.ikv.
de/qvt.

[IPT+07] Irvine, Sean A.; Pavlinic, Tin; Trigg, Leonard; Cleary,
John Gerald; Inglis, Stuart J.; Utting, Mark: Jumble Java
Byte Code to Measure the Effectiveness of Unit Tests. In:
TAICPART-MUTATION: Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION.
2007.

[ITC98] ITC-IRST and Carnegie Mellon University and Uni-
versity of Genoa and University of Trento: SMV.
http://www.cs.cmu.edu/ modelcheck/smv.html, 1998.

[ITC99] ITC-IRST and Carnegie Mellon University and Univer-
sity of Genoa and University of Trento: NuSMV.
http://nusmv.fbk.eu/, 1999.

[JBW+94] Jasper, Robert; Brennan, Mike; Williamson, Keith; Currier,
Bill; Zimmerman, David: Test Data Generation and Feasible
Path Analysis. In: ISSTA’94: Proceedings of the 1994 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pp. 95–107. ACM, New York, NY, USA, 1994. ISBN
0-89791-683-2. doi:http://doi.acm.org/10.1145/186258.187150.

[Jet00] JetBrains: IntelliJ IDEA. http://www.jetbrains.com/, 2000.

[JHS03] Jones, James A.; Harrold, Mary Jean; Society, Ieee Computer:
Test-suite Reduction and Prioritization for Modified Condi-
tion/Decision Coverage. In: IEEE Transactions on Software
Engineering, volume 29:pp. 92–101, 2003.

[JM99] Jéron, Thierry; Morel, Pierre: Test Generation Derived from
Model-Checking. In: Halbwachs, N.; Peled, D., editors,
CAV’99: Proceedings of the 11th International Conference on
Computer Aided Verification, volume 1633 of LNCS, pp. 108–
122. Springer-Verlag, London, UK, July 1999. ISBN 3-540-
66202-2.

[Jos99] Jos Warmer and Anneke Kleppe: The Object Constraint Lan-
guage : Precise Modeling with UML. AddisonWesley Longman,
Inc., 1999. ISBN 978-0201379402.

231

BIBLIOGRAPHY

[JVSJ06] Jalote, Pankaj; Vangala, Vipindeep; Singh, Taranbir; Jain,
Prateek: Program Partitioning: A Framework for Combin-
ing Static and Dynamic Analysis. In: WODA’06: Proceed-
ings of the 2006 International Workshop on Dynamic Systems
Analysis, pp. 11–16. ACM Press, New York, NY, USA, 2006.
ISBN 1-59593-400-6. doi:http://doi.acm.org/10.1145/1138912.
1138916.

[JW01] Joachim Wegener, André Baresel, Harmen Sthamer: Applica-
tion Fields for Evolutionary Testing. In: Eurostar: Proceedings
of the 9th European International Conference on Software Test-
ing Analysis & Review, 2001.

[KFN99] Kaner, Cem; Falk, Jack; Nguyen, Hung Quoc: Testing Com-
puter Software, 2nd Ed. John Wiley and Sons, Inc., New York,
USA, 1999. ISBN 0-471-35846-0.

[KG04] Khor, Susan; Grogono, Peter: Using a Genetic Algorithm and
Formal Concept Analysis to Generate Branch Coverage Test
Data Automatically. In: ASE’04: Proceedings of the 19th
IEEE International Conference on Automated Software Engi-
neering, pp. 346–349. IEEE Computer Society, Washington,
DC, USA, 2004. ISBN 0-7695-2131-2. doi:http://dx.doi.org/
10.1109/ASE.2004.71.

[KHBC99] Kim, Y.; Hong, H.; Bae, D.; Cha, S.: Test
Cases Generation from UML State Diagrams. cite-
seer.ist.psu.edu/kim99test.html, 1999.

[KLPU04] Kosmatov, Nikolai; Legeard, Bruno; Peureux, Fabien; Ut-
ting, Mark: Boundary Coverage Criteria for Test Generation
from Formal Models. In: ISSRE’04: Proceedings of the 15th
International Symposium on Software Reliability Engineering,
pp. 139–150. IEEE Computer Society, Washington, DC, USA,
2004. ISBN 0-7695-2215-7. doi:http://dx.doi.org/10.1109/
ISSRE.2004.12.

[KN04] Kishi, Tomoji; Noda, Natsuko: Design Testing for Product Line
Development based on Test Scenarios. In: SPLiT: Software
Product Line Testing Workshop. Boston, MA, 2004.

[Kol03] Kolb, Ronny: A Risk-Driven Approach for Efficiently Test-
ing Software Product Lines. citeseer.ist.psu.edu/630355.html,
2003.

232

BIBLIOGRAPHY

[Kor90] Korel, Bogdan: Automated Software Test Data Generation. In:
IEEE Transactions on Software Engineering, volume 16(8):pp.
870–879, 1990. ISSN 0098-5589. doi:http://dx.doi.org/10.
1109/32.57624.

[KRS08] Kahsai, Temesghen; Roggenbach, Markus; Schlingloff, Hol-
ger: Specification-Based Testing for Software Product Lines.
In: SEFM’08: Proceedings of the 2008 Sixth IEEE Interna-
tional Conference on Software Engineering and Formal Meth-
ods, pp. 149–158. IEEE Computer Society, Washington, DC,
USA, 2008. ISBN 978-0-7695-3437-4. doi:http://dx.doi.org/
10.1109/SEFM.2008.38.

[Küs06] Küster, Jochen M.: Definition and Validation of Model
Transformations. In: Software and Systems Modeling, vol-
ume V5(3):pp. 233–259, 2006. doi:10.1007/s10270-006-0018-8.

[KSW01] Kösters, Georg; Six, Hans-Werner; Winter, Mario: Cou-
pling Use Cases and Class Models as a Means for Valida-
tion and Verification of Requirements Specifications. cite-
seer.ist.psu.edu/ksters01coupling.html, 2001.

[LBE+05] Lamberg, K.; Beine, M.; Eschmann, M.; Otterbach, R.; Con-
rad, M.; Fey, I.: Model-based Testing of Embedded Automotive
Software using MTest, July 2005.

[LCI03] LCI: Object Constraint Language Environment 2.0.
http://lci.cs.ubbcluj.ro/ocle/, 2003.

[LHM08] Lakhotia, Kiran; Harman, Mark; McMinn, Phil: Handling
Dynamic Data Structures in Search Based Testing. In:
GECCO’08: Proceedings of the 10th annual conference on Ge-
netic and Evolutionary Computation, pp. 1759–1766. ACM,
New York, NY, USA, 2008. ISBN 978-1-60558-130-9. doi:
http://doi.acm.org/10.1145/1389095.1389435.

[Lis88] Liskov, Barbara: Keynote Address - Data Abstraction and Hi-
erarchy. In: ACM SIGPLAN Notices, volume 23(5):pp. 17–34,
1988. ISSN 0362-1340. doi:http://doi.acm.org/10.1145/62139.
62141.

[LJX+04] Linzhang, Wang; Jiesong, Yuan; Xiaofeng, Yu; Jun, Hu; Xuan-
dong, Li; Guoliang, Zheng: Generating Test Cases from UML

233

BIBLIOGRAPHY

Activity Diagram based on Gray-Box Method. In: Asia-
Pacific Software Engineering Conference, pp. 284–291, 2004.
ISSN 1530-1362. doi:http://doi.ieeecomputersociety.org/10.
1109/APSEC.2004.55.

[LKL02] Lee, Kwanwoo; Kang, Kyo Chul; Lee, Jaejoon: Concepts and
Guidelines of Feature Modeling for Product Line Software En-
gineering. In: ICSR’07: Proceedings of the 7th International
Conference on Software Reuse, pp. 62–77. Springer-Verlag,
London, UK, 2002. ISBN 3-540-43483-6.

[LMM99] Latella, Diego; Majzik, Istvan; Massink, Mieke: Towards a
Formal Operational Semantics of UML Statechart Diagrams.
In: FMOODS: Proceedings of the IFIP TC6/WG6.1 Third In-
ternational Conference on Formal Methods for Open Object-
Based Distributed Systems, p. 465. Kluwer, B.V., Deventer, The
Netherlands, The Netherlands, 1999. ISBN 0-7923-8429-6.

[LPU02] Legeard, Bruno; Peureux, Fabrice; Utting, Mark: Automated
Boundary Testing from Z and B. In: Formal Methods Europe,
pp. 21–40. Springer Verlag LNCS 2391, 2002.

[lT06] le Traon, Yves: Design by Contract to Improve Software Vigi-
lance. In: IEEE Transactions on Software Engineering, vol-
ume 32(8):pp. 571–586, 2006. ISSN 0098-5589. doi:http:
//dx.doi.org/10.1109/TSE.2006.79. Member-Benoit Baudry
and Member-Jean-Marc Jezequel.

[Mar91] Marick, Brian: The Weak Mutation Hypothesis. In: TAV4:
Proceedings of the symposium on Testing, Analysis, and Verifi-
cation, pp. 190–199. ACM, New York, NY, USA, 1991. ISBN 0-
89791-449-X. doi:http://doi.acm.org/10.1145/120807.120825.

[May05] Mayer, Johannes: On Testing Image Processing Applications
with Statistical Methods. In: Liggesmeyer, Peter; Pohl, Klaus;
Goedicke, Michael, editors, Software Engineering, volume 64
of Lecture Notes in Informatics, pp. 69–78. GI, 2005. ISBN
3-88579-393-8.

[McG01] McGregor, John D.: Testing a Software Product Line. In:
Technical Report CMU/SEI-2001-TR-022, 2001.

234

BIBLIOGRAPHY

[McG05] McGregor, John D.: Reasoning about the Testability of Prod-
uct Line Components. In: SPLiT: Proceedings of the Inter-
national Workshop on Software Product Line Testing, pp. 1–7.
September 2005.

[McM04] McMinn, Phil: Search-based Software Test Data Generation:
A Survey: Research Articles. In: STVR: Software Testing,
Verification and Reliability, volume 14(2):pp. 105–156, 2004.
ISSN 0960-0833. doi:http://dx.doi.org/10.1002/stvr.v14:2.

[MD93] McGregor, John D.; Dyer, Douglas M.: A Note on Inheritance
and State Machines. In: ACM SIGSOFT Software Engineering
Notes, volume 18(4):pp. 61–69, 1993. ISSN 0163-5948. doi:
http://doi.acm.org/10.1145/163626.163635.

[Mic09] Microsoft Research: SpecExplorer. http://research.microsoft.
com/en-us/projects/SpecExplorer/, 2009.

[MMS97] Mcgraw, Gary; Michael, Christoph; Schatz, Michael: Generat-
ing Software Test Data by Evolution. In: IEEE Transactions
on Software Engineering, volume 27:pp. 1085–1110, 1997.

[MMSC98] MacColl, Ian; Murray, Leesa; Strooper, Paul A.; Carrington,
David A.: Specification-Based Class Testing: A Case Study.
In: International Conference on Formal Engineering Methods,
pp. 222–. 1998.

[MMWW09] Martin, Robert C.; Martin, Micah D.; Wilson-Welsh, Patrick:
FitNesse User Guide. http://fitnesse.org, 2009.

[Mor83] Morell, Larry Joe: A Theory of Error-based Testing. Ph.D.
thesis, University of Maryland at College Park, College Park,
MD, USA, 1983.

[Mor90] Morell, Larry Joe: A Theory of Fault-Based Testing. In: IEEE
Transactions on Software Engineering, volume 16(8):pp. 844–
857, 1990. ISSN 0098-5589. doi:http://dx.doi.org/10.1109/32.
57623.

[MS04] Mansour, Nashat; Salame, Miran: Data Generation for Path
Testing. In: Software Quality Control, volume 12(2):pp. 121–
136, 2004. ISSN 0963-9314. doi:http://dx.doi.org/10.1023/B:
SQJO.0000024059.72478.4e.

235

BIBLIOGRAPHY

[MS06] Mayer, Johannes; Schneckenburger, Christoph: An Empirical
Analysis and Comparison of Random Testing Techniques. In:
ISESE’06: Proceedings of the 2006 ACM/IEEE International
Symposium on Empirical Software Engineering, pp. 105–114.
ACM Press, New York, NY, USA, 2006. ISBN 1-59593-218-6.
doi:http://doi.acm.org/10.1145/1159733.1159751.

[Mye79] Myers, Glenford J.: Art of Software Testing. John Wiley &
Sons, Inc., New York, NY, USA, 1979. ISBN 0471043281.

[Nag04] Nagy, Roman: Bedeutung von Ausgangszuständen beim Testen
von objektorientierter Software. In: CoMaTech’04. Trnava,
Slowakei, 2004.

[NAM08] Namin, Akbar Siami; Andrews, James H.; Murdoch, Dun-
can J.: Sufficient Mutation Operators for Measuring Test Ef-
fectiveness. In: ICSE’08: Proceedings of the 30th Interna-
tional Conference on Software Engineering, pp. 351–360. ACM,
New York, NY, USA, 2008. ISBN 978-1-60558-079-1. doi:
http://doi.acm.org/10.1145/1368088.1368136.

[NF06] Nebut, Clémentine; Fleurey, Franck: Automatic Test Gener-
ation: A Use Case Driven Approach. In: IEEE Transac-
tions on Software Engineering, volume 32(3):pp. 140–155, 2006.
ISSN 0098-5589. doi:http://dx.doi.org/10.1109/TSE.2006.22.
Member-Yves Le Traon and Member-Jean-Marc Jezequel.

[NFTJ03] Nebut, Clémentine; Fleurey, Franck; Traon, Yves Le; Jézéquel,
Jean-Marc: Requirements by Contracts allow Automated Sys-
tem Testing. In: ISSRE’03: Proceedings of the 14th. IEEE
International Symposium on Software Reliability Engineering,
pp. 17–21. 2003.

[Nta01] Ntafos, Simeon C.: On Comparisons of Random, Partition,
and Proportional Partition Testing. In: IEEE Transactions on
Software Engineering, volume 27(10):pp. 949–960, 2001. ISSN
0098-5589. doi:http://doi.ieeecomputersociety.org/10.1109/32.
962563.

[OA99] Offutt, Jeff; Abdurazik, Aynur: Generating Tests from UML
Specifications. In: France, Robert; Rumpe, Bernhard, editors,
UML’99 - The Unified Modeling Language. Beyond the Stan-
dard. Second International Conference, Fort Collins, CO, USA,

236

BIBLIOGRAPHY

October 28-30. 1999, Proceedings, volume 1723, pp. 416–429.
Springer, 1999.

[OB88] Ostrand, Thomas J.; Balcer, Marc J.: The Category-Partition
Method for Specifying and Generating Fuctional Tests. In:
Communications of the ACM, volume 31(6):pp. 676–686, 1988.
ISSN 0001-0782. doi:http://doi.acm.org/10.1145/62959.62964.

[OB03] Okun, Vadim; Black, Paul E.: Issues in Software Testing with
Model Checkers. citeseer.ist.psu.edu/okun03issues.html, 2003.

[OB04] Oliver Bühler, Joachim Wegener: Automatic Testing of an Au-
tonomous Parking System using Evolutionary Computation,
2004.

[Obj05a] Object Management Group: Object Constraint Language
(OCL), version 2.0. http://www.uml.org, 2005.

[Obj05b] Object Management Group: UML Testing Profile.
http://www.omg.org/technology/documents/formal/test_profile.htm,
2005.

[Obj06] Object Management Group: MetaObject Facility (MOF) 2.0.
http://www.omg.org/mof/, 2006.

[Obj07] Object Management Group: Unified Modeling Language
(UML), version 2.1. http://www.uml.org, 2007.

[ODC06] Owen, David; Desovski, Dejan; Cukic, Bojan: Random Testing
of Formal Software Models and Induced Coverage. In: Random
Testing, pp. 20–27. 2006.

[Off88] Offutt, Andrew Jefferson, VI: Automatic Test Data Generation.
Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA,
USA, 1988. Director: Demillo, R. A.

[Off92] Offutt, A. Jefferson: Investigations of the Software Testing
Coupling Effect. In: ACM Transactions on Software Engi-
neering and Methodology, volume 1(1):pp. 5–20, 1992. ISSN
1049-331X. doi:http://doi.acm.org/10.1145/125489.125473.

[OG05] Olimpiew, Erika Mir; Gomaa, Hassan: Model-Based Testing
for Applications Derived from Software Product Lines. In:
ACM SIGSOFT Software Engineering Notes, volume 30(4):pp.

237

BIBLIOGRAPHY

1–7, 2005. ISSN 0163-5948. doi:http://doi.acm.org/10.1145/
1082983.1083279.

[OK87] Offutt, A. Jefferson, VI; King, Kim N.: A Fortran 77 Inter-
preter for Mutation Analysis. In: SIGPLAN’87: Papers of the
Symposium on Interpreters and Interpretive Techniques, pp.
177–188. ACM, New York, NY, USA, 1987. ISBN 0-89791-
235-7. doi:http://doi.acm.org/10.1145/29650.29669.

[OL91] Offutt, A. Jefferson; Lee, Stephen D.: How Strong is Weak Mu-
tation? In: Proceedings of the Symposium on Testing, Analysis,
and Verification. 1991.

[OL94] Offutt, A. Jefferson; Lee, Stephen D.: An Empirical Evalua-
tion of Weak Mutation. In: IEEE Transactions on Software
Engineering, volume 20(5):pp. 337–344, 1994.

[OLR+96] Offutt, A. Jefferson; Lee, Ammei; Rothermel, Gregg; Untch,
Roland H.; Zapf, Christian: An Experimental Determination
of Sufficient Mutant Operators. In: ACM Transactions on Soft-
ware Engineering and Methodology, volume 5(2):pp. 99–118,
1996.

[Ope09] Open Source: TopCased UML Editor 3.0.
http://www.topcased.org/, 2009.

[Opt07] Optimization Department of Cybernetic Institute: OpenOpt.
http://openopt.org/, 2007.

[OVP96] Offutt, A. Jefferson; Voas, Jeff; Payn, Jeff: Mutation Operators
for Ada. Technical report, Information and Software Systems
Engineering, George Mason University, 1996.

[OWB04] Ostrand, Thomas; Weyuker, Elaine J.; Bell, Robert: Using
Static Analysis to Determine Where to Focus Dynamic Testing
Effort. In: WODA’04: Workshop on Dynamic Analysis. May
2004.

[Par81] Park, David: Concurrency and automata on infinite sequences.
In: Proceedings of the 5th GI-Conference on Theoretical Com-
puter Science, pp. 167–183. Springer-Verlag, London, UK,
1981. ISBN 3-540-10576-X.

238

BIBLIOGRAPHY

[Par05] Paradkar, Amit: Case Studies on Fault Detection Effectiveness
of Model Based Test Generation Techniques. In: A-MOST’05:
Proceedings of the 1st International Workshop on Advances in
Model-Based Testing, pp. 1–7. ACM Press, New York, NY,
USA, 2005. ISBN 1-59593-115-5. doi:http://doi.acm.org/10.
1145/1083274.1083286.

[PE05] Pacheco, Carlos; Ernst, Michael D.: Eclat: Automatic Gen-
eration and Classification of Test Inputs. In: ECOOP’05 —
Object-Oriented Programming, 19th European Conference, pp.
504–527. Glasgow, Scotland, July 27–29, 2005.

[PHP99] Pargas, Roy P.; Harrold, Mary Jean; Peck, Robert R.: Test-
Data Generation Using Genetic Algorithms. In: Software Test-
ing, Verification And Reliability, volume 9:pp. 263–282, 1999.

[Pik09] PikeTec: TPT (Time Partition Testing) Version 3.2.
http://www.piketec.com/, 2009.

[PIS02] PISATEL LAB: http://www1.isti.cnr.it/ERI/special.htm,
2002.

[PLK07] Peleska, Jan; Löding, Helge; Kotas, Tatiana: Test Automation
Meets Static Analysis. In: Koschke, Rainer; Herzog, Otthein;
Rödiger, Karl-Heinz; Ronthaler, Marc, editors, GI Jahresta-
gung (2), volume 110 of Lecture Notes in Informatics, pp. 280–
290. GI, 2007. ISBN 978-3-88579-204-8.

[PM06] Pohl, Klaus; Metzger, Andreas: Software Product Line Test-
ing. In: Communications of the ACM, volume 49(12):pp. 78–
81, 2006. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/
1183236.1183271.

[PML08] Peleska, Jan; Möller, Oliver; Löding, Helge: A Formal Intro-
duction to Model-Based Testing. http://www.informatik.uni-
bremen.de/agbs/jp/papers/peleska_ictac2008_tutorial.html,
2008.

[PP03] Prowell, Stacy J.; Poore, Jesse H.: Foundations of sequence-
based software specification. In: IEEE Trans. Softw. Eng.,
volume 29(5):pp. 417–429, 2003. ISSN 0098-5589. doi:http:
//dx.doi.org/10.1109/TSE.2003.1199071.

239

BIBLIOGRAPHY

[PPW+05] Pretschner, Alexander; Prenninger, Wolfgang; Wagner, Ste-
fan; Kühnel, Christian; Baumgartner, Martin; Sostawa, Bernd;
Zölch, Rüdiger; Stauner, Thomas: One Evaluation of Model-
based Testing and its Automation. In: ICSE’05: Proceed-
ings of the 27th International Conference on Software Engi-
neering, pp. 392–401. 2005. ISBN 1-59593-963-2. doi:http:
//doi.acm.org/10.1145/1062455.1062529.

[Pre03] Pretschner, Alexander: Compositional Generation of MC/DC
Integration Test Suites. In: Electronic Notes in Theoretical
Computer Science, volume 82(6):pp. 1–11, 2003.

[Pre06] Pretschner, Alexander: Zur Kosteneffektivität des modell-
basierten Testens. In: MBEES’06: Modellbasierte Entwicklung
eingebetteter Systeme, pp. 85–94. 2006.

[Pro04] Prowell, Stacy: State of the Art of Model-
Based Testing with Markov Chain Usage Models.
http://www.andrew.cmu.edu/user/sprowell/pubs/prowell2004
soa_pres.pdf, 2004.

[PS96] Price, Christopher J.; Snooke, Price: Automated Sneak Identi-
fication. In: Engineering Applications of Artificial Intelligence,
volume 9:pp. 423–427, 1996.

[PS07] Pinte, Florin; Saglietti, Francesca: UnITeD - Unterstützung
Inkrementeller TestDaten. http://www11.informatik.uni-
erlangen.de/Forschung/Projekte/United/ index.html, 2007.

[PTV97] Paradkar, Amit; Tai, K. C.; Vouk, M. A.: Specification-Based
Testing Using Cause-Effect Graphs. In: Annals of Software
Engineering, volume 4:pp. 133–157, 1997.

[PW02] Pierro, Alessandra Di; Wiklicky, Herbert: Probabilistic Ab-
stract Interpretation and Statistical Testing. In: PAPM-
PROBMIV ’02: Proceedings of the Second Joint International
Workshop on Process Algebra and Probabilistic Methods, Per-
formance Modeling and Verification, pp. 211–212. Springer-
Verlag, London, UK, 2002. ISBN 3-540-43913-7.

[PZ07] Peleska, Jan; Zahlten, Cornelia: Integrated Automated Test
Case Generation and Static Analysis. In: QA+Test 2007:
International Conference on QA+Testing Embedded Systems.
2007.

240

BIBLIOGRAPHY

[Ran03] Ranville, Scott: MCDC Test Vectors From Matlab Models –
Automatically. In: Embedded Systems Conference. San Fran-
cisco, USA, March 2003.

[Rat97] Rat der IT-Beauftragten: V-Modell. http://www.cio.bund.de,
1997.

[Rav08] Ravindran, A. Ravi, editor: Operations Research and Man-
agement Science Handbook. CRC Press, 2008. ISBN 978-
0849397219.

[Rea09] Reactive Systems Inc.: Reactis. http://www.reactive-
systems.com/, 2009.

[REG76] Rankin, John P.; Engels, Gary J.; Godoy, Sylvia G.: Software
Sneak Circuit Analysis. Technical report, AFNL-TR-75-254.
Boeing Aerospace Co., Houston, Texas, 1976.

[RG98] Richters, Mark; Gogolla, Martin: On Formalizing the UML
Object Constraint Language OCL. In: Ling, Tok-Wang; Ram,
Sudha; Lee, Mong Li, editors, Proceedings of 17th International
Conference on Conceptual Modeling (ER), volume 1507, pp.
449–464. Springer-Verlag, 1998.

[Rob06] Robinson, Harry: Model-Based Testing.
model.based.testing.googlepages.com/starwest-2006-mbt-
tutorial.pdf, 2006.

[RTC92] RTCA Inc.: RTCA/DO-178B, Software Considerations in Air-
borne Systems and Equipment Certification, December 1992.

[RvBW06] Rossi, Francesca; van Beek, Peter; Walsh, Toby, editors: Hand-
book of Constraint Programming. Elsevier, 2006. ISBN 978-0-
444-52726-4.

[RWH08] Rajan, Ajitha; Whalen, Michael W.; Heimdahl, Mats P.E.: The
Effect of Program and Model Structure on MC/DC Test Ad-
equacy Coverage. In: ICSE’08: Proceedings of the 30th In-
ternational Conference on Software Engineering, pp. 161–170.
ACM, New York, NY, USA, 2008. ISBN 978-1-60558-079-1.
doi:http://doi.acm.org/10.1145/1368088.1368111.

[SBT+09] Sharygina, Natasha; Bruttomesso, Robertoe; Tsi-
tovich, Aliaksei; Rollini, Simone; Tonetta, Stefano;

241

BIBLIOGRAPHY

Braghin, Chiara; Barone-Adesi, Katerina: OpenSMT.
http://verify.inf.unisi.ch/opensmt, 2009.

[SBW01] Sthamer, Harmen; Baresel, André; Wegener, Joachim: Evolu-
tionary Testing of Embedded Systems. In: QW’01: Proceedings
of the 14th International Internet & Software Quality Week, pp.
1–34. 2001.

[SEBC09] Schläpfer, Michael; Egea, Marina; Basin, David; Clavel,
Manuel: Automatic Generation of Security-Aware GUI Mod-
els. In: Bagnato, A., editor, SECMDA’09: European Workshop
on Security in Model Driven Architecture 2009, Enschede (The
Netherlands), June 24, 2009. Proceedings., CTIT proceedings
WP09-06, pp. 42–56. Centre for Telematics and Information
Technology, University of Twente, June 2009. ISBN 0920-0672.
ISSN 978-90-365-2857-3.

[SG03] Schieferdecker, Ina; Grabowski, Jens: The Graphical Format
of TTCN-3 in the Context of MSC and UML. In: SAM’02:
Telecommunications and beyond: The BroaderApplicability of
SDL and MSC, volume 2599 of LNCS. Springer, Rosslyn, VA,
USA, 2003.

[SHS03] Seifert, Dirk; Helke, Steffen; Santen, Thomas: Test Case Gen-
eration for UML Statecharts. In: Broy, Manfred; Zamulin,
Alexandre V., editors, PSI’03: Perspectives of System Infor-
matics, volume 2890 of Lecture Notes in Computer Science,
pp. 462–468. Springer-Verlag, 2003.

[SK00] Schroeder, Patrick J.; Korel, Bogdan: Black-box Test Re-
duction Using Input-Output Analysis. In: ISSTA’00: Pro-
ceedings of the 2000 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pp. 173–177. ACM
Press, New York, NY, USA, 2000. ISBN 1-58113-266-2. doi:
http://doi.acm.org/10.1145/347324.349042.

[SKAB03] Schroeder, Patrick J.; Kim, Eok; Arshem, Jerry; Bolaki,
Pankaj: Combining Behavior and Data Modeling in Auto-
mated Test Case Generation. In: QSIC’03: Proceedings of
the 3rd International Conference on Quality Software, p. 247.
IEEE Computer Society, Washington, DC, USA, 2003. ISBN
0-7695-2015-4.

242

BIBLIOGRAPHY

[Sma] Smartesting: Test Designer. http://www.smartesting.com.

[Sok06a] Sokenou, Dehla: Generating Test Sequences from UML Se-
quence Diagrams and State Diagrams. In: INFORMATIK
2006: Informatik für Menschen - Band 2, GI-Edition: Lecture
Notes in Informatics (LNI), P-94, pp. 236–240. Gesellschaft
für Informatik, 2006.

[Sok06b] Sokenou, Dehla: UML-basierter Klassen- und Integrationstest
objektorientierter Programme. Ph.D. thesis, Technische Uni-
versität Berlin, Germany, 2006.

[Som01] Sommerville, Ian: Software Engineering. Addison-Wesley, New
York, USA, 2001.

[Sou08] Sourceforge: CppUnit 1.12 – Unit Tests for C++.
http://sourceforge.net/projects/cppunit, 2008.

[Spi92] Spivey, Mike: The Z Notation: A Reference Manual. Prentice-
Hall International Series in Computer Science, 1992. ISBN
0139785299.

[Sun95] Sun Microsystems: Java. http://java.sun.com/, 1995.

[SVG+08] Santiago, Valdivino; Vijaykumar, N. L.; Guimar Danielle,
aes; Amaral, Ana Silvia; Ferreira, Érica: An Environment
for Automated Test Case Generation from Statechart-Based
and Finite State Machine-based Behavioral Models. In:
ICSTW’08: Proceedings of the 2008 IEEE International Con-
ference on Software Testing Verification and Validation Work-
shop, pp. 63–72. IEEE Computer Society, Washington, DC,
USA, 2008. ISBN 978-0-7695-3388-9. doi:http://dx.doi.org/
10.1109/ICSTW.2008.7.

[SW96] Stumptner, Markus; Wotawa, Franz: Model-Based Program
Debugging and Repair. In: IEA/AIE’96: 9th International
Conference on Industrial and Engineering Applications of Ar-
tificial Intelligence and Expert Systems, pp. 155–160. 1996.

[SW07] Smith, Benjamin Hatfield; Williams, Laurie: An Empir-
ical Evaluation of the MuJava Mutation Operators. In:
TAICPART-MUTATION: Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION.
2007.

243

BIBLIOGRAPHY

[SW08] Sadilek, Daniel A.; Weißleder, Stephan: Testing Metamod-
els. In: Ina Schieferdecker, Alan Hartman, editor, ECMDA’08:
European Conference on Model Driven Architecture. Springer,
June 2008. ISBN 978-3-540-69095-5.

[SW09] Smith, Ben H.; Williams, Laurie: Should Software Testers Use
Mutation Analysis to Augment a Test Set? In: Journal of Sys-
tems and Software, volume 82(11):pp. 1819–1832, 2009. ISSN
0164-1212. doi:http://dx.doi.org/10.1016/j.jss.2009.06.031.

[TCFR96] Tip, Frank; Choi, Jong-Deok; Field, John; Ramalingam, G.:
Slicing Class Hierarchies in C++. In: OOPSLA’96: Proceed-
ings of the 11th ACM SIGPLAN conference on Object-Oriented
Orogramming, Systems, Languages, and Applications, pp. 179–
197. ACM Press, New York, NY, USA, 1996. ISBN 0-89791-
788-X. doi:http://doi.acm.org/10.1145/236337.236355.

[Tel] Telcordia Technologies: The AETG System: An Ap-
proach to Testing Based on Combinatorial Design.
http://aetgweb.argreenhouse.com.

[The94] The Mathworks Inc.: Polyspace Embedded Software Ver-
ification. http://www.mathworks.com/products/polyspace
/index.html, 1994.

[The09] The Choco Team: Choco Solver 2.1.0. http://choco.emn.fr/,
2009.

[Tre04] Tretmans, Jan: Model-Based Testing: Property Checking for
Real. Keynote Address at the International Workshop for Con-
struction and Analysis of Safe Secure, and Interoperable Smart
Devices. http://www-sop.inria.fr/everest/events/cassis04,
2004.

[UL06] Utting, Mark; Legeard, Bruno: Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006. ISBN 0123725011.

[UPL06] Utting, Mark; Pretschner, Alexander; Legeard, Bruno: A Tax-
onomy of Model-Based Testing. Technical Report 04/2006, De-
partment of Computer Science, The Universiy of Waikato (New
Zealand), 2006.

244

BIBLIOGRAPHY

[UTC+07] Utting, Mark; Trigg, Len; Cleary, John G.; Irvine, Archmage;
Pavlinic, Tin: Jumble. http://jumble.sourceforge.net/, 2007.

[Utt08] Utting, Mark: The Role of Model-Based Testing. In: Verified
Software: Theories, Tools, Experiments: First IFIP TC 2/WG
2.3 Conference, VSTTE 2005, Zurich, Switzerland, October
10-13, 2005, Revised Selected Papers and Discussions, pp. 510–
517, 2008. doi:http://dx.doi.org/10.1007/978-3-540-69149-5_
56.

[vMF09] van Maaren, Hans; Franco, John: The international sat com-
petitions web page. http://www.satcompetition.org/, 2009.

[Wah03] Wah, K. S. How Tai: An Analysis of the Coupling Effect I:
Single Test Data. In: Science of Computer Programming,
volume 48(2-3):pp. 119–161, 2003. ISSN 0167-6423. doi:
http://dx.doi.org/10.1016/S0167-6423(03)00022-4.

[WC80] White, Lee J.; Cohen, Edward I.: A Domain Strategy for Com-
puter Program Testing. In: IEEE Transactions on Software
Engineering, volume 6(3):pp. 247–257, 1980. ISSN 0098-5589.
doi:http://dx.doi.org/10.1109/TSE.1980.234486.

[Weia] Weißleder, Stephan: Coverage Simulator (Trans-
forming test models to simulate coverage criteria).
http://covsim.sourceforge.net.

[Weib] Weißleder, Stephan: ParTeG (Partition Test Generator).
http://parteg.sourceforge.net.

[Wei79] Weiser, Mark David: Program Slices: Formal, Psychological,
and Practical Investigations of an Automatic Program Abstrac-
tion Method. Ph.D. thesis, University of Michigan, Ann Arbor,
MI, USA, 1979.

[Wei89] Weiss, Steward N.: Comparing Test Data Adequacy Crite-
ria. In: ACM SIGSOFT Software Engineering Notes, vol-
ume 14(6):pp. 42–49, 1989. ISSN 0163-5948. doi:http://doi.
acm.org/10.1145/70739.70742.

[Wei08] Weißleder, Stephan: Partition-Oriented Test Generation. In:
Hegering, Heinz-Gerd; Lehmann, Axel; Ohlbach, Hans Jürgen;
Scheideler, Christian, editors, 3rd Workshop about Model-based
Testing (MoTes) in conjunction with the Annual Congress of

245

BIBLIOGRAPHY

the Gesellschaft für Informatik (GI), volume 133 of Lecture
Notes in Informatics, pp. 199–204. GI, 2008. ISBN 978-3-
88579-227-7.

[Wei09a] Weißleder, Stephan: Influencing Factors in Model-Based Test-
ing with UML State Machines: Report on an Industrial Co-
operation. In: Models’09: 12th International Conference on
Model Driven Engineering Languages and Systems. October
2009.

[Wei09b] Weißleder, Stephan: Semantic-Preserving Test Model Transfor-
mations for Interchangeable Coverage Criteria. In: MBEES’09:
Model-Based Development of Embedded Systems. April 2009.

[Wei10] Weißleder, Stephan: Simulated Satisfaction of Coverage Crite-
ria on UML State Machines. In: International Conference on
Software Testing, Verification, and Validation (ICST). April
2010.

[Wey93] Weyuker, Elaine J.: More Experience with Data Flow Test-
ing. In: IEEE Transactions on Software Engineering, vol-
ume 19(9):pp. 912–919, 1993. ISSN 0098-5589. doi:http:
//dx.doi.org/10.1109/32.241773.

[WFPW07] Wehrmeister, Marco A.; Freitas, Edison P.; Pereira, Carlos E.;
Wagner, Flávio R.: Applying Aspect-Orientation Concepts in
the Model-driven Design of Distributed Embedded Real-Time
Systems. In: ISORC’07 - 10th IEEE Symposium on Object-
Oriented Real-Time Distributed Computing. may 2007.

[WH88] Woodward, Martin R.; Halewood, K.: From Weak to Strong,
Dead or Alive? An Analysis of Some Mutation Testing Issues.
In: Proceedings of the Second Workshop on Software Testing,
Verification, and Analysis. 1988.

[Whi91] Whitty, Robin W.: An exercise in weakest preconditions. In:
Software Testing, Verification & Reliability, volume 1(1):pp.
39–43, 1991.

[Whi02] Whittaker, James A.: How to Break Software: A Practical
Guide to Testing with CDrom. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0201796198.

246

BIBLIOGRAPHY

[Win93] Winskel, Glynn: The Formal Semantics of Programming Lan-
guages. The MIT Press, 1993.

[WJ91] Weyuker, Elaine J.; Jeng, Bingchiang: Analyzing Partition
Testing Strategies. In: IEEE Transactions on Software En-
gineering, volume 17(7):pp. 703–711, 1991. ISSN 0098-5589.
doi:http://dx.doi.org/10.1109/32.83906.

[WK03] Warmer, Jos; Kleppe, Anneke: The Object Constraint Lan-
guage: Getting Your Models Ready for MDA. Addison Wesley,
2nd edition, 2003.

[WKC06] Wang, Junhua; Kim, Soon-Kyeong; Carrington, David: Ver-
ifying Metamodel Coverage of Model Transformations. In:
ASWEC’06: Proceedings of the Australian Software Engineer-
ing Conference (ASWEC’06), pp. 270–282. IEEE Computer
Society, Washington, DC, USA, 2006. ISBN 0-7695-2551-2.
doi:http://dx.doi.org/10.1109/ASWEC.2006.55.

[WL05] Wappler, Stefan; Lammermann, Frank: Using Evolutionary
Algorithms for the Unit Testing of Object-Oriented Software.
In: GECCO’05: Proceedings of the conference on Genetic and
Evolutionary Computation, pp. 1053–1060. ACM Press, New
York, NY, USA, 2005. ISBN 1-59593-010-8. doi:http://doi.
acm.org/10.1145/1068009.1068187.

[WS07] Wappler, Stefan; Schieferdecker, Ina: Improving Evolutionary
Class Testing in the Presence of Non-Public Methods. In:
ASE’07: Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, pp. 381–384.
ACM, New York, NY, USA, 2007. ISBN 978-1-59593-882-4.
doi:http://doi.acm.org/10.1145/1321631.1321689.

[WS08a] Weißleder, Stephan; Schlingloff, Holger: Quality of Automat-
ically Generated Test Cases based on OCL Expressions. In:
ICST’08: International Conference on Software Testing, Veri-
fication, and Validation, pp. 517–520. IEEE Computer Society,
2008.

[WS08b] Weißleder, Stephan; Sokenou, Dehla: Cause-Effect Graphs for
Test Models Based on UML and OCL. In: 27. Treffen der
GI-Fachgruppen TAV und RE. June 2008.

247

BIBLIOGRAPHY

[WSS08] Weißleder, Stephan; Sokenou, Dehla; Schlingloff, Holger:
Reusing State Machines for Automatic Test Generation in
Product Lines. In: Thomas Bauer, Axel Rennoch, Hajo Eichler,
editor, Model-Based Testing in Practice (MoTiP). Fraunhofer
IRB Verlag, June 2008. ISBN 978-3-8167-7624-6.

[ZG03] Ziemann, Paul; Gogolla, Martin: Validating OCL Specifica-
tions with the USE Tool — An Example Based on the BART
Case Study. In: FMICS’03: Formal Methods for Industrial
Critical Systems. 2003.

248

List of Figures

1.1 Model-based test generation. 2
1.2 Structure of the thesis. 4

2.1 Relation of fault, error, and failure. 6
2.2 Black-box testing. 13
2.3 The V-Model. 15
2.4 Different approaches to integrate testing into system engineering. 15
2.5 Subsumption hierarchy for structural coverage criteria that are

focused on transitions, control flow, and data flow. 20
2.6 Subsumption hierarchy for boundary-based coverage criteria. . 21
2.7 The basic process of mutation analysis. 22
2.8 Meta model for state machines (UML 2.1 specification). 27
2.9 Meta model for classes (UML 2.1 specification). 28
2.10 Meta model for interactions and life lines (UML 2.1). 29
2.11 Application fields of model-based testing. 31
2.12 Concretization and abstraction in model-based testing. 32
2.13 Taxonomy according to Utting, Pretschner, Legeard [UPL06]

(used with permission). 38
2.14 Test models describe the SUT or its environment according to

Utting, Pretschner, Legeard [UPL06] (used with permission). . 39
2.15 Names and symbols for formal definitions of coverage criteria. 41
2.16 State machine example to clarify definitions of coverage. . . . 42
2.17 Definition of All-States. 44
2.18 Definition of All-Configurations. 44
2.19 Definition of All-Transitions. 45
2.20 Definition of All-Transition-Pairs. 45
2.21 Definition of All-Paths. 46
2.22 Definition of Decision Coverage. 47
2.23 Definition of Condition Coverage. 47
2.24 Definition of Decision/Condition Coverage. 48
2.25 Definition of unique-cause MC/DC. 49

249

LIST OF FIGURES

2.26 Definition of Multiple Condition Coverage. 49
2.27 Definition of All-Defs. 50
2.28 Definition of All-Uses. 50
2.29 Definition of All-Def-Use-Paths. 52

3.1 Relation between input partitions and output partitions. . . . 56
3.2 Partition for teenager age. 56
3.3 Two partitions of an enumeration. 57
3.4 Partitions with two dimensions for the sorting machine. 57
3.5 Partition for input parameters of valid triangles with z = 5. . . 58
3.6 State machine to clarify the mutual dependency of input par-

titions and abstract test cases. 59
3.7 Issues of deriving input partitions from output partitions. . . . 60
3.8 Selected values for partition boundaries. 61
3.9 Selected values for partition boundaries. 62
3.10 Applying the partition-oriented approach to all partitions. . . 62
3.11 State machine describing the reaction to the input values of

the teenager partitioning. 63
3.12 State machine of a sorting machine. 65
3.13 Class diagram of a sorting machine. 65
3.14 State machine of the freight elevator control. 66
3.15 Class diagram of the freight elevator control. 66
3.16 Valid triangle classification results. 67
3.17 State machine for the triangle classification. 67
3.18 Class diagram for the triangle classification. 67
3.19 State machine of the track control. 68
3.20 Class diagram of the track control. 68
3.21 Anonymised part of the train control state machine. 69
3.22 Test goal management for test suite generation. 70
3.23 Add missing elements of A’s influencing expression set. 72
3.24 Test goal extension for all all trace patterns of a test goal. . . 81
3.25 Pseudocode for generating test cases by searching backward. . 82
3.26 Value partition for one-dimensional expressions. 85
3.27 State machine of a sorting machine. 86
3.28 Class diagram of a sorting machine. 86
3.29 Mutation analysis for the sorting machine example. 94
3.30 Test suite sizes for the sorting machine. 94
3.31 Mutation analysis for the elevator control example. 95
3.32 Test suite sizes for the elevator control example. 95
3.33 Mutation analysis for the triangle classification. 96
3.34 Test suite sizes for the triangle classification. 96

250

LIST OF FIGURES

3.35 Mutation analysis for the track control example. 97
3.36 Test suite sizes for the track control example. 98
3.37 Mutation analysis for the train control example. 99
3.38 Test suite sizes for the train control example. 99
3.39 Semantic-preserving test model transformation by Burton. . . 102
3.40 Problematic scenario for Burton’s approach. 102
3.41 Different computations for the same input parameters. 103
3.42 Boundary values depending on the number of loop iterations. . 103
3.43 Another problematic scenario for the approach of generating

boundary values with model transformations. 104

4.1 Examples for efficient and redundant SUT source code. 112
4.2 Hierarchical and flat state machine. 113
4.3 Anonymised part of the provided state machine. 114
4.4 Splitting transitions according to their triggering events. . . . 115
4.5 Split the choice pseudostate. 117
4.6 Transform composite states. 118
4.7 Names and symbols for test model transformations. 125
4.8 Transformation that inserts a new variable into a transition

effect. 126
4.9 Transformation that inserts a choice pseudostate into a tran-

sition. 126
4.10 Transformation that moves the effect of a transition. 127
4.11 Transformation that creates copies of state machine vertices. . 128
4.12 Transformation to exchange a transition’s target vertex. 128
4.13 Create self-transitions for unmodeled behavior. 129
4.14 Split transitions according to their guards. 130
4.15 UML state machine describing the behavior of a coffee dispenser.132
4.16 Simulated satisfaction of coverage criteria. 133
4.17 Transformation that splits transitions according to guards. . . 135
4.18 Transformed test model to satisfy MCC by satisfying All-

Transitions. 135
4.19 Transformation for the simulated satisfaction of All-Transition-

Pairs with All-Transitions. 136
4.20 Transformed test model to satisfy All-Transition-Pairs by sat-

isfying All-Transitions. 137
4.21 Transformation for simulating All-Uses with All-Transitions. . 138
4.22 Transformed model to simulate All-Uses with All-Transitions. 138
4.23 Transformation for the simulation of All-Uses with All-Defs. . 139
4.24 Transformed test model to simulate All-Uses with All-Defs. . . 140

251

LIST OF FIGURES

4.25 Transformation for the simulation of All-Configurations with
All-States. 141

4.26 Transformed test model to satisfy All-Configurations by sat-
isfying All-States. 141

4.27 Transformation for the simulated satisfaction of All-Transitions
with All-States. 142

4.28 Transformed test model to satisfy All-Transitions by satisfying
All-States. 143

4.29 Transformation for the simulation of Condition Coverage with
All-Transitions. 144

4.30 Transformed test model to simulate All-Transitions with Con-
dition Coverage. 144

4.31 Transformation for the simulated satisfaction of All-Transitions
with All-Defs. 146

4.32 Transformed test model for the simulated satisfaction of All-
Transitions with All-Defs. 146

4.33 Simulated satisfaction graph. 147
4.34 Simple guarded transition. 148
4.35 Definition of All-Transition-Pairs-Decisions. 152
4.36 Example for a model transformation to support the level-3-

combination of control-flow-based and transition-based cover-
age criteria. 153

4.37 Definition of All-Subsequent-Transition-Pairs. 154
4.38 Definition of Multiple Condition Coverage Pairs. 155
4.39 Subsumption hierarchy with new coverage criteria. 156

5.1 Example of a feature model. 167
5.2 Feature model of car audio systems. 167
5.3 Each class can be the context of the state machine. 170
5.4 A state machine describing an extract of the general car audio

system behavior. 171
5.5 Extract of classes describing two product configurations for a

car audio system. 172
5.6 Algorithm for detecting all state machine transition sequences

corresponding to an interaction diagram. 179
5.7 Overlapping transition sequences. 180
5.8 Definition of All-Sequences. 181
5.9 Definition of All-Context-Sequences. 182
5.10 Definition of All-Sequence-Pairs. 182
5.11 Subsumption hierarchy for interaction sequence combinations. 183
5.12 State Machine of ATM . 184

252

LIST OF FIGURES

5.13 Sequence 1: Interaction diagram for inserting the EC card. . . 185
5.14 Sequence 2: Interaction diagram for withdrawing money. . . . 185
5.15 Sequence 3: Interaction diagram for removing money and EC

card. 185
5.16 Concatenated interaction diagram. 186

6.1 Average test effort for All-States with LPS and offline testing. 199
6.2 Worst-case test effort for All-States with LPS and online testing.200
6.3 Average test effort for LPS and offline testing for Decision

Coverage. 200
6.4 Average test effort for SPS and offline testing for Decision

Coverage. 201
6.5 Worst test effort for LPS and online testing for Decision Cov-

erage. 201
6.6 Average test effort for LPS and online testing for masking

MC/DC. 202
6.7 Average test effort for SPS and offline testing for masking

MC/DC. 202
6.8 Worst test effort for LPS and online testing for masking MC/DC.203

253

LIST OF FIGURES

254

List of Tables

2.1 Categorization of failure consequences according to Beizer. . . 7

3.1 Two partitionings for two event sequences. 59
3.2 Classification of variables in OCL expressions. 75
3.3 Relation symbols for expression transformation. 77
3.4 Comparison of Jumble mutation analysis for MCC with all

boundary-based coverage criteria. 100
3.5 Comparison of Java Mutation Analysis for MCC with all bound-

ary-based coverage criteria. 101

4.1 Results of initial mutation analysis. 115
4.2 Mutation analysis after limiting triggers per transition to 1. . 116
4.3 Mutation analysis with additional dynamic test goal adaptation.116
4.4 Results of mutation analysis with splitted choice pseudostates. 117
4.5 Mutation analysis with additionally transformed composite

states. 118
4.6 Mutation analysis with additionally combined coverage criteria.119
4.7 Combinations of efficient and redundant test models and SUT. 119
4.8 Failed tests and detected faults on the company’s SUT. 120
4.9 Impact of test model adaptation on mutation analysis for the

four remaining example models. 123
4.10 Truth table for (X or Y) and Z. 149

6.1 Recommendations of test goal prioritizations for All-States. . . 204
6.2 Test goal prioritizations recommendations for Decision Coverage.204
6.3 Test goal prioritization recommendations for masking MC/DC. 204

255

LIST OF TABLES

256

Danksagung

Die Arbeit an meiner Dissertation mitsamt der Themenfindung, den Veröf-
fentlichungen und dem Aufschreiben war für mich eine sehr wichtige und
interessante Erfahrung. Ich möchte mich bei den Menschen bedanken, die
diese Arbeit möglich gemacht haben. Dazu gehören in erster Linie meine
Familie und insbesondere Barbara Weißleder, Henriette Barbe und Tobias
Weißleder, die mir in den schwersten Phasen der Arbeit immer wieder Kraft
gegeben haben. Dazu gehört ebenso mein Betreuer Holger Schlingloff, dem
ich insbesondere für die Hilfestellung bei der ersten Themenfindung sowie für
die kurzfristigen und hilfreichen Kommentare so kurz vor der nächsten Ein-
reichungsfrist danke. Weiterhin möchte ich auch allen Beteiligten danken,
die das DFG-Graduiertenkolleg 1324 (METRIK) möglich gemacht haben.
In diesem Zuge möchte ich Joachim Fischer und die Deutsche Forschungs-
gemeinschaft hervorheben. Weiterhin gilt mein Dank insbesondere Daniel
Sadilek für die fruchtbare Zusammenarbeit und Markus Scheidgen für das
angenehme Arbeitsklima. Ebenso hervorzuheben sind die Diskussionen mit
Guido Wachsmuth, Dirk Fahland, Stefan Brüning und Siamak Haschemi.
Außerhalb des Graduiertenkollegs möchte ich Roman Nagy danken, der mich
erstmals für das Testen interessiert hat. Mein besonderer Dank gilt Dehla
Sokenou für ihre konstruktive Zusammenarbeit und Martin Gebser für seine
umfangreichen Kommentare und Verbesserungsvorschläge. Schließlich möch-
te ich mich noch bei Alexander Pretschner und Mario Friske für ihre Anre-
gungen und Diskussionen bedanken.

257

LIST OF TABLES

258

Selbstständigkeitserklärung

Hiermit erkläre ich, Stephan Weißleder, geboren am 18.04.1979 in Berlin,
dass

• ich die vorliegende Dissertationsschrift “Test Models and Coverage Cri-
teria for Automatic Model-Based Test Generation with UML State Ma-
chines” selbstständig und ohne unerlaubte Hilfe angefertigt habe,

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe
oder einen solchen besitze und

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät II der Humboldt-Universität zu Berlin bekannt ist gemäß des
Amtlichen Mitteilungsblattes Nr. 34/2006.

Berlin, den

259

	Introduction
	Topic of the Thesis
	Contribution of the Thesis
	Structure of the Thesis

	Preliminaries & Definitions
	Introduction to Testing
	Fault, Error, and Failure
	What is Testing and What is not?
	Testing Techniques
	Test Process
	Test Quality Measurement
	Further References

	Modeling Languages
	Unified Modeling Language
	Object Constraint Language

	Model-Based Testing
	Approaches to Model-Based Testing
	Positioning of this Thesis
	Comparison to Conventional Testing

	Coverage Criteria Formalization
	Issues of Current Coverage Criteria Definitions
	Coverage Criteria and Their Satisfaction
	Formal Definitions of Coverage Criteria

	Automatic Model-Based Test Generation
	Motivation
	Value Partitions
	Value Partitions and Abstract Test Cases
	Deriving Input Partitions From Output Partitions
	Boundary Value Analysis

	Example Test Models
	Sorting Machine
	Freight Elevator
	Triangle Classification
	Track Control
	Train Control

	Test Goal Management
	General Test Goal Management
	Expressions in Disjunctive Normal Form
	Test Goal Extension and Restriction
	Limitations to Test Goal Management

	Test Case Generation Algorithm
	Interpreting OCL Expressions
	Generating Abstract Test Cases
	Selecting Input Values
	Example
	Complexity
	Restrictions

	Case Studies
	Prototype Implementation
	Mutation Analysis
	Results of Mutation Analyis

	Related Work
	Conclusion, Discussion, and Future Work
	Conclusion
	Discussion
	Future Work

	Test Model Transformation
	Industrial Cooperation
	Preliminaries
	Report on the Industrial Cooperation
	Conclusion and Discussion

	Preliminaries
	Definitions
	Basic Transformation Patterns

	Simulated Coverage Criteria Satisfaction
	Introduction
	Preliminaries
	Simulated Satisfaction Relations
	Simulated Satisfaction Graph

	Further Effects of Model Transformations
	Coverage Criteria Combinations
	Coverage Criteria Definitions
	General Considerations

	Related Work
	Conclusion, Discussion, and Future Work
	Conclusion
	Discussion
	Future Work

	Test Model Combination
	State Machines and Class Diagrams
	Introduction
	State Machine Inheritance
	Related Work
	Conclusion, Discussion, and Future Work

	State Machines and Interaction Diagrams
	Motivation
	Interaction Diagram Concatenations
	Coverage Criteria Definitions
	Case Study
	Related Work
	Conclusion, Discussion, and Future Work

	Conclusion

	Test Suite Efficiency
	Introduction
	Preliminaries
	Idea of Test Goal Prioritization
	Applied Search Algorithm
	Online/Offline Testing

	Test Goal Prioritizations
	Random Prioritization (RP)
	Far Elements (FEF/FEL)
	Branching Factor (HBFF/HBFL)
	Atomic Conditions (MACF/MACL)
	Positive Assignment Ratio (HPARF/ HPARL)

	Evaluation
	Effect Measurement for Industrial Test Model
	All-States
	Decision Coverage
	Masking MC/DC
	Application Recommendation

	Related Work
	Conclusion, Discussion, and Future Work

	Conclusions
	Bibliography
	List of Figures
	List of Tables

