
A Workload Model for Benchmarking IMS Core
Networks

George Din
Fraunhofer FOKUS
Berlin, Germany

george.din@fokus.fraunhofer.de

Razvan Petre
Fraunhofer FOKUS

Berlin, Germany
razvan.petre@fokus.fraunhofer.de

Ina Schieferdecker
Technical University of Berlin, and,

Fraunhofer FOKUS
Berlin, Germany

ina.schieferdecker@fokus.fraunhofer.de

Abstract—Performance benchmarking is a method to assess
performance characteristics of various systems across different
chip/system architectures under realistic conditions, to collect
measurements such as success/fail rate, response times or round-
trip delays and to identify problems for scalability or usability
aspects under heavy load.

In this paper, a benchmarking workload model for IP Multi-
media Subsystem (IMS) is introduced. Our performance method-
ology is based on simulation of real world traffic conditions
by defining a set of requirements which best characterize a
population of UEs (user equipment).

I. INTRODUCTION

The IP Multimedia Subsystem (IMS) [1] is a standardised
Next Generation Networking (NGN) architecture for the inte-
gration of mobile and fixed telecommunication, Internet and
multimedia services. It uses a Voice-over-IP (VoIP) imple-
mentation, based on a 3GPP standardised implementation of
SIP [2], and runs over the standard Internet Protocol (IP).
World-wide more and more operators run experiments with
the IP Multimedia Subsystem (IMS) prototypes as overlay
architecture for different IP entrance networks and as docking
station for a multiplicity of service platforms.

As the communications technology progresses, consumers
have come to demand an increasingly varied and individual-
ized set of services and content. QoS is becoming essentially
important, as many of the new multimedia services are more
sensitive to network performance and service degradation.

Performance benchmarking and, in general, performance
evaluation is the activity that validates the system performance
and measures the system capacity [3]. We can distinguish
between three major objectives. Firstly, performance testing is
used to validate the system ability to satisfy the performance
requirements. The performance requirements are expressed as
a) time intervals in which the tested system must accomplish
a given task, or as b) performance throughput, which is the
number of successful transactions per unit of time or as c)
resources utilization. A second goal is to find the capacity and
the boundary limits which is extremely important to know
before deploying the system. However, the ultimate goal of
performance testing is to assist the system designers and
developers in finding performance issues, bottlenecks and/or
to further improve the system.

A benchmark is executed by a test system (TS) which
is a combination of hardware and software application that

emulates the user equipment for a huge number of users.
The test system generates system load to the System under
Test (SUT), responds to the output of the SUT in a relevant
manner, and collects events and other data that are required
to produce the results of the benchmark test. All these actions
perform under the control of a test script that determines for
how long each phase of a test should execute and when the
test should terminate. The traffic load conditions to verify the
performance objectives are called benchmark workload. The
workload design rely on a traffic model which characterizes
various sets of traffic parameters and services.

Recently, the ETSI TISPAN working group 6 [4] released
a performance benchmark standard for IMS/NGN networks,
introducing a common methodology for benchmarking the
performance of IMS implementations. The standard defines
a set of test cases that can be applied to an IMS SUT,
in order to evaluate its performance. The implementation of
this specification has been started in the IMS Benchmarking
Project [5]. In this paper, we present and characterize the first
results running an implementation of the ETSI standard. We
implemented several benchmarking scenarios which are then
combined into a traffic set (a mix of the scenarios).

The paper is structured as follows. The next section intro-
duces IP Multimedia Subsystem and Section III describes the
workload elements used to create a performance benchmark.
Some technical details about the benchmark implementation
are presented in Section IV. The first results of running the
benchmark against an open source IMS core network are
presented in Section V. The conclusion section finalizes the
paper.

II. IP MULTIMEDIA SUBSYSTEM

The IP Multimedia Subsystem (IMS) is the 3GPP standard
architecture and protocol specification for deploying real-time
IP Multimedia services in mobile networks. It provides the
basis platform of a multimedia service model for core voice
services (a.k.a. VoIP) and for new services based on voice,
but including both video (e.g. video conferencing) and data
services (e.g. location). The architecture has been extended
by ETSI TISPAN to support the deployment of IP services in
all communication networks (fixed, cable, etc.).

The IMS architecture is presented in Fig. 1, where the call
control signaling entities are highlighted. The key technology

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2623

Fig. 1. ETSI TISPAN IMS Architecture

behind IMS is the SIP protocol which underlays many of
the important interfaces between elements in an IMS-based
network. The entry point to the core networks is the P-
CSCF (Proxy-Call/Session Control Functions) which is a SIP
proxy between UEs and IMS network. A UE is assigned to
an IMS terminal during registration, and it does not change
for the duration of the registration. The I-CSCF (Interrogat-
ing Call/Session Control Functions) queries the UPSF (User
Profile Server Functions) to retrieve the user location, and
then routes the SIP request to its assigned S-CSCF (Serving
Call/Session Control Functions). S-CSCF is the central node of
the signalling plane; it decides to which application server(s)
the SIP message will be forwarded to, in order to provide their
services.

Our approach for IMS performance testing is to measure the
capacity of the whole core network, also called control plane.
The control plane consists of many components that perform
SIP-based calls to each other, and to the database. A call is
a relationship between one or more subscribers, signalled and
managed through the IMS system. The intent of a subscriber
when using IMS is to make calls, so the obvious way to obtain
realistic behaviour in an IMS test is to model the behaviour
of calls.

The control plane is the part responsible for interacting with
users, therefore it has to be highly available and robust. It
represents also the part which handles most of the traffic routed
through the IMS network. This is the reason for selecting it
first as target of performance evaluation. However, in future,
we plan to extend the framework also for other signaling
entities (i.e. Application Server) and media plane.

III. WORKLOAD MODEL

The workload model used in our benchmark design consists
of three main elements [6]: use-cases structured in scenarios,
benchmark tests which instantiate the scenarios, and bench-
mark test reports generated out of execution traces.

Use-cases define interaction models between users and the
IMS network. We defined call models for three very general
use-cases: registration, voice call set-up and page-mode mes-
saging. An individual interaction path is called a scenario.

Fig. 2. Sequence of messages for voice call establishment

Each scenario is described by its message flow between the
talking entities. An example for a scenario message flow is
presented in Fig. 2 where the sequence of messages for a
voice call is presented. The call scenario implies two UEs
which establish a call session. One of them plays the role of
caller by sending the INVITE message to the IMS network
and the other one plays the role of callee by accepting the call
invitation and responding accordingly. To be more realistic,
we simulate also the ringing time and the hold time.

The benchmark has to simulate a similar behaviour by
providing precise definitions of transaction types and contents.
Additionally, the benchmark should regard the statistical dis-
tributions for transaction types, arrival rates, and other relevant
parameters. The tests specify how the traffic is to be provided
to the SUT and define the measurements to be made from the
SUT and how they are to be reported.

Therefore, for each scenario, metrics and design objectives
are defined. Typical metrics include scenario outcome, re-
sponse times, and message rates. An instance of a scenario
that experiences an error, failure, or timeout is referred to
as an inadequately handled scenario attempt (IHSA). Design
objectives (DO) describe the acceptable rate of inadequately
handled scenario attempts for a use-case. If during the bench-
mark execution, at least one of the use-cases exceeds its
DO we call that the tested system has reached its Design
Objective Capacity (DOC). The DOC indicates the overload
performance limit of the SUT and it represents the threshold
for the accepted QoS. It is however, the output number which
globally characterizes the performance of the tested system.
The DOC can be used as capacity indicator for the overall
performance of the IMS system but also for comparison with
other systems.

A benchmark test combines scenarios from different use-
cases into a traffic set. Within a traffic set, each scenario
has an associated relative occurrence frequency, interpreted

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2624

as its probability of occurrence during the execution of the
test procedure. This frequency indicates how often a scenario
should be instantiated. To obtain relevant results, the occur-
rence frequency has to reflect reality, i.e. voice calls occur
often than registrations. In our implementation, it is defined
as parameter, therefore, various configurations can be easily
experimented.

The execution of a benchmark test implies that the selected
scenarios from various use-cases are executed at the same
time. Each started scenario becomes a scenario attempt. The
load rate applied to the SUT is called Scenario Attempts per
Second (SApS). A scenario which is not handled correctly by
the IMS core is called inadequately handled scenario attempt.
When the frequency of IHSAs of a specific use-case exceeds
the design objective, then the design objective capacity (DOC)
has been exceeded.

The benchmark execution consists of a sequence of several
benchmark steps in order to measure the DOC of the tested
system. After the execution, we validate whether the threshold
for the DOC has been reached by investigating if the rate
percentage of inadequate handled scenarios (IHS) goes above
a threshold (i.e. 0.1%). We extend the execution trials until we
find a load at which the error rate is below the threshold and
another load at which the error rate exceeds the threshold. At
this moment we are sure that we found the overload capacity
of the tested system.

The benchmark test parameters are used to control the
behaviour of the test script. Such parameters have to be
defined for any benchmark in order to allow the tester tune
the load generation before the execution. The most important
parameters are: the number of subscribers, the amount by
which the scenario arrival rate is increased, the number of
steps in a benchmark test, the amount of time for a test to
be executed with a given system load (a test step) before
incrementing the load.

The benchmark report is generated after the execution of a
benchmark test. The report contains a full description of the
SUT configuration, the TS configuration, the process used to
generate the system loads at each SUT reference point, and
data series reporting the benchmark metrics as a function of
time. Many of these graphs are presented in Section V.

IV. BENCHMARK IMPLEMENTATION

In our implementation, TTCN-3 [7] language is used to
specify the behavior of the benchmark scenarios and the load
characteristics.

In TTCN-3, the test component is the building block to
be used in order to simulate concurrent user behaviours. The
parallelism is realized by running in parallel a number of test
components. For better performance, the test components are
distributed over several hosts [8] by using the distributed test-
ing platform from Testing Technologies called TTworkbench
[9].

The load is generated by the SenderComponent. Each
call created by the load generator is associated to an
EventHandler, which will handle all required transactions

for that call. The number of EventHandlers is arbitrary and
depends on the number of simulated users and on the perfor-
mance of the hardware running the test system. Typically, a
component handler simulates a few hundreds of users.

A user may create calls of different types. Additionally, to
reflect the reality, a user may run simultaneous scenarios (e.g.
a voice call and a page-mode messaging). At the creation of a
new call, the selection of the user is arbitrary and the selected
user may call any other user. A user may be used several times
if the run is long enough (for short runs it is very unlikely that
a user is used two times).

During a benchmark run, the scenarios are instantiated
according to an arrival distribution, which describes the arrival
rate of occurrences of scenarios from the traffic set and the
traffic profile. The traffic profile describes the evolution of the
average arrival rate as a function of time over the duration
of the test procedure. An example of such an arrival process
is the Poisson process [10] employed often in simulations of
telecommunication traffic.

The EventHandler processes events received from SUT
and executes appropriate actions according to the scenario
message flow (as described in section III). The event process-
ing starts with the identification of the user id for which the
message is received. This information is extracted from the
protocol information embedded in the message. Once the user
is identified, the handler evaluates the current state of that
user and validates if the new message corresponds to a valid
state, otherwise the transaction is considered inadequately
handled scenario. Next, the user state is updated in the local
user information database. If the received message, requires
follow-up actions on the test system side, new messages are
created and sent to the SUT. At receiving or sending any
message, a log event is generated with precise time-stamp for
the evaluation of the SUT latency.

The connections to the SUT are implemented via ports
and an adaptation layer which handles the SIP messages
interchanged with the SUT. The adaptation layer is based on
the NIST Jain SIP [11], a Java interface to a SIP signaling
stack, and it implements the TRI (TTCN-3 Runtime Inter-
face) interface [7] for TTCN-3 test adaptation. It provides a
standardized interface for handling the SIP events and event
semantics, and offers full transaction support for SIP-based
calls. The test logic (i.e. state handling) is executed by the
TTCN-3 parallel test components.

The SIP protocol messages are bound to carry state-full
information which has to be correlated with information
retrieved from other messages. We implemented the state-full
testing approach where the test behaviour defines a sequence
of requests and settings for controlling the state maintained
between them.

The performance analysis and visualization are based on of-
fline processing (after execution ends) of performance metrics
gathered in the form of log files during the execution. All the
log files from the test servers are collected and merged into one
composite log file. Then, this composite log file is processed
by the traffic analysis tool. The generated benchmark report

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2625

contains various graphs which visualize collected metrics in
different views: dependency on time, delays between events,
stochastic distribution of events, etc. Various statistics (max,
min, average, variation, etc.) are also reported.

V. EXPERIMENTS

The tested system in our experiments is based on the Open
IMS Core [12], an open source implementation of the IMS
architecture. The testbed network consists of Proxy-CSCF,
Interrogating-CSCF and Serving-CSCF which are based on the
SIP Express Router (SER). The UPSF functionality is imple-
mented in CHeSS, a component developed also by Fraunhofer
FOKUS. It is a simple stateless AAA (Authentication, Autho-
rization, Accounting) component which uses MySQL for user
data storage. The four components are installed on the same
server (mem=4GB cpu=4x2.00GHz cache=512KB L2).

We run the benchmark for a user population of 20 000 users.
The scope of the experiments is to determine the DOC of
this IMS network. Our implementation supports currently five
scenarios: 1. registration 2. re-registration, 3. de-registration, 4.
voice-call set-up and 5. page-mode messaging. Any scenario
can be instantiated by any user. For the voice call scenario we
use an exponential distribution of the call-holding time with
a mean of 120s. The load generator selects randomly users
from the population and decides which scenario to run for
them. The traffic set consists of a mix of these scenarios. The
occurrence ratio of each scenario is presented in TABLE I.

TABLE I
TRAFFIC SET COMPOSITION

Scenario type Scenario ratio in the traffic set
registration 5%
re-registration 20%
de-registration 5%
voice-call 30%
page-mode messaging 40%

TABLE II
BENCHMARK RESULTS PER LOAD STEP

Step Load IHS rate Observations
165 0.0
170 0.0
175 0.08 Some errors occurred in this

step but the IHS is still below
the threshold

180 0.0
185 0.24 The DOC limit has been reached

TABLE III
CPU AND MEM CONSUMPTION

Step Load idle user time system time free memory
[SApS] [%] [%] [%] [MB]

170 8.91 38.16 52.52 154.78
175 9.73 38.87 51.04 168.08
180 4.13 36.11 59.18 149.75
185 3.27 35.93 60.26 131.54

We run the benchmark for a number of steps, starting with
165 SApS and increasing the load per step with 5 SApS.

Fig. 3. Call Creation Rate and Error Rate

The step duration is 10 minutes, long enough to have a large
enough number of transactions with the SUT. The results
are captured in TABLE II. According to our benchmarking
procedure, we consider that the DOC has been reached when
the IHS rate exceeds 0.1% which is in our case 180. At
this level the load is still handled correctly by the SUT, but
increasing this load causes that IHS exceeds the threshold.

Fig. 3 shows the last two load steps of 180, and respectively
185 SApS per second. The first line indicates the average load
sent to the SUT (additionally we see the points indicating
the number of scenarios created in each second). The dashed
line indicates the IHS as a percentage of fails out of the total
number of calls. The figure reflects the results presented in
TABLE II, where for the load of 185 we notice an IHS of
0.24.

Fig. 4 shows the average latency of establishing a call
through the IMS core network; we measure the round-trip time
between sending the INVITE until receiving the ACK message
(see Fig. 2). This graph indicates the dependency between the
latency and the load level: during the second load step the
latency is obviously higher. We also notice a spike right at
the beginning of the benchmark which is caused by the SUT
adaptation to the load.

In a further experiment we want to understand how the SUT
behaves around the DOC in terms of resource consumption.
Therefore, we started a resource monitor to observe the CPU
and MEM consumption. The average values for these metrics
is presented in TABLE III. We observe an increase of the
CPU consumption (user time and system time). Also the free
memory decreases from 154.78 MB at 170 SApS to 131.54
MB at 185 SApS; which is explicable since the SUT needs to
process data for more open calls. We also notice some unusual

TABLE IV
BENCHMARK COMPARISON AMONG DIFFERENT CONFIGURATIONS

Hardware Configuration DOC
mem=4GB cpu=4x2.00GHz cache=512KB L2 180

mem=8GB cpu=4x2.00GHz cache=2MB L2 270
mem=8GB cpu=4x2.66GHz cache=4MB L2 450

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2626

Fig. 4. Average duration of routing an INVITE message through IMS core
network

Fig. 5. CPU Consumption

values at 175 step i.e. the system time has a lower value than
the 170 step. It also consumes less memory. That explains
why during the 175 step we notice some inadequately handled
scenarios.

Fig. 5 shows the dependency of the CPU system time
(dashed-dotted line) and user time (dotted line) on load rate.
The demand for this resource is higher for 185 SApS. In the
second step the total CPU consumption is very close to 100%.

Fig. 6 indicates the memory demand (dashed-dotted line)
along the benchmarking procedure. Also in this case the
demand is higher in the second step.

TABLE IV presents a comparison of the DOC numbers for
different servers. The SUT software has been installed with
the same configuration on all servers. The DOC is obviously
higher for the last two servers which have more memory.
However, the cache seems to have the biggest impact since
the last board has similar configuration to the second server
but more cache.

VI. CONCLUSIONS

This paper describes a workload design methodology for
future NGN/IMS networks and presents the first results of
running the benchmark against an IMS core network.

Fig. 6. Memory Consumption

The experimental work, proved the validity of the Design
Objective Capacity concept, which serves as general perfor-
mance indicator. Close to the DOC load, the SUT consumes
a lot of resources (e.g. 95% of CPU). In our specific SUT, the
CPU resource seems to be the cause of reaching the DOC.

The IHS metric shows that a system may fail calls also at
lower loads (below DOC). This is explained by the random
generation of the traffic which may cause some higher rates
from time to time.

The reaction time of the SUT variation depends on the load.
However, we detected seldom spikes while increasing the load
from one step to another. The explanation for this phenomenon
is that the SUT needs a short period of time to adapt to load
changes. This is reflected by a longer response time for all
calls in that period of time.

REFERENCES

[1] 3GPP, “Technical Specification Group Services and System Aspects, IP
Multimedia Subsystem (IMS), Stage 2, V5.15.0, TS 23.228,” 2006.

[2] IETF, “RFC 3261, SIP: Session Initiation Protocol,” 2005. [Online].
Available: tools.ietf.org/html/rfc3261

[3] Jerry Zayu Gao and Jacob Tsao and Ye Wu and Taso H.-S. Jacob, Testing
and Quality Assurance for Component-Based Software. Norwood, MA,
USA: Artech House, Inc., 2003, ISBN 1580534805.

[4] ETSI TISPAN, “IMS/NGN Performance Benchmark, Technical Stan-
dard (TS) 186 008,” February 2007, Sophia-Antipolis, France.

[5] Fraunhofer FOKUS, “IMS Benchmarking Project,” 2006-2007. [Online].
Available: www.fokus.fraunhofer.de/IMSBenchmarking?lang=en

[6] G. Din, “IMS Testing and Benchmarking Tutorial, The 2nd
International FOKUS IMS Workshop,” Nov. 2006. [Online]. Available:
www.fokus.fraunhofer.de/event/ims ws 06/details.php?lang=en

[7] George Din, “TTCN-3,” in Model-Based Testing of Reactive Systems,
ser. Lecture Notes in Computer Science, M. Broy, B. Jonsson, J.-P.
Katoen, M. Leucker, and A. Pretschner, Eds., vol. 3472. Springer,
2004, pp. 465–496, ISBN 3-540-26278-4.

[8] Ina Schieferdecker, George Din, Dimitrios Apostolidis, “Distributed
functional and load tests for Web services,” Int. J. Softw. Tools Technol.
Transf., vol. 7, no. 4, pp. 351–360, 2005, ISSN 1433-2779.

[9] TestingTechnologies, “TTworkbench: an Eclipse based
TTCN-3 IDE,” 2006, Berlin. [Online]. Available:
www.testingtech.de/products/ttwb intro.php

[10] NIST/SEMATECH, “e-Handbook of Statistical Methods,” 2006.
[Online]. Available: www.itl.nist.gov/div898/handbook

[11] Mudumbai Ranganathan, Phelim O’Doherty, “JAIN SIP Tutorial,” 2005.
[Online]. Available: java.sun.com/products/jain/JAIN-SIP-Tutorial.pdf

[12] F. FOKUS, “FOKUS Open Source IMS Core,” 2006. [Online].
Available: www.openimscore.org

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2627

