
M. Núñez et al. (Eds.): TESTCOM/FATES 2009, LNCS 5826, pp. 179–194, 2009.
© IFIP International Federation for Information Processing 2009

Applying Model Checking to Generate Model-Based
Integration Tests from Choreography Models

Sebastian Wieczorek1, Vitaly Kozyura1, Andreas Roth1, Michael Leuschel2,
Jens Bendisposto2, Daniel Plagge2, and Ina Schieferdecker3

1 SAP Research, CEC Darmstadt,
Bleichstr. 8, 64283 Darmstadt, Germany
firstname.lastname@sap.com

2 University of Düsseldorf,
Universitätsstrasse 1, 40225 Düsseldorf, Germany
lastname@cs.uni-duesseldorf.de

3 Fraunhofer Institute for Open Communication Systems (FOKUS),
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

ina.schieferdecker@fokus.fraunhofer.de

Abstract. Choreography models describe the communication protocols be-
tween services. Testing of service choreographies is an important task for the
quality assurance of service-based systems as used e.g. in the context of ser-
vice-oriented architectures (SOA). The formal modeling of service choreogra-
phies enables a model-based integration testing (MBIT) approach. We present
MBIT methods for our service choreography modeling approach called Mes-
sage Choreography Models (MCM). For the model-based testing of service
choreographies, MCMs are translated into Event-B models and used as input
for our test generator which uses the model checker ProB.

Keywords: Model Checking, Model-based Testing, Formal Methods, Integra-
tion Testing, Service Choreography Models.

1 Introduction

Service choreography models play an important role in SOA development and can
provide a basis for ensuring quality at several levels, e.g., through verification and
testing. In previous work [25], we defined precise requirements on choreography
modeling languages that would allow supporting three software quality related devel-
opment methods: design, verification, and testing. However, we observed that state of
the art choreography languages such as WS-CDL [15] or BPMN [1] do not fulfill all
these requirements simultaneously, mainly due to high abstraction level, imprecise
semantics, assumption of ideal channels, lack of termination symbols, etc. Therefore
SAP Research developed a language for modeling service choreographies called Mes-
sage Choreography Modeling (MCM) and an Eclipse-based editor for it. In [26], we
introduced MCM and provided an overview of the implemented editor and of its veri-
fication and testing plugins. In this paper, we present the model based testing (MBT)
approach for service integration testing utilizing MCMs in detail.

180 S. Wieczorek et al.

As MCMs are based on communicating extended finite state machine (EFSM) se-
mantics, constraint solving techniques have to be applied for the automatic test gener-
ation. Therefore, we translate the models to Event-B [4] which can be processed by
the model checker ProB [17]. Using ProB, we are able to generate test suites for ser-
vice integration that are not only covering all transitions of the communication proto-
cols described in the MCMs, but also optimize the test generation towards minimizing
the effort of test concretization (e.g. test data provisioning) and execution. We use
CSP [12] process algebra expressions, synchronized with the Event-B models, to
encode concurrent aspects of the test case generation algorithm. In this paper we aim
to show that MBT and formal methods can be applied in an industrial context and
explain the practical considerations that have to be made (e.g. model coverage, test
suite optimization criteria).

The remainder of this paper is structured as follows. Section 2 briefly introduces
the running example for this paper and explains the necessary steps of our MBIT
approach. In Section 3, the formal MCM syntax is given as a basis for the translation
of MCM to Event-B in Section 4. Section 5 describes the implementation details of
the test generation algorithm and Section 6 discusses related test generation approach-
es. Section 7 concludes the paper and gives future work directions.

2 Overview

Our approach to model-based integration testing (MBIT) comprises the modeling of
the conversation between SOA components, the translation of the obtained models
and the subsequent generation of test suites. In order to illustrate the approach, we
first introduce the following running example, which will be referred to throughout
the paper.

Two service components, a buyer and a seller, negotiate a sales order. The buyer
starts the communication by sending a Request message that will be answered with a
Confirm by the seller. The buyer afterwards has the choice either to send a Cancel
that rolls back the previous communication and allows to restart the negotiation or to
send an Order that successfully concludes the ordering process. Because we assume a
(reliable) communication channel that is not necessarily preserving the message order,
it might be observed that a Cancel is delivered after a new negotiation process already
started.

2.1 MCM Modeling

The service choreography modeling language MCM complements the structural in-
formation of the communicating components (e.g. service interface descriptions and
message types) with information on the message exchange between them. A detailed
discussion of the underlying concepts of MCM and how they support service devel-
opment can be found in [26]. MCM consists of different model types each defining
different aspects of service choreographies.

• Global Choreography Model. The global choreography model (GCM) is a
labeled transition system which specifies a high-level view of the conversation
between service components. Its purpose is to define every allowed sequence of
observed messages.

 Applying Model Checking to Generate MBIT from Choreography Models 181

• Local Partner Model. The local partner models (LPMs) specify the communi-
cation-relevant behavior for exactly one participating service component. Due to
the design process of MCM, each LPM is a structural copy of the GCM with ex-
tra constraints on some of the local transitions, usually leading to the affected
sending actions being deactivated.

• Channel Model. The channel model (CM) describes the characteristics of the
communication channel on which messages are exchanged between the service
components. These characteristics determine for example whether messages sent
by one component preserve their order during transmission and are formalized
by the WS-RM standard [23].

Figure 1 shows how the example described above can be described using the MCM
artifacts. In the GCM at the top of Figure 1, the arrows labeled with an envelope de-
pict the interactions Request, Confirm, Cancel, Order, and Cancel(deprecated1) which
are ordered with the help of the states Start, Request, Reserved, and Ordered. The
states Ordered and Start are so-called target states (thus connected with the filled
circle). Only in these states, the communication between the partners is allowed to
terminate.

 Buyer Seller Send Receive

Fig. 1. GCM (top) of the choreography and LPMs of the buyer (left) and the seller (right)

1 Deprecated here means that the message is out-dated and no-longer relevant as the negotiation

has been restarted.

182 S. Wieczorek et al.

To keep the model deterministic, a set variable called ID_SET is declared and in-
itialized with Ø. It stores the transaction ids from the header of Request messages that
have not yet been addressed by Cancel, Cancel (deprecated) or Order messages (the
headers of these messages also store the ids). Whenever a Request interaction takes
place, an assignment ID_SET := ID_SET ∪ {msg.Header.ID} is executed referring to
the ID stored in the header of the Request message. This assignment is needed to
distinguish between a deprecated and an actual Cancel in state Reserved. Thus for the
interaction Cancel an additional necessary precondition ID_SET \ {msg.Header.ID})
= ∅ ∧ msg.Header.ID ∈ ID_SET can be modeled in MCM while for Can-
cel(deprecated) we add the precondition (ID_SET \ {msg.Header.ID}) ≠ ∅ ∧
msg.Header.ID∈ ID_SET. In Section 3 the formal syntax and the complete set of
preconditions and assignments for our example is described.

The LPM of the buyer partner of our example is depicted in the lower left part of
Figure 1. It is a structural copy of the GCM, but the interaction symbols now represent
send or receive events of the buyer. Moreover some send-events are “inhibited” by
special local constraints. It is for example inhibited that a Cancel(deprecated) is ever
sent (thus these send-events have been erased) and that a Request is sent in the Re-
served state. However, due to possible message overtaking on a channel that does not
guarantee to enforce the message order during transmission, receiving a deprecated
Cancel is possible on the seller side (for details see Section 3 and 4). The LPM of the
seller is depicted in the lower right part of Figure 1.

2.2 Transformation

Our goal is to generate test cases automatically from MCMs. FSM-based approaches
[5,6,11] would be applicable for the test generation if the annotated constraints of the
model have no impact on the communication behavior. In our example however this
is not the case (e.g. the message Cancel(deprecated) is active only if at least two IDs
have been stored in the variable ID_SET). As the example incorporates a quite com-
mon pattern of the enterprise software domain, approaches that are able to compute
constraint-compliant paths have to be used for MCM based test generation.

An analysis showed that implementing a tool for the test generation that directly
runs on MCM models from scratch would be inefficient and hence infeasible. There-
fore, we decided to transform our models to the formal modeling language Event-B.
Event-B [4] is an evolution of the B-Method [1] that puts emphasis on a lean design.
In particular, the core language of Event-B is (with a few exceptions) a subset of the
language used in its predecessor.

Event-B fits quite naturally to MCM: interactions can be seamlessly expressed as
events and the relationship between GCM and LPMs can be formulated as Event-B
refinement (although we use this technique in our transformation, it is not substantial
to understand the test generation and therefore left out of scope for this paper). Also
other formalisms, such as UML [20] have also been successfully translated into
Event-B, so that we were able to utilize past experiences and practices.

Another distinguishing aspect is the tool support in form of the Eclipse-based Ro-
din tool [3]. Due to the extensible architecture, various plugins for Rodin exist. The
tool can be integrated with other Eclipse-based tools such as the MCM editor. With
ProB, a flexible model checker for Event-B models exists that can be utilized for the

 Applying Model Checking to Generate MBIT from Choreography Models 183

test generation and enables us to build on the previous experiences with B and model
checking in the area of MBT.

Apart from deriving tests, a transformation into Event-B opens a variety of possi-
bilities to analyze the model: e.g. checking the refinement relation ensures the local
enforceability of the service choreography. Though being an important part of the
overall MCM approach, also formal model analysis is not in the scope of this paper.

2.3 Test Generation

After having obtained a formal representation of the MCM model, we can employ a
model checker to derive a test suite for integration testing. Similar to [24], we define
integration testing as testing of an assembly of individually already tested compo-
nents. Because of the confidence about the correctness of the participating compo-
nents (which results from quality ensuring techniques on the component level, e.g.
unit tests), our testing approach focuses on showing that each sent message is inter-
preted in the correct way by the receiver. This can be determined by checking for each
interaction, that the intended message effect has been caused. Consequently, a test
suite should cover all receive events modeled in the LPMs.

For automatic test generation, a local model that incorporates information from
both LPMs and the CM (to connect the send and receive events) can be used. Because
various cases studies (e.g. [10]) show that state space explosion is the major stum-
bling point when applying automatic test generation to industrial settings, we decided
to use the GCM to drive the test generation instead of the much more complex local
model. While transition coverage of the GCM is equivalent to receive event coverage
of the LPMs in most cases, the state space that needs to be explored is significantly
lower.

In [27], we discussed possible coverage criteria that can be used to drive service in-
tegration testing and how to choose them accordingly depending on effort and fault
assumptions. For this approach, we decided to use transition coverage, i.e. that all
interactions are contained in the test suite, because it already uncovers a significant
amount of integration faults with relatively small efforts [22]. For example in the
MBIT approach of [6], transition coverage of a global communication model was able
to detect about 90% of integration related faults.

Important from an industrial perspective is, that our approach further aims to be op-
timal regarding the minimization of the effort in the subsequent test concretization (e.g.
provisioning of test data), test execution and test analysis phases. Based on practical
experience of the testing process at SAP [28], we concluded that optimal corresponds
to the following list of objectives which is sorted from highest to lowest priority:

1. Each path should start in the initial state and end in a target state: As described

in [28] setting system states in test preambles is complicated and time consum-
ing. Stopping a test while the system is not in a target state leads to problems
with inconsistent data that might hamper consequent test executions.

2. The length of the longest generated path should be minimal: The longer a test
case gets, the harder it is to maintain. Therefore especially for generated tests a
top priority is to carefully control path lengths.

184 S. Wieczorek et al.

3. Message racing should be minimal: Testing the effects that message racing has
on the interaction is an important part of each test suite. Tests are mostly carried
out in rather idealistic environments where messages are received in the same or-
der they have been sent. Therefore, during test execution, message racing has to
be emulated on the channel in a controlled way, usually leading to much higher
effort.

4. The number of test steps should be minimal: As the effort increases with the
overall length of all test cases, the sum of test steps should be minimized.

Section 5 describes the resulting steps of the test generation and their implementation,
namely the generation of global test cases, the mapping to local test cases and the test
suite optimization.

3 MCM Syntax

In this section, we present the abstract syntax of MCM, which is the basis for the
translation into Event-B and the subsequent test generation.

For a simplified presentation, we assume that all choreographies consist of exactly
two participating components. Then, a message choreography model MCM=(GCM,
LPM1, LPM2, CM) consists of a global choreography model (GCM), two local partner
models (LPM1 and LPM2) and a channel model CM.

Global Choreography Model. The GCM is based on a finite state machine L=(S, I, ⇨), where S is a finite set of states, I is a finite set of interactions and ⇨⊆ℙ(S)×I×S.
The system has an initial state init∈S and target states {e1,…,en}, where ei∈S.

Below we define the language used for additional guards and actions of the GCM.
Since the additional guards and actions refer to entries in the exchanged (XML)
messages, we define record types representing the schemas the messages comply
with. A finite set ET of elementary types (e.g. including the natural numbers) and a
finite set of labels F are given. For these, the set T of record types is inductively de-
fined to be the smallest superset of the elementary types ET, the set CT of complex
types {(f, t) | t ∈ T, f ∈ F}∈CT, and the set of set types Set(t) with t ∈ T. Further each t ∈ T has a unique assigned name name(t) from a set of data type names.

Each interaction i∈I is then assigned to a type itype(i) ∈ T. Further we assume a set
Vt of variables of type t∈T. For each interaction i∈I there is a special variable msgi∈
Vitype(i) referring to the message exchanged during an interaction. Furthermore we
define a set Ct of constants (including e.g. 0,1,2,…, or ∅) of type t∈T.

The set Termt of terms for t∈T is defined as the smallest set with

• Vt ∪ Ct⊆ Termt and
• s.f ∈ Termt with (f, t)∈ct for some complex data type ct∈CT and s∈ Termct
• s1 + s2 ∈ Termt with t=ℕ, s1,s2 ∈ Termℕ (analogous for other arithmetic oper-

ations)
• s1 ∪ s2 ∈ Termt with t=Set(T), s1,s2 ∈ TermSet(T) (analogous for other set opera-

tions)

 Applying Model Checking to Generate MBIT from Choreography Models 185

The set Term consists of the union of Termt over all t ∈ T. The set Form of formu-
lae is the set of first order formulae over Term, the predicates {=,<,>,∈, \, ∪} and the
variables V (respecting typing in an obvious manner).

A global choreography model for a set of data types T is a tuple GCM=(L, V, C,
itype, pre, act) with preconditions pre: I→ Form and actions act: I → (V⇸Term),
where V⇸Term is a partial function with act(i)(v) ∈ Termt and v∈ Vt . The formulae of
a precondition and the terms of actions of an interaction i must not contain variables
msgi’ with i≠i’. If clear from the context we thus just write msg instead of msgi.

Example. As explained in Section 2, the GCM of our example has the following va-
riables, preconditions, and actions:

V = {ID_SET}

pre(Request) = msg.Header.ID ∉ ID_SET act(Request) (ID_SET)=ID_SET ∪ {msg.Header.ID}

pre(Order) = msg.Header.ID ∈ ID_SET act(Order) (ID_SET)=ID_SET \ {msg.Header.ID};

pre(Cancel) = ID_SET \ {msg.Header.ID}) = ∅ ∧ msg.Header.ID ∈ ID_SET
act(Cancel) (ID_SET) = ∅;

pre(Cancel(deprecated))
 = (ID_SET \ {msg.Header.ID}) ≠ ∅ ∧

msg.Header.ID∈ ID_SET

act(Cancel(deprecated)) (ID_SET)
 = (ID_SET \ {msg.Header.ID})

Local Partner Model. LPM1 and LPM2 are obtained from the GCM by duplicating,
for each of them, the states and the global variables. Moreover each interaction i ∈ I is
transformed into the corresponding element from PI={send_i, receive_i | for all i ∈ I}.
The elements from PI inherit types, states, preconditions and actions from elements
from I. LPMs can be further extended with an additional inhibitor function inhib:
I→ℙ(S) which describes that the partner must not send a message associated with I if
it is in one of the states inhib(i).

Example. From the interaction Request in GCM, we obtain send_Request in LPM1 and
receive_Request in LPM2. LPM1 contains a set V1 ={ID_SET1} and pre and act of the
LPMs are adapted accordingly (w.r.t. GCM), e.g.:

pre(send_Request) = msg_1.Header.ID ∉ ID_SET1
act(send_Request) (ID_SET1) = ID_SET1 ∪ {msg.Header.ID}

In order to disallow for send_Request in the state Reserved, we set in-
hib(send_Request)={Reserved}.

Channel Model. Let us consider a set of message types MT⊆ET, which are root ele-
ments of itype(I). The channel model CM is a total function from a sequence of mes-
sages (of types MT) to a sequence of messages (of types MT). With MT’⊆MT and a
message sequence s, πIT’(s) denotes the projection of s to sequences of messages of
types MT’. Let πIT’ be canonically extended on the channel model. The channel model
CM is then based on assignments of disjoint subsets MT’ of MT to channel reliability
guarantees2 which enforce that πIT’(CM) satisfies certain properties. Reliability guar-
antees such as those from WS-RM standard [16] can be modeled:

2 In the context of SAP applications, it is common to assign reliability guarantees per message

type for the communication between two components.

186 S. Wieczorek et al.

• exactly once in order (EOIO) where πIT’(CM) is the identity function on interac-
tion sequences and

• exactly once (EO) where πIT’(CM) is a permutation on an interaction sequence.

4 Translating MCM to Event-B

We chose Event-B for the purpose of obtaining a formally analyzable representation
of MCM, which serves as basis for test derivation. In the following, we give a brief
overview on Event-B, and sketch our translation from MCM.

Event-B is, as mentioned in Section 2.2, an evolution of the B-Method. It distin-
guishes between static and dynamic properties of a system; while static properties are
specified in a context, the dynamic properties are specified in a so-called machine. A
context contains definitions of carrier sets, constants as well as a number of axioms. A
machine basically consists of a finite set of variables and events. The variables form
the state of the machine and can be restricted by invariants. The events describe tran-
sitions from one state into another state. An event has the form EVENT ≙ ANY t
WHERE G(t,x) THEN S(x,t) END. It consists of a set of local variables t, a predi-
cate G, called the guard and a substitution S(x,t). The guard restricts possible val-
ues for t and x. If the guard of an event is false, the event cannot occur and is called
disabled. The substitution S modifies the variables x. It can use the old values of x
and the local variables t. E.g., an event that takes two natural number a, b and adds
the product ab to the state variable x could be written as EVENT ≙ ANY a,b WHERE
a∈ℕ ∧ b∈ℕ THEN x:=x+a*b END. For events that do not require local variables,
the abbreviated form EVENT ≙ WHEN G(x) THEN S(x) END can be used. The
primary way to structure a development in Event-B is through incremental refinement
preserving the system's safety and termination properties.

Design Considerations of Translation. We are interested in a formal representation
of both, the GCM for a global test generation and the two local LPMs with a connect-
ing channel model. The latter is necessary to map the generated global test cases to
local test cases that can be executed on the implemented components. Therefore the
subsequently described translation generates two Event-B machines which use a
common context: the Global Model describing the GCM and the Local Model, de-
scribing the composition (defined as in [8]) of the two LPMs and the CM. Both ma-
chines describe the exchange of messages – the first in terms of observing a message,
and the latter in terms of sending and receiving messages.

As messages with the same type and content may occur more than once, to each
message a unique natural number is assigned, which is incremented when a new mes-
sage is sent. Further to each message a type is assigned while it is possible to specify
the content of the message as functions on the message.

Because we aim at the use of a model checking technique the translation result is
designed to be as deterministic as possible. We experimented with an assignment of
types to messages which is non-deterministically initialized upfront; however this
resulted in an indigestible state space for the model checker.

Translation Description. By defining a translation from the global and from the local
MCM models into the two Event-B machines we obtain a precise semantics of MCM,

 Applying Model Checking to Generate MBIT from Choreography Models 187

which we present in the following. The translation is implemented and can thus be
applied completely automatically.

Global Model. For each transition in the GCM we generate exactly one event. For
representing the states we define a global variable status with elements from a set
type {s1,…,sk}, with constants s1,…,sk. It is initialized with init∈S. The basic
translation of an Interaction i∈I with ({s1,…,sk}, I, sm)∈⇨ is as follows:

i ≙
WHEN
guard1: status=s1 ∨ … ∨ status=sk
THEN
act1: status ≔ sm
END

This basic translation must be augmented with preconditions and actions associated
with that interaction. Therefore we have to represent data types, constants, variables,
terms and formulae used in MCM in terms of Event-B. This is done as follows. For
each data type t∈T we define a set in the Event-B context without explicit characteri-
zation of elements. These sets are named in Event-B according to their type name
name(t). For each complex data type t={(f, t’)} we define a partial function f:
name(t)⇸ name(t’). f is initialized with f≔∅.

The constants and global variables are defined in a standard way. For each constant
c∈Ct an element is added to the set name(t). For the interactions I={i1,…in} we addi-
tionally define a set MESSAGES={name(itype(i1,)),…, name(itype(in))}.

Example. Consider the interaction Request with pre(Request) = msg.Header.ID ∉
ID_SET and act(Request) (ID_SET) = ID_SET ∪ {msg.Header.ID} of our running
example. For it, we define the functions Header: ℕ ⇸ MessageHeader and ID:
MessageHeader⇸InstanceID (MessageHeader and InstanceID here are the cor-
responding names from name(T)), and the local variables t1 and t2 in order to
choose appropriate values to be assigned in the functions. Because
ID_SET∈TSet(InstanceId) we define an Event-B variable ID_SET of type ℙ(InstanceID).

Request ≙
ANY t1 t2
WHERE
grd1: status=Reserved ∨ status=Start
grd2: t1 ∈ MessageHeader
grd3: t2 ∈ InstanceID
grd4: t3 ∉ ID_SET
grd5: t1∈dom(ID)⇒ID(t1)=t2

THEN
act1: status ≔ Requested
act2: Header (msg)≔t1
act3: ID(t1)≔t2
act4: type(msg) ≔ Request
act5: ID_SET≔ID_SET ∪ {t3}
act6: msg ≔ msg + 1
END

The guard grd5 describes a consistency property: if the function is already defined
on an element, then the value must be the corresponding term.

188 S. Wieczorek et al.

For the target state ei⊆S we define a special event terminate with a guard sta-
tus=c1 ∨ ... ∨ status=c1 (for all ci∈ei) and an action targetstate:=true, where
targetstate is a global variable. In each event from the translation of GCM we
additionally add an action targetstate:=false. As a result, targetstate equals
true iff the system state is a target state.

Local Model. In the local model we generate events representing sending and receiv-
ing of messages. Depending on the viewpoint either the send or the receive event can
be defined to be a refinement of the corresponding interaction in GCM.

By definition of LPMs, the variables from V and the status variable are duplicated
(one for each partner). The variable msg is translated as for the GCM in order to keep
the unique message enumeration. It is only used by send events, where it is set in the
same way as in the GCM. In receive events, local variables (parameters) are used in
order to obtain some message from a channel.

A channel is defined as a global variable of type ℙ(ℕ) denoting the set of messages
on the being exchanged. It is initialized with ∅. Typically, we have two partners P1
and P2 and two sequencing contexts (EO and EOIO). In that case we obtain four poss-
ible channels in the model (two in each direction).

Example. Below we show a translation of the interaction Request from the LPMs for
the partners buyer (B) and seller (S) of the example. The duplicated variables can be
distinguished by the corresponding prefixes. The channel from buyer to seller having
the sequencing EO is denoted by channel_BS_EO.

send_Request ≙
ANY t1 t2
WHERE
grd1: B_status=Reserved ∨
 B_status=Startgrd2: t1 ∈
MessageHeader
grd3: t2 ∈ InstanceID
grd4: t3 ∉ B_ID_SET
grd5: t1∈dom(ID)⇒ID(t1)=t2
THEN
act1: B_status≔Requested
act2: Header(msg)≔t1
act3: ID(t1)≔t2
act4: type(msg)≔Request
act5: B_ID_SET≔B_ID_SET ∪ {t3}
act6: channel_BS_EO≔channel_BS_EO∪{msg}
act7: msg ≔ msg + 1
END

receive_Request ≙
ANY m
WHERE
grd1: S_status=Reserved ∨
 S_status=Start
grd2: m ∈ channel_BS_EO
grd3: type(m) = Request
grd4: m ∈ dom(Header)
grd5: Header(m)∈dom(ID)grd6:
ID(Header(m))∉ S_ID_SET
THEN
act1: S_status ≔ Requested
act2: S_ID_SET ≔ S_ID_SET ∪

 {ID(Header(m))}
act3: channel_BS_EO ≔

 channel_BS_EO \ {m}
END

The translation of a send event is very similar to the translation of the correspond-
ing event in GCM. In receive events all function values are already set so the purpose
is to find a suiting message m in the channel and “receive” it (delete from the chan-
nel). If a sequencing context is EOIO then we need an additional guard that checks,
that the message m has a smallest number in the channel.

For inhibitor conditions inhib(i)=C (with i∈I) we add a guard status∉C to the
event send_i. In our example, we add the guard grd6: B_status∉{Reserved}

 Applying Model Checking to Generate MBIT from Choreography Models 189

to send_Request. It remains future work to optimize the translation by simplifying
this and grd1 to B_status=Initial.

Target states are treated similar to the translation of GCM except that we addition-
ally demand channel=∅ for all of them. Only if all channels are empty the system
can enter into a target state. For all other events of the translation from the LPM we
add an action targetstate:=false.

5 Test Generation

In this section we describe how we utilize ProB to obtain an optimized test suite (re-
garding the objectives explained in Section 2.3) from the translated MCM models.

ProB [15] is a validation toolset originally written for the B method. Its automated
animation facilities allow users to animate and model-check their specifications which
are valuable capabilities in the development of formal specifications. While consis-
tency can be proven within tools such as Rodin or AtelierB, they are not capable of
validating whether the model matches the specification that the modeler intended.
Using the ProB animator, confidence in the models can be gained while using the
model checker allows (at least for a part of the model's state space) to verify that a
certain property holds. ProB has been adapted to support a number of formalisms
such as Z, CSP, and CSP||B [9]. Recently a ProB plug-in for the Rodin Platform has
been developed, that can be used to animate and model check an Event-B specifica-
tion within Rodin and to export Event-B models for using it in the ProB application.
In the MCM editor the animation of the generated models is used but a detailed de-
scription in this paper is out of scope.

The test generation algorithm we developed for the MBIT approach based on
MCM is separated into three steps. In the following we describe each step, give de-
tails about the implementation and show the computed results when applying it to the
example from Section 2.

Step 1: Generation of the Initial Global Test Suite. As explained, our aim is to
cover each transition of the global communication model, i.e. each interaction of the
GCM. As each interaction is translated into a separate Event-B event, we have to
ensure that every event is covered by at least one concrete transition in the state space
of the global Event-B model, from which a valid end state can be reached. Note that
the same event is typically covered by many different transitions, as its parameters
can be valued in many different ways. In our particular example, the full state space is
actually infinite, due to the use of integers as message identifiers. In order to reduce
the state space, we have to configure ProB to compute only a few possible ways to
enable any event.3

To satisfy the first and second objective given in Section 2.3, we have extended
ProB to detect when full transition coverage is obtained4. This is gained by exploring
the state space of the model breadth first, stopping when full coverage is achieved.
Note that we also need to secure that for every operation we can reach a valid end state.

3 This approach has proven to be sufficient so far, but in future, we will consider using ProB's

symmetry reduction instead.
4 Note that this is a property that cannot be expressed as an LTL formula, as it is not a property

of individual paths but of the entire state space explored so far.

190 S. Wieczorek et al.

This has been ensured by refining the Event-B translation described in Section 4, by
adding a history variable, storing the set of executed events, and adding a corres-
ponding end-event for every original event e which can be triggered if we are in a
valid end state and if e∈history. Afterwards all traces that end in a target state are
extracted from the explored state space to form the initial test suite. From the example
in this paper, we obtain the following initial test suite:

[Request, Confirm, Order], [Request, Confirm, Cancel],
[Request, Confirm, Cancel, Request, Confirm, Order],
[Request, Confirm, Cancel, Request, Confirm, Cancel],
[Request, Confirm, Request, Confirm, Order],
[Request, Confirm, Request, Confirm, Order, Cancel(depr.)],
[Request, Confirm, Request, Confirm, Cancel],
[Request, Confirm, Request, Confirm, Cancel(depr.), Order],
[Request, Confirm, Request, Confirm, Cancel(depr.), Cancel],
[Request, Confirm, Request, Cancel(depr.), Confirm, Order],
[Request, Confirm, Request, Cancel(depr.), Confirm, Cancel]

The computation takes 0.32 seconds on a 2.33 GHz Core2 Duo laptop and should
scale up to much larger examples.

Step 2: Mapping of Global to Local Paths. In order to obtain executable test cases
the global sequence of message observations for each path has to be mapped to the
corresponding send and receive events of partners. As the GCM uses receive seman-
tics, the global observe sequences can be directly translated to sequences of receive
events. In the case of the path

[Request, Confirm, Request, Confirm, Cancel(depr.), Cancel]

the resulting sequence is (? reads “receives”):

[Seller?Request, Buyer?Confirm, Seller?Request, Buyer?Confirm,
Seller?Cancel(depr.), Seller?Cancel]

Afterwards for each receive event a corresponding send event is generated and added
to the path in such a way that the local behavior descriptions are not violated. In the
mentioned sequence the send event for Cancel(deprecated) has to be added before the
second Request as the Buyer is not able to send these messages in the same order as
they have to be received for the test. The resulting local sequence from our example
therefore is (! reads “sends”):

[Buyer!Request, Seller?Request, Seller!Confirm, Buyer?Confirm,
Buyer!Cancel, Buyer!Request, Seller?Request, Seller!Confirm,
Buyer?Confirm, Seller?Cancel(depr.), Buyer!Cancel, Seller?Cancel]

The message racing in the illustrated local path is underlined. While the Cancel mes-
sage is sent by the buyer before the Request message, the seller receives the Request
message first.

Similar to Step 1, it is again infeasible to exhaustively explore the full state space
(as the state space of the local model is actually even considerably bigger) to find a
suitable mapping from global to local traces. One could encode the problem as an
LTL formula, but this formula will be very big with ensuing consequences for the
complexity of model checking. The solution we have come up with, is to encode the

 Applying Model Checking to Generate MBIT from Choreography Models 191

desired LCM scenarios into a CSP [12] process. This process is synchronized with the
Event-B model, using the technology of [9], suitably guiding the model checker. The
CSP Process is divided into two components.

The first process encodes the desired trace of receive events, followed by an event
on the goal channel, indicating to the model checker that this is a goal state we are
looking for. For the trace given above it looks as follows:

 RECEIVER = Seller?Request -> Buyer?Confirm -> Seller?Request ->
 Buyer?Confirm -> Seller?Cancel(depr.) ->
 Seller?Cancel -> goal -> STOP

The second process encodes the sender events. We know how many send events of
each type must occur, but the order of these is unknown.

 SENDER(n1,n2,n3,n4) =
 n1>0 & Buyer!Request -> SENDER(n1-1,n2,n3,n4) []
 n2>0 & Seller!Confirm -> SENDER(n1,n2-1,n3,n4) []
 n3>0 & Buyer!Cancel -> SENDER(n1,n2,n3-1,n4) []
 n4>0 & Buyer!Order -> SENDER(n1,n2,n3,n4-1)

The sender process is now simply interleaved with the receiver process.5

 MAIN = SENDER(2,2,2,0) ||| RECEIVER

Now, ProB will ensure that every event of the Event-B model synchronizes with an
event of the CSP process (MAIN) guiding it and stopping when the CSP process can
perform an event on the goal channel. For the initial test suite from Step 1, we com-
pute a described mapping for each global trace in 0.064 seconds.

Step 3: Test Suite Reduction. The resulting test suite incorporating the local traces is
now ready to be optimized according to the third and fourth objective from Section
2.3. The optimization of the test suite and the test suite reduction has been imple-
mented in Java. In the first prototypical version we use a brute force algorithm that
computes every possible combination of test cases and selects the optimal one accord-
ing to the given objectives. The computed optimal test suite incorporates the local
equivalents of the following global paths:

[Request, Confirm, Request, Cancel(depr.), Confirm, Order],
[Request, Confirm, Request, Confirm, Cancel(depr.), Cancel],
[Request, Confirm, Request, Confirm, Order, Cancel(depr.)]

For the given example the test suite is produced in less than a millisecond, implying
that it is applicable in practice. However as the algorithms computational complexity
is exponential in the number of test cases of the extended suite, we are planning to
apply the following more sophisticated approach that reduces the number of computa-
tions: First it is analyzed which of the global interactions can only be covered by
paths incorporating message racing. In our example these are the three interactions
called Cancel (deprecated). For these a minimal set of covering paths is determined

5 Note that we could have additionally encoded that every receive event must be preceded by a

corresponding send event in the CSP process, but this will be automatically checked by the
Event-B model anyway.

192 S. Wieczorek et al.

using a greedy algorithm. If more than one possibility exists, the one that has the
highest overall interaction coverage is chosen. The resulting test suite is filled with
the minimum set of paths (not incorporating message racing) that covers the remain-
ing interactions.

6 Related Work

The academic test generators TorX [21] and TGV [14] utilize model checkers to gen-
erate test cases from labeled transition systems (e.g. EFSM). However, problems with
scalability have been identified as the major weakness of their approaches in case
studies of the AGEDIS project [10]. Our work is based on a different abstraction level
and formalism, which we hope will overcome those issues. For example, symmetry
can be detected and exploited very easily in B. Also, the use of a higher-level formal-
ism can significantly reduce the blowup of the associated state space [16].

There are various MBT approaches that generate test cases from classical B mod-
els, upon which we build. One is the commercial LEIROS tool [13], based on the
former BZ-testing tool [7], which is rooted in constraint logic programming to find
boundary values. The other approach [18,19] uses ProB [17] – itself also rooted in
constraint logic programming – and is based on adding tautologies (e.g., x=∅ or x≠∅)
to guards and the invariant and then uses the disjunctive normal form (DNF) to parti-
tion the executed operations according to the particular disjuncts covered. Traces are
generated which try to cover every operation in every reachable partition. An expen-
sive part of [18,19] is the generation of the DNF, which is effectively used to compute
boundary cases. In our approach we overcome the need for the DNF and the need to
find boundary cases by using Event-B, where events are more fine-grained than in
classical B (e.g., due to the absence of complicated substitutions such as CASE or IF-
THEN-ELSE). As such, events are already "partitioned" into individual cases by
construction. Also, the above approaches do not address the problem of optimizing
the test suite or test generation for decomposed systems, which are both a major con-
sideration in our article.

7 Conclusion

In this paper we presented an approach to generate test suites for service choreogra-
phies, modeled in MCM, by using model checking. We described how choreography
models are translated to Event-B models, which are a suitable input format for ProB,
the model checker we used for the test generation. We have extended ProB to detect
transition coverage, and have made use of the possibility to guide an Event-B model
by a CSP process in order to translate high-level traces into low-level ones. The flex-
ibility of ProB was crucial in addressing the various aspects of choreography models.
We further explained the overall integration testing approach including the test goals
and introduced the according test generation algorithm as well as its implementation.
The test suite for the running example of this paper, has been computed automatically
by our implementation. As MCM explicitly considers asynchronous communication,
the generation of test suites incorporating message racing is a direct contribution to

 Applying Model Checking to Generate MBIT from Choreography Models 193

the research community, as is the utilization of a higher level of abstraction (the glob-
al model) to compute an integration test suite, thus avoiding the well known problem
of state explosion.

As explained our test generation approach was designed such that the resulting test
suite causes a minimal effort during later test concretization and execution. However
we see some potential optimizations that could be applied to the test generation steps
without sacrificing our goal of minimal test effort. We will also evaluate the fault
uncovering capabilities of transition coverage compared to other applicable criteria
and therefore will continue to work on suitable test generation algorithms. In order to
assess our approach we are currently conducting additional experiments using typical
case studies at SAP.

Acknowledgments. This work was partially supported by the EC-funded projects
Modelplex6 and Deploy7 (grants no. 034081 and 214158).

References

1. Business Process Modeling Notation (BPMN) Specification 2.0, Submitted Draft Proposal
V0.9, http://www.omg.org/cgi-bin/doc?bmi/08-11-01

2. Abrial, J.-R.: The B–Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: A roadmap for the Rodin toolset. In:
Abstract State Machines, B and Z (2008)

4. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Discrete
Models: Application to Event-B. Fundam. Inform. 77(1-2), 1–28 (2007)

5. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.Ü.: An Optimization Technique for Protocol
Conformance Test Generation Based on UIO Sequences and Rural Chinese Postman
Tours. IEEE Trans. Commun. 39, 1604–1615 (1991)

6. Ali, S., Briand, L., Jaffar-Ur Rehman, M., Asghar, H., Iqbal, M.Z., Nadeem, A.: A State-
Based Approach to Integration Testing Based on UML Models. Information & Software
Technology 49(11–12), 1087–1106 (2007)

7. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F., Utting, M.,
Vacelet, N.: BZ-Testing-Tools: A Tool-Set for Test Generation from Z and Busing Con-
straint Logic Programming. In: Proc. of FATES 2002, pp. 105–120 (2002)

8. Butler, M.: Decomposition Structures for Event-B. In: Integrated Formal Methods (2009)
9. Butler, M., Leuschel, M.: Combining CSP and B for specification and property verifica-

tion. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
221–236. Springer, Heidelberg (2005)

10. Craggs, I., Sardis, M., Heuillard, T.: AGEDIS Case Studies: Model-Based Testing in In-
dustry. In: Proc. of ECMDA 2003, pp. 129–132 (2003)

11. Gallagher, L., Offutt, A.J., Cincotta, A.: Integration Testing of Object-oriented Compo-
nents using Finite State Machines. J. Software Testing, Verification, and Reliability (2006)

12. Hoare, C.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)
13. Jaffuel, E., Legeard, B.: LEIRIOS Test Generator: Automated Test Generation from B

Models. B 2007, 277–280 (2007)

6 http://www.modelplex-ist.org
7 http://www.deploy-project.eu

194 S. Wieczorek et al.

14. Jard, C., Jeron, T.: TGV: theory, principles and algorithms. J. Software Tools for Technol-
ogy Transfer 7(4), 297–315 (2005)

15. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web services choreography description
language. W3C candidate recomm (2005), http://www.w3.org/TR/ws-cdl-10

16. Leuschel, M.: The High Road to Formal Validation. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 4–23. Springer, Heidelberg (2008)

17. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Mandri-
oli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

18. Satpathy, M., Leuschel, M., Butler, M.: ProTest: An Automatic Test Environment for B
Specifications. In: Proc. ENTCS 111, pp. 113–136 (2005)

19. Satpathy, M., Butler, M., Leuschel, M., Ramesh, S.: Automatic Testing from Formal Spe-
cifications. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 95–113.
Springer, Heidelberg (2007)

20. Snook, F., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM Trans.
Softw. Eng. Methodol. 15(1), 92–122 (2006)

21. Tretmans, J., Brinksma, E.: TorX: Automated Model Based Testing. In: EMSOFT (2002)
22. Utting, U., Legeard, B.: Practical Model-Based Testing – A Tools Approach. Morgan

Kaufmann Publ., San Francisco (2007)
23. Web Services Reliable Messaging (WS-ReliableMessaging), Version 1.1. OASIS Consor-

tiom, http://docs.oasis-open.org/ws-rx/wsrm/v1.1/wsrm.pdf
24. Weyuker, E.: Testing component-based software – a cautionary tale. IEEE Software 15(5),

54–59 (1998)
25. Wieczorek, S., Roth, A., Stefanescu, A., Charfi, A.: Precise Steps for Choreography Mod-

eling for SOA Validation and Verification. In: SOSE, pp. 148–153. IEEE, Los Alamitos
(2008)

26. Wieczorek, S., Roth, A., Stefanescu, A., Kozyura, V., Charfi, A., Kraft, F.M., Schiefer-
decker, I.: Viewpoints for Modeling Choreographies in Service-Oriented Architectures. In:
Proc. of WICSA 2009. IEEE Computer Society, Los Alamitos (to appear, 2009)

27. Wieczorek, S., Stefanescu, A., Großmann, J.: Enabling Model-Based Testing for SOA In-
tegration Testing. In: MOTIP, pp. 77–82. Fraunhofer IRB Verlag (2008)

28. Wieczorek, S., Stefanescu, A., Schieferdecker, I.: Model-based Integration Testing of En-
terprise Services. In: Proc. TAICPART. IEEE Computer Society, Los Alamitos (2009)

29. Wieczorek, S., Stefanescu, A., Schieferdecker, I.: Test Data Provision for ERP Systems.
In: Proc. of ICST, pp. 396–403. IEEE Computer Society, Los Alamitos (2008)

	Applying Model Checking to Generate Model-Based Integration Tests from Choreography Models
	Introduction
	Overview
	MCM Modeling
	Transformation
	Test Generation

	MCM Syntax
	Translating MCM to Event-B
	Test Generation
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

