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Abstract—Requirements engineering is vital for a software 
development project’s success or failure. As today’s software 
systems are getting more and more complex, their related 
requirements specifications contain often hundreds, even 
thousands of natural language requirements. The so called 
behavior engineering developed by Geoff Dromey is suitable to 
handle the complexity of large-scale software requirements 
specification by relying on a scalable requirements 
formalization methodology. The outcome of that methodology 
is a requirements model in the behavior tree notation, 
describing the intended, externally visible behavior of the 
system. By deliberately extending the behavior engineering 
methodology with testing activities, those requirements models 
can be further exploited for testing purposes like system and 
acceptance level testing. This also addresses the common 
challenge in model-based testing scenarios, namely the 
availability of a meaningful test model. By reusing a testable 
requirements model, both the system and test model can be 
derived from the same specification, since all requirements are 
intended to be captured in the requirements model properly 
and consistently.  In this paper, we present an approach of how 
behavior trees can be extended with testing activities to 
leverage the definition of test requirements. We also briefly 
discuss how augmenting test-related information to make the 
requirements model more complete in terms of the IEEE830 
standard. 

Keywords-requirements-driven testing, model-based testing, 
validation and verification, behavior engineering, behavior trees, 
testability of requirements  

I.  INTRODUCTION 
Commonly, testing of software systems targets two main 
objectives that are gaining confidence in that the system 
does what it is supposed to do and finding defects or 
anomalies in the system.  
A crucial precondition for finding anomalies is that the 
system’s requirements are captured in an appropriate 
manner to perform further analysis on them. Since testing is 
always a comparison of what a system shall do and what it 
actually does, the quality of a system’s requirements is the 
decisive factor for the quality of the system itself. Knowing 
the quality of a system before it is released is essential to 
avoid maintenance costs resulting from failures in the 
production environment. 
Unfortunately, requirements are not that easy to be defined 
unambiguously. Mostly, they are captured in natural 
language, leading to imprecision and inconsistencies due to 

natural language’s inherent ambiguities. Though lots of 
efforts have been spent in the last decades in research and 
industry, requirements are still hard to specify. Standards 
like [1] support the creation of reliable and sustainable 
software requirements specifications (SRS) by defining 
classification criteria of what characteristics a requirement 
specification shall meet. An SRS is the foundation for the 
definition of system use cases [2]. A system use case defines 
the required functionality of a system (i.e. what it is 
supposed to do). Additionally, they relate the system to 
entities of its environment, expressing how the system is 
intended to be used by those external actors.  
From a tester’s view, use cases are the starting point for 
system and acceptance level (henceforth referred as system 
testing) testing, since they are a valuable input for capturing 
the intended user behavior [4]. Typically, test analysts 
extract test relevant information from the natural language 
SRS and the use case descriptions, which is often a difficult 
task.  The degree of how easily information may be obtained 
and extracted from the SRS and use case descriptions 
influences the efficiency and effectiveness of the 
requirements-driven validation and verification process. 
Validation and verification aims at assessing to what extent  

- the system behaves as it is intended to (all 
requirements are reflected in the system), and 

- the system’s intended behavior is correctly realized 
(each requirement is implemented properly). 

Our work addresses parts of a requirements-driven system 
testing process, including validation and verification, by 

- use of the behavior engineering methodology [5] 
for formalization and validation of requirements 
specification, 

- extending the behavior engineering methodology 
with appropriate test activities, 

- showing how testing information may be weaved 
into behavior trees, and by 

- providing an outlook on how test case 
specifications may benefit from the systematic 
approach of  behavior engineering. 

II. CHALLENGES OF MODEL-BASED TESTING 
According to [6], today’s testing still faces some serious 
challenges. Often, the way in which test cases are derived 
from an SRS is captured is a tester’s implicit knowledge. 
Worse, the quality of the resulting test cases and transitively 
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the informative value of the quality estimation are bound to 
a tester’s ingenuity. If the whole process is barely 
documented (another shortcoming) and the responsible 
tester leaves the test team, or even worse, the whole 
company, the whole process will no longer be reproducible. 
Reproducibility, in fact, is a crucial feature for reliable test 
processes. 
In the opinion of most experts in the realm of testing ([4], 
[7]), model-based testing is a promising approach to 
mitigate these problems. Model-based testing refers to a 
new paradigm of testing, whereby test cases are 
automatically generated from (semi-) formal models. Those 
models are called test models. Roughly, a test model 
describes how a SUT shall be used or tested, whereas the 
system model contains all architectural design details [8]. 
One vital question is how to obtain those test models. MBT 
scenarios are located somewhere between two extremes 
([6], [9]), either creating the test models completely new 
from scratch or trying to exploit already existing system 
models for testing. [10] names the first one as combined 
models approach (Figure 1) and the second one as 
independent models approach (Figure 2). 

 
Figure 1. Combined models approach 

Reminding that testing is always a comparison of intended 
and actual behavior of a SUT, both variants exhibit 
shortcomings. The combined models approach lacks an 
independent interpretation of the requirements by 
transitively taking all errors over into the test model that 
have been made in the system models when representing 
requirements. Such a process will not allow the 
requirements stated in the SRS to be validated. Missing or 
erroneously implemented requirements cannot be identified. 
The independent models approach prevents this by not 
taking already existing models (or just those elements which 
are not relevant for the generation of test cases) into 
account. Instead, a completely new, independent model is 
created for testing purposes, thus, error propagation from 
system model into test model is avoided. The main 
challenge here is that the requirements must be modeled 
twice (see two derivation arrows in Figure 2, going from 
requirements to both a system and a test model). Since 

modeling is not trivial, this approach is resource-consuming 
and error-prone.  
An additional challenge for all model-based testing 
approaches is the educational aspect. Testers are usually not 
that familiar with sophisticated modeling notations and 
languages, thus, if the modeling language is too unfamiliar 
to the tester it will meet with a refusal. 

 
Figure 2. Independent models approach 

To sum up, a key challenge of MBT scenarios is to ease the 
translation of requirements specifications into test models1. 
If there would be an intuitive and easy-to-use methodology 
for the formalization of requirements including checks for 
validity and correctness thereof, time and money could be 
saved by exploiting such a requirements model for test 
model creation. This idea is sketched in Figure 3.  

III. FORMALIZING REQUIREMENTS WITH  
BEHAVIOR TREES 

The behavior engineering methodology was firstly 
presented by [11]. Behavior engineering addresses classical 
problems in the requirements engineering domain by 
systematically capturing and validating the requirements in 
the very first stage of a system’s development process. As 
large system requirements specifications may quickly 
become too complex to be handled and kept consistent by 
human beings, behavior engineering encounters this 
challenge with a scalable, repetitive methodology. Behavior 
engineering consists of two subparts, the Behavior 
Modeling Language (BML) and the Behavior Modeling 
Process (BMP). BML defines all elements and visual 
notations to describe the three different types of trees of the 
behavior engineering methodology: behavior tree (BT), 
composition tree (CT) and structured tree (ST). 
Additionally, due to its highly readable notation, BML 
assists domain and system experts to review the system’s 
intended behavior. Another advantage is that it maintains 
the language of the stakeholder as it is documented in the 
natural language requirements, being very useful for 
walkthroughs and reviews with the stakeholders. BMP 

                                                           
1 Undoubted, system model creation is challenging, too. 
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defines the behavior engineering’s scalable methodology. It 
handles complexity of SRS by tailoring the global problem 
space into a set of local problem spaces, iteratively 
completing the global one [12].   
 

 
Figure 3. Exploiting formalized requirements for system design 

and testing 

The examples on the generic infusion pump, being 
presented subsequently, are taken from the ROTESS [13] 
project, which deals with risk-oriented testing of embedded, 
safety critical systems. The software (and safety) 
requirements are taken from the Generic Infusion Pump 
(GIP) project [14], carried out by University of 
Pennsylvania and Food and Drug Administration (FDA). It 
dealt with the definition of generic safety requirements 
intended to be used for the specification of safety properties 
for different classes of infusion pumps. The following 
requirements definitions have been partially re-engineered 
from MathLab models of the GIP. Due to page restrictions 
and readability, only few trees are presented in the paper. 
The full material can be obtained from [13]. 
F-1.1: If the power button of the infusion pump is pressed, the 
pump will be switched on and initialized. 
F-1.2: The infusion pump is programmed with a basal and bolus 
rate as well as application time by the user. The programmable 
basal rate shall be between 1 ml and 9999 ml.  
F-1.3: When the user starts the infusion pump, it starts infusing 
drugs to the patient until the application timer runs out.. 
F-1.4: After the application timer expires, the pump program will 
be reset automatically. Afterwards, the pump is again 
programmable. 

A. BML in a nutshell 

The BML comprises three different kinds of trees describing 
the requirements models. The composition tree defines 
components and compositional relationships among those 
components. Commonly, there is one composition tree for 
the entire system. The behavior trees specify the behavior 
being obtained from the SRS and intended to be executed by 

components. Each behavior is associated to a component. 
Finally, the BML provides the structured trees which are 
used to describe the structure of the system and to define 
constraints that structure must respect. Due to page 
restriction, we will exclusively focus the BML for behavior 
trees in this article. 
The BML defines a graphical concrete syntax which is 
reused for all of its integrated views. The notation consists 
of two basic graphical constructs: rectangles and edges, 
connecting those rectangles. The rectangles differ into 
behavior and component nodes, depending on the kind of 
tree they are used in. Within behavior trees, the rectangles 
represent behavioral nodes, i.e. behavior, supposed to be 
executed on an associated component. The general elements 
of a behavior node are shown in Figure 4, and explained 
subsequently: 

A. Component name: Specifies the component on 
which the behavior is executed 

B. Operator: Additional operations for threading 
behaviors (not further explained in this article) 

C. Label: An additional label for disambiguation (not 
further explained in this article) 

D. Statement: States the type of behavior more 
precisely 

E. Behavior Type: Delimeters indicating the type of 
behavior 

F. Traceability Link: A reference to a requirement 
outside of the tree 

G. Tag: The box on the left, used for traceability 
information 

H. Traceability status: Indicates how the node relates 
to the traceability link 

 
Figure 4. Syntax of behavior nodes 

Figure 5 depicts the type of behaviors used for capturing 
natural language requirements specifications. Their 
semantics are briefly introduced subsequently: 

a) State realisation: Component C realizes state S 
when entering the node 

b) Selection: Control flow is passed either to 
component X or component Y, depending on the 
evaluation of the condition between the question 
marks. 

c) Event: Represent a high level event. Control flow 
is passed only if the preceding behavior node is 
active and the event e occurs. 
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d) Guard: A continually re-evaluated condition; 
passes control if the condition becomes true. 

e) Input: Indicates the reception of either a message 
from the environmental component (external input) 
or a component within the system boundaries 
(internal input) 

f) Output: Indicates the sending of a message to 
either an environmental component (external 
output), or a component within the system 
boundaries (internal component). 

g) Assertion: Indicates a certain condition must held 
when control flow is passed to the node. 

Nodes are connected with each other by connectors. The 
BML for behavior trees provides two kinds of connectors, 
that are atomic and sequence connectors. Sequence 
connectors end with an arrow at the lower end, whereas 
atomic connectors are just a simple line.  
Behavioral nodes, connected by a sequence connector, may 
be interleaved with the execution of other behavior nodes in 
a separate thread. In opposite, the semantics of the atomic 
connector prohibits interleaving behavior between the 
execution of the source and target behavior. They are 
executed in one indivisible step. 
Most of the examples given in this article use the sequence 
connector. An example of an atomic connector is shown in 
Figure 9 between the selection and the state realization for 
state blocked. 

 
Figure 5. Behavior elements of the BML 

B. Requirements formalization 
The very first step in BMP is the formalization of each 
informally expressed (mostly in natural language) 
requirement into a requirements behavior tree (RBT).  The 
RBT for the requirement F-1.3 is depicted in Figure 6. 
A RBT captures the behavior of a single requirement, as 
well as the components, on which this behavior is intended 
to be executed. The content of the original informal 
requirement is supposed to be translated almost one-to-one 

in the RBT. It is the basic step for any other activity in 
behavior engineering and is succeeded by the integration 
phase. 

 
Figure 6. RBT for requirement F-1.3 

C. Fitness-for-Purpose (integration) 
The integration of single RBTs targets the creation of an 
integrated behavior tree (IBT), giving a holistic view of the 
system’s intended behavior. For that, two steps are to be 
carried out subsequently. 
The first one aims at integrating the RBTs gradually until 
they form the IBT. The identification of integration points 
of a single RBT is based on two foundational axioms, the 
precondition and interaction axiom [11]. The precondition 
axiom states that each “constructive, implementable, 
individual functional requirement of a system, […], has 
associated with it a precondition that needs to be satisfied 
[…]”. The interaction axiom extends the first one by saying 
that such a precondition “[…] must be established by the 
behavior tree of at least one other functional requirement 
that belongs to the set of functional requirements of the 
system.” In short, each RBT interacts somehow with at least 
one other requirement, either by using it as precondition or 
by defining the precondition for it. In fact, there is exactly 
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one RBT that does not have a precondition to satisfy, 
namely the root node of the IBT2. An insight into the IBT 
for of the GIP is given in Figure 8, showing the integrated 
requirements F-1.2 and F-1.3  
If an RBT cannot be integrated with any other (maybe 
already integrated) RBT, it is an indicator of missing or 
misunderstood behavior within the set of RBTs. In that case, 
a second step is required to clarify and correct either the 
requirement, defining the precondition, or the requirement, 
trying to integrate into the precondition. Changes have to be 
affected in a way, allowing the dangling RBT being 
integrated into the IBT.  

D. Specification 
The specification phase serves for the definition of 
executable requirements specifications. A behavior tree 
resulting from the specification phase is called modeling 
behavior tree (MBT). Although this phase is also interesting 
for testing purposes, it will not be discussed in greater detail 
in this paper due to page restrictions. Please refer to [15] 
and [12] for further details. 

IV. PREPARING BEHAVIOR TREES FOR TESTING 

The IBT presents an overview of the system’s intended 
behavior, originated from its informal requirements. Often, 
those requirements merely specify the normal situation 3 , 
neglecting exceptional situations. Those are necessary to 
cover in order to create reliable and stable software systems. 
One could argue, if something is not specified to be 
explicitly forbidden, it is by default allowed. However, this 
is not a satisfying way to deal with insufficiently specified 
software requirements. From a tester’s point of view, the 
determination of how the system shall react in exceptional 
situations is one of the key activities a test analyst has to 
perform at a very early stage of a test process. Therefore, 
this information must be obtainable from the SRS. Among 
others, IEEE 830 standard requires a requirement, captured 
in a SRS, to be complete and verifiable. Those two features 
can be summarized as follows: 

Completeness. The SRS is considered to be complete, iff, 
the definition of the response to all realizable classes of 
input data in all realizable classes of situation for valid and 
invalid values are given. 
Verifiability. A software or a software requirement is 
verifiable (or testable), iff a finite cost-effective process 
exists with which a person or machine can check that the 
software meets the requirement. 

In conjunction, those two features are most relevant for 
testing. Projected to behavior engineering, we propose a 

                                                           
2 If there are reversions within the requirement to the root 
node, than those reversion nodes represent the precondition 
for the root node. 
3 Other terms are happy path or positive way. 

new phase test augmentation, extending the already existing 
methodology. This makes the final requirements model 
containing all required information for both, system and test 
specification, as depicted in Figure 3. 

A. Test augmentation 
Test augmentation comprises two related subtasks as 
depicted in Figure 7, which are test requirement elicitation 
and test requirement formalization. Before going into detail, 
we discuss how to integrate test augmentation into the 
behavior engineering methodology. 
The popular V- and W-process models propose the test 
activities taking place in parallel to system development and 
as early as possible, right after the requirements 
specification has been finalized. Sticking to this suggestion, 
this would mean to weave test augmentation into the 
formalization phase of RBTs. Though this represents the 
earliest point in time in behavior engineering, it seems to be 
inadequate as the content of a RBT is not consolidated yet. 
As already discussed, the formalization phase aims at 
translating the textual description into an RBT and at 
finding implied and missing behaviors related to a 
requirement. Even if all ambiguities in an RBT are resolved, 
it is still possible, that the RBT will be adapted in the 
fitness-for-purpose phase. Additionally, single requirements 
are hardly isolated, but are interrelated to other requirements 
in use cases. Having taken this into account, starting from a 
consistent and stable IBT for the test augmentation phase 
makes most sense: most of the ambiguities among RBTs 
(ideally all) are resolved and use cases can be identified as a 
basis for testing. 

 
Figure 7. Behavior engineering methodology with testing 

activities 

Use cases comprise sets of requirements they realize, thus, 
all information needed to identify. We propose a particular 
way of how to gradually integrate RBTs and IBTs with each 
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Figure 8. Partial IBT covering requirements F-1.3 and F-1.2 

 

 
Figure 9. Partial tIBT covering TR-2 

 
other, to facilitate the identification use cases during this 
stage. The term use case does not necessarily refer to UML 
Use Case diagrams, but rather to the logical concept beyond. 
Due to its scalable and repeatable methodology, RBTs may 
firstly be combined to partial IBTs. Each partial IBT 
represents a particular use case. Even if the usage of partial 
IBTs for a stepwise integration is not new, to use it for 
testing purposes by explicitly gathering requirements 
realizing certain use cases under consideration was not 
proposed yet.  
After the use cases are consolidated, a test analyst can 
review the tree regarding testing purposes and addressing 
the IEEE 830 feature completeness. The question to be 

answered is “Which aspects of this use case need to be 
tested?” The answer is related to quality criteria of software 
systems as standardized by ISO 9126 standard [16]. Use 
cases can be examined from different quality criteria, 
meaning that different quality criteria result in different test 
related information, required to be attached to the IBT.  
The most intuitive quality criterion is functionality, 
specifying to what extent a system fulfills its intended 
functionality. Since an IBT contains the required functional 
behavior of a system, for each scenario of a use case under 
consideration, at least one test requirement should be 
defined. If we apply this to the scenario covering the 
requirements F-1.2 and F-1.3, a corresponding test 
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requirement can be understood as a mirrored scenario. Let 
us consider an example:  
TR-1: Ensure that if a valid bolus range was programmed, the 
infusion pump starts infusing the drugs to the patient. 
In terms of robustness testing (being a sub-criterion of the 
reliability quality characteristics), this use case lacks some 
important information, that is, what should happen if the 
programmed basal rate does not match the valid range (if 
the assertion in Figure 8 is violated). This leads to a second, 
important test requirement. 
TR-2: If the programmed bolus rate is not valid, the infusion pump 
shall be blocked and a warning shall be issued, indicating the 
invalid bolus rate. 
Of course, this information cannot be determined by the test 
analyst alone, rather the system architect must be included 
in the test requirement elicitation. By doing so, the IBT will 
be enriched with test information by formalizing test 
requirements as explicit parts of the IBT. In our simple 
example, the way of deriving the tIBT out of the IBT 
includes the resolution of the assertion node, introduced by 
the original, natural language requirement F.1-2. The 
assertion implies only ranges between 1ml and 9999ml are 
allowed for the bolus rate. This is an important information 
for testing, since it must be clarified how the system shall 
react, if the assertion expression is violated. Therefore, we 
suggest resolving the assertion into two selection nodes; one 
for the intended bolus rate and one for the exceptional 
situation (see Figure 9). The selection nodes refine the 
assertion node, which will be replaced and marked as 
deleted from the system (see the -- traceability status, 
indicating this node is no longer part of the system 
behavior). 
Hence, test requirement formalization leads to an extended 
system behavior, which we call the testable integrated 
behavior tree (tIBT). Inserted behavior nodes are marked as 
introduced for test augmentation. We propose an additional 
traceability status to be included into the behavior 
engineering methodology for testing support4. 
By forming the tIBT, the SRS is completed with respect to 
the IEEE 830 standard. It still contains events that need to 
be refined for latter test specification, but it reveals all 
important behavioral descriptions to measure the reliability 
and quality of the targeted system. 

B. Test specification 
To clarify, test augmentation does not claim to produce an 
already implementable test specification. The tIBT, 
however, contains all information needed to be refined into 

                                                           
4 Traceability statuses describe how this particular behavior 
was identified and created within the behavior tree. It has 
nothing common with traceability of artifacts during a 
model transformation. The traceability status ?! is reused 
from input output labeled transition systems, where ? stands 
for an input into an object and ! for the output from that 
particular object. 

a specification of test cases. To achieve this, we define an 
additional phase: the test specification phase. During test 
specification, the information added by test augmentation is 
exploited to derive a test model, which we call testing 
behavior tree (TBT).  
As Figure 7 depicts, building the IBT is not the final stage 
in behavior engineering. We already mentioned the 
specification phase, with its most important step, the 
resolution of remaining high level events and the 
consolidation of relational behavior. 
During test specification, the MBT, resulting from changing 
the tIBT into an executable one, must be refined in order to 
be usable for further test implementation and execution. As 
mentioned, the MBT is already part of the behavior 
engineering methodology. We claim the testing 
methodology for behavior engineering to be minimal 
invasive by just partially extending the methodology where 
needed. Therefore, it would not bring any benefit to 
introduce a new term testable MBT here. The specification 
phase, leading to the MBT, can be always performed 
whether the input is an IBT or a tIBT whereas both inputs 
results in an executable specification. In the latter case the 
MBT is expressive enough for further test specification, but 
it still does not contain any dedicated testing activities 
solely. If the foundational SRS would contain all needed 
information for testing, IBT and tIBT are identic. 
First step is to identify the SUT boundaries. Fortunately, for 
system testing, this problem is easy to solve. Every 
component, belonging to the software system, is part of the 
SUT. Every external component represents test components, 
stimulating the SUT and observing its reaction. 
The second task is to include additional behavior, indicating 
test case specific actions, which are not present in MBT yet. 
A tIBT does not contain test specific actions, but enough 
information to define test actions subsequently. We 
differentiate stimulation actions, sending test data (or 
stimuli) to the SUT and a validation action, checking the 
outcome or state of the SUT for adequacy regarding its 
specification. 
The stimulation actions are already determined along the 
identification of the SUTs boundary. Any message going 
from environmental components to components, marked as 
SUT, is a test action. In our example, sending anything to 
the infusion pump will be considered as stimulation action.  
Since validation actions have to be stated explicitly in order 
to determine the test case being passed or failed, we suggest 
reusing the assertion behavior nodes for this issue. Figure 10 
depicts the partial TBT for TR-2. Adding assertion nodes to 
locations of the MBT, new paths within the TBT are 
created, each considered representing a test case. By 
weaving that information into behavior tree, we also the 
address the feature verifiability of IEEE 830, saying that as 
long as we can somehow express validation checks as 
assertions and can observe them at the SUT, the 
requirements, for which this test case is being carried out, is 
verifiable.

507



 
Figure 10. Partial TBT covering test actions for requirement TR-2 

 
C. Test case realization  
Once a TBT is specified, it can be exploited in several ways. 
A tester can easily read, understand and implement the TBT 
with an appropriate test implementation language (e.g. 
TTCN-3 [17]). Even if the testing would be done manually, 
the test process still benefits as tests are obtained along a 
structured and well-defined methodology. 
Another idea is to perform further transformations on the 
TBT to go from the behavior tree notation into a more 
commonly used modeling notation for testing like the UML 
testing profile (UTP) [3]. Being a native UML profile, UTP 
inherits all concepts of UML. By transforming the TBT into 
UTP with a state machine describing the SUT’s intended 
and complete abstract behavior, it is possible to perform 
automated test case generation on it, by relying on both 
structural and data coverage criteria. Since UTP can be 
mapped to TTCN-3 natively, UTP test cases can be seen as 
executable, too. Research is currently undertaken to specify 
a transformation between behavior trees and UML state 
machines, although it is not finished yet. 

D. Benefits of test augmentation in behavior trees 
An obvious benefit of test augmentation is the early 
detection of missing (unspecified) behavior. The integration 
phase merely cares for missing or ambiguous behavioral 
parts of requirements preventing their RBTs from being 

integrated with each other. In case the SRS lacks a complete 
requirement, which does not negatively affect the 
integration, such a behavioral leak might not be identified. 
Such a not-affection appears if a requirement is completely 
isolated from other requirements. More precisely, if that 
requirement would result in a leaf node within the behavior 
tree on which no other requirement is depending. Because 
of the early involvement of a test analyst, being an expert in 
finding such leaks, the whole behavior engineering 
methodology may take advantages from it. In fact, checking 
for completeness was already intended by [15] for the 
specification phase, the earlier such detection takes place the 
better for the entire succeeding process phases. In case that 
creating an executable specification is not desired and 
behavior engineering is stopped after the consolidation of 
IBT, the missing behavior will be detected during test 
augmentation phase anyhow. If the specification phase is 
carried out nevertheless, most of the missing behavior 
would hopefully be found during test augmentation, so that 
the specification phase can focus on its other subtasks. 

E. Implied activities in this example 
As mentioned earlier, there is a rigorous methodology 
defined to gradually come from high-level RBTs to the 
executable MBT. This includes a number of refinement 
steps to be performed. What we have not shown in this 
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example is the way how to get from the (commonly) non-
executable tIBT to the executable MBT, which is necessary 
to derive the TBT subsequently. The specification phase 
was implicitly carried out between Figure 9, showing a part 
of the tIBT, and Figure 10, showing the same part of the 
TBT. Since the focus of this article is not to explain or 
discuss the specification phase of the behavior engineering 
methodology, we neglected it due to page restrictions. 
However, in order to comprehend the refinement between 
Figure 9 and Figure 10, we give a short introduction to the 
refinement steps composing the specification phase 
following. 
The most important step is to resolve the generic event 
nodes (??) into a specific event. Event nodes are very often 
used during formalization phase, since it is often not 
possible to determine what concrete event will take place. 
The integration phase, which is still not executable, 
potentially introduces concurrency to the system behavior. It 
is than possible to identify to what kind of concrete event 
(guard, input, output) the generic event node must be refined 
to. A guard node indicates the existence of a parallel 
behavior, fulfilling at some point in time the condition of the 
guard. Input and output nodes indicate the existence of the 
particular counterparts somewhere else in the system. This 
information is commonly absent within a single RBT. In 
Figure 9 the user is supposed to start the infusion pump 
somehow. After specification phase (Figure 10), the way 
how the user starts the pump is stated more concrete by 
saying that the user will send a message to the infusion 
pump (the reception of the message is not relevant for this 
overview and hidden from the figures). 
Another important action is to resolve relational behavior. 
Due to page restriction, we have neglected relations in this 
paper. However, in the tIBT there is an event node defined 
for the infusion pump, stating a warning will be issued. The 
rectangle underneath this node is a relation, clarifying what 
kind of warning will be issued (InvalidBolusRate). To create 
an executable specification this must be resolved into a 
concrete message (in this example). This is depicted in 
Figure 10 where the infusion pump sends a concrete 
message of type InvalidBolusRate to the environment, 
expressed as an external output node. The reception of that 
message is given with the following external input node, 
defined for the component AlarmHandler. 
There are of course other relevant steps needed for complete 
the specification phase, which we did not mentioned here. 
Please refer to the literature regarding specification phase 
we mentioned earlier in this article (see section III.D). 

V. RELATED WORK 
To the knowledge of the authors, adding test information 
and activities into behavior trees have not been addressed 
yet. The methodology we propose fits very well into the 
ISTQB fundamental test process, as explained in[22]: 
Analysis refers to test augmentation (IBT to tIBT), design 
refers to test specification (MBT to TBT), realization can be 

done either in TBT or by going from TBT to UTP and 
execution is a question of what test execution language will 
be chosen. The other phases are rather analytical test 
management steps which are not covered in the 
methodology yet. 
However, behavior engineering used for system design has 
been discussed in several research and industrial projects, all 
listed at [5]. Industry use cases has proven the behavior 
engineering methodology to be extremely beneficial for 
extracting system-behavior models directly from natural 
language requirements ([23], [24], [25]). A similar case 
study like GIP [14] was presented by [18]. The main 
difference is that the authors did not focus testing activities 
as we do and they re-engineered all security and safety 
requirements from the pump’s user manual. 
A comparison of behavior engineering to other popular 
system design techniques is given in [26]. It reuses the case 
study, provided by the Design-Methods Comparison 
Project, extend it with the behavior engineering 
methodology. It also includes a survey of how behavior 
engineering and UML, respectively SysML, differ from 
each other. 
[1] provide a standardized set of characteristics a SRS shall 
met. It also defines structural elements for an SRS document 
should contain, going from of the intended use of the system 
through its environmental interfaces to single requirements 
descriptions.  Additionally, templates of concrete SRS 
structures are provided in the annexes. As often with 
standards, it has to be tailored to meet specific demands. 
The Object Management Group (OMG) adopted a new 
specification for requirements specification, the 
requirements interchange format (ReqIF) [19]. As the name 
suggests, ReqIF is supposed to merely represent a formal 
data model for requirement specifications with no 
methodology defined, on how to come to those 
requirements. 
The sequence-based specification methodology ([20], [21]) 
represents the most similar approach to behavior 
engineering with testing. It deals with the formalization of 
safety-related requirements into Mealy machines. Those 
machines contain the normal situation states plus added 
erroneous states, obtained from the results of a Fault Tree 
Analysis (FTA). Structural coverage algorithms are 
performed on those machines. Although the idea of partially 
creating test models for hazardous situations is similar to 
our methodology, this approach does not deliberately focus 
the integration questions of requirements. Ambiguities, 
propagated in the normal situation machines are not 
systematically identified and removed. 

VI. CONCLUSION AND FURTHER WORK 
In this paper, we briefly presented how testing information 
and activities can be integrated into the behavior 
engineering methodology. We proposed to add new phases, 
the test augmentation and test specification to the initial 
methodology. The first one results in a new kind of behavior 
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tree, we called testable Integrated Behavior Tree (tIBT). A 
tIBT contains all information, considered to be necessary for 
system tests. We also suggested a new sort of traceability 
status for inserted behavior related to testing purposes 
The second phase dealt with the creation of test 
specifications. We added a second new tree, the testing 
behavior tree (TBT). It results from identifying the system’s 
boundaries and the definition of test actions. A TBT can be 
exploited both manually and automatically to implement 
and execute the test cases it specifies. 
The most promising advantage of the approach is the 
elicitation of test requirements by reviewing the IBT from a 
tester’s viewpoint. By doing so, the step to test specification 
gets simpler, because the information relevant for specifying 
test cases is present and does not need to be gradually 
determined somehow. The presented test augmentation 
phase leads to a systematic formalization of test 
requirements, which must be respected for designing and 
testing a system.  
Further work will address in particular the transformation 
from behavior trees to state machines to benefit from 
already existing tooling for the generation of executable test 
cases from state machines. Another vital point is to analyze 
in greater detail how concrete test cases can be specified 
with TBT. It might also be the case that one MBT results in 
several TBT, each defining a distinct constellation of SUT 
boundaries. This comes along with thoughts whether 
behavior engineering can be used for integration or 
subsystem testing. 
Finally, a broader case study will be performed in ROTESS 
and tool support must be prototyped to proof the 
methodology being applicable in real-world scenarios. 
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