
Requirements-driven testing with behavior trees

Marc-Florian Wendland, Ina Schieferdecker and Alain Vouffo-Feudjio
Fraunhofer Institut FOKUS

Berlin, Germany
{marc-florian.wendland, ina.schieferdecker, alain.georges.vouffo.feudjio}@fokus.fraunhofer.de

Abstract—Requirements engineering is vital for a software
development project’s success or failure. As today’s software
systems are getting more and more complex, their related
requirements specifications contain often hundreds, even
thousands of natural language requirements. The so called
behavior engineering developed by Geoff Dromey is suitable to
handle the complexity of large-scale software requirements
specification by relying on a scalable requirements
formalization methodology. The outcome of that methodology
is a requirements model in the behavior tree notation,
describing the intended, externally visible behavior of the
system. By deliberately extending the behavior engineering
methodology with testing activities, those requirements models
can be further exploited for testing purposes like system and
acceptance level testing. This also addresses the common
challenge in model-based testing scenarios, namely the
availability of a meaningful test model. By reusing a testable
requirements model, both the system and test model can be
derived from the same specification, since all requirements are
intended to be captured in the requirements model properly
and consistently. In this paper, we present an approach of how
behavior trees can be extended with testing activities to
leverage the definition of test requirements. We also briefly
discuss how augmenting test-related information to make the
requirements model more complete in terms of the IEEE830
standard.

Keywords-requirements-driven testing, model-based testing,
validation and verification, behavior engineering, behavior trees,
testability of requirements

I. INTRODUCTION
Commonly, testing of software systems targets two main
objectives that are gaining confidence in that the system
does what it is supposed to do and finding defects or
anomalies in the system.
A crucial precondition for finding anomalies is that the
system’s requirements are captured in an appropriate
manner to perform further analysis on them. Since testing is
always a comparison of what a system shall do and what it
actually does, the quality of a system’s requirements is the
decisive factor for the quality of the system itself. Knowing
the quality of a system before it is released is essential to
avoid maintenance costs resulting from failures in the
production environment.
Unfortunately, requirements are not that easy to be defined
unambiguously. Mostly, they are captured in natural
language, leading to imprecision and inconsistencies due to

natural language’s inherent ambiguities. Though lots of
efforts have been spent in the last decades in research and
industry, requirements are still hard to specify. Standards
like [1] support the creation of reliable and sustainable
software requirements specifications (SRS) by defining
classification criteria of what characteristics a requirement
specification shall meet. An SRS is the foundation for the
definition of system use cases [2]. A system use case defines
the required functionality of a system (i.e. what it is
supposed to do). Additionally, they relate the system to
entities of its environment, expressing how the system is
intended to be used by those external actors.
From a tester’s view, use cases are the starting point for
system and acceptance level (henceforth referred as system
testing) testing, since they are a valuable input for capturing
the intended user behavior [4]. Typically, test analysts
extract test relevant information from the natural language
SRS and the use case descriptions, which is often a difficult
task. The degree of how easily information may be obtained
and extracted from the SRS and use case descriptions
influences the efficiency and effectiveness of the
requirements-driven validation and verification process.
Validation and verification aims at assessing to what extent

- the system behaves as it is intended to (all
requirements are reflected in the system), and

- the system’s intended behavior is correctly realized
(each requirement is implemented properly).

Our work addresses parts of a requirements-driven system
testing process, including validation and verification, by

- use of the behavior engineering methodology [5]
for formalization and validation of requirements
specification,

- extending the behavior engineering methodology
with appropriate test activities,

- showing how testing information may be weaved
into behavior trees, and by

- providing an outlook on how test case
specifications may benefit from the systematic
approach of behavior engineering.

II. CHALLENGES OF MODEL-BASED TESTING
According to [6], today’s testing still faces some serious
challenges. Often, the way in which test cases are derived
from an SRS is captured is a tester’s implicit knowledge.
Worse, the quality of the resulting test cases and transitively

2011 Fourth International Conference on Software Testing, Verification and Validation Workshops

978-0-7695-4345-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICSTW.2011.25

501

the informative value of the quality estimation are bound to
a tester’s ingenuity. If the whole process is barely
documented (another shortcoming) and the responsible
tester leaves the test team, or even worse, the whole
company, the whole process will no longer be reproducible.
Reproducibility, in fact, is a crucial feature for reliable test
processes.
In the opinion of most experts in the realm of testing ([4],
[7]), model-based testing is a promising approach to
mitigate these problems. Model-based testing refers to a
new paradigm of testing, whereby test cases are
automatically generated from (semi-) formal models. Those
models are called test models. Roughly, a test model
describes how a SUT shall be used or tested, whereas the
system model contains all architectural design details [8].
One vital question is how to obtain those test models. MBT
scenarios are located somewhere between two extremes
([6], [9]), either creating the test models completely new
from scratch or trying to exploit already existing system
models for testing. [10] names the first one as combined
models approach (Figure 1) and the second one as
independent models approach (Figure 2).

Figure 1. Combined models approach

Reminding that testing is always a comparison of intended
and actual behavior of a SUT, both variants exhibit
shortcomings. The combined models approach lacks an
independent interpretation of the requirements by
transitively taking all errors over into the test model that
have been made in the system models when representing
requirements. Such a process will not allow the
requirements stated in the SRS to be validated. Missing or
erroneously implemented requirements cannot be identified.
The independent models approach prevents this by not
taking already existing models (or just those elements which
are not relevant for the generation of test cases) into
account. Instead, a completely new, independent model is
created for testing purposes, thus, error propagation from
system model into test model is avoided. The main
challenge here is that the requirements must be modeled
twice (see two derivation arrows in Figure 2, going from
requirements to both a system and a test model). Since

modeling is not trivial, this approach is resource-consuming
and error-prone.
An additional challenge for all model-based testing
approaches is the educational aspect. Testers are usually not
that familiar with sophisticated modeling notations and
languages, thus, if the modeling language is too unfamiliar
to the tester it will meet with a refusal.

Figure 2. Independent models approach

To sum up, a key challenge of MBT scenarios is to ease the
translation of requirements specifications into test models1.
If there would be an intuitive and easy-to-use methodology
for the formalization of requirements including checks for
validity and correctness thereof, time and money could be
saved by exploiting such a requirements model for test
model creation. This idea is sketched in Figure 3.

III. FORMALIZING REQUIREMENTS WITH
BEHAVIOR TREES

The behavior engineering methodology was firstly
presented by [11]. Behavior engineering addresses classical
problems in the requirements engineering domain by
systematically capturing and validating the requirements in
the very first stage of a system’s development process. As
large system requirements specifications may quickly
become too complex to be handled and kept consistent by
human beings, behavior engineering encounters this
challenge with a scalable, repetitive methodology. Behavior
engineering consists of two subparts, the Behavior
Modeling Language (BML) and the Behavior Modeling
Process (BMP). BML defines all elements and visual
notations to describe the three different types of trees of the
behavior engineering methodology: behavior tree (BT),
composition tree (CT) and structured tree (ST).
Additionally, due to its highly readable notation, BML
assists domain and system experts to review the system’s
intended behavior. Another advantage is that it maintains
the language of the stakeholder as it is documented in the
natural language requirements, being very useful for
walkthroughs and reviews with the stakeholders. BMP

1 Undoubted, system model creation is challenging, too.

502

defines the behavior engineering’s scalable methodology. It
handles complexity of SRS by tailoring the global problem
space into a set of local problem spaces, iteratively
completing the global one [12].

Figure 3. Exploiting formalized requirements for system design

and testing

The examples on the generic infusion pump, being
presented subsequently, are taken from the ROTESS [13]
project, which deals with risk-oriented testing of embedded,
safety critical systems. The software (and safety)
requirements are taken from the Generic Infusion Pump
(GIP) project [14], carried out by University of
Pennsylvania and Food and Drug Administration (FDA). It
dealt with the definition of generic safety requirements
intended to be used for the specification of safety properties
for different classes of infusion pumps. The following
requirements definitions have been partially re-engineered
from MathLab models of the GIP. Due to page restrictions
and readability, only few trees are presented in the paper.
The full material can be obtained from [13].
F-1.1: If the power button of the infusion pump is pressed, the
pump will be switched on and initialized.
F-1.2: The infusion pump is programmed with a basal and bolus
rate as well as application time by the user. The programmable
basal rate shall be between 1 ml and 9999 ml.
F-1.3: When the user starts the infusion pump, it starts infusing
drugs to the patient until the application timer runs out..
F-1.4: After the application timer expires, the pump program will
be reset automatically. Afterwards, the pump is again
programmable.

A. BML in a nutshell

The BML comprises three different kinds of trees describing
the requirements models. The composition tree defines
components and compositional relationships among those
components. Commonly, there is one composition tree for
the entire system. The behavior trees specify the behavior
being obtained from the SRS and intended to be executed by

components. Each behavior is associated to a component.
Finally, the BML provides the structured trees which are
used to describe the structure of the system and to define
constraints that structure must respect. Due to page
restriction, we will exclusively focus the BML for behavior
trees in this article.
The BML defines a graphical concrete syntax which is
reused for all of its integrated views. The notation consists
of two basic graphical constructs: rectangles and edges,
connecting those rectangles. The rectangles differ into
behavior and component nodes, depending on the kind of
tree they are used in. Within behavior trees, the rectangles
represent behavioral nodes, i.e. behavior, supposed to be
executed on an associated component. The general elements
of a behavior node are shown in Figure 4, and explained
subsequently:

A. Component name: Specifies the component on
which the behavior is executed

B. Operator: Additional operations for threading
behaviors (not further explained in this article)

C. Label: An additional label for disambiguation (not
further explained in this article)

D. Statement: States the type of behavior more
precisely

E. Behavior Type: Delimeters indicating the type of
behavior

F. Traceability Link: A reference to a requirement
outside of the tree

G. Tag: The box on the left, used for traceability
information

H. Traceability status: Indicates how the node relates
to the traceability link

Figure 4. Syntax of behavior nodes

Figure 5 depicts the type of behaviors used for capturing
natural language requirements specifications. Their
semantics are briefly introduced subsequently:

a) State realisation: Component C realizes state S
when entering the node

b) Selection: Control flow is passed either to
component X or component Y, depending on the
evaluation of the condition between the question
marks.

c) Event: Represent a high level event. Control flow
is passed only if the preceding behavior node is
active and the event e occurs.

503

d) Guard: A continually re-evaluated condition;
passes control if the condition becomes true.

e) Input: Indicates the reception of either a message
from the environmental component (external input)
or a component within the system boundaries
(internal input)

f) Output: Indicates the sending of a message to
either an environmental component (external
output), or a component within the system
boundaries (internal component).

g) Assertion: Indicates a certain condition must held
when control flow is passed to the node.

Nodes are connected with each other by connectors. The
BML for behavior trees provides two kinds of connectors,
that are atomic and sequence connectors. Sequence
connectors end with an arrow at the lower end, whereas
atomic connectors are just a simple line.
Behavioral nodes, connected by a sequence connector, may
be interleaved with the execution of other behavior nodes in
a separate thread. In opposite, the semantics of the atomic
connector prohibits interleaving behavior between the
execution of the source and target behavior. They are
executed in one indivisible step.
Most of the examples given in this article use the sequence
connector. An example of an atomic connector is shown in
Figure 9 between the selection and the state realization for
state blocked.

Figure 5. Behavior elements of the BML

B. Requirements formalization
The very first step in BMP is the formalization of each
informally expressed (mostly in natural language)
requirement into a requirements behavior tree (RBT). The
RBT for the requirement F-1.3 is depicted in Figure 6.
A RBT captures the behavior of a single requirement, as
well as the components, on which this behavior is intended
to be executed. The content of the original informal
requirement is supposed to be translated almost one-to-one

in the RBT. It is the basic step for any other activity in
behavior engineering and is succeeded by the integration
phase.

Figure 6. RBT for requirement F-1.3

C. Fitness-for-Purpose (integration)
The integration of single RBTs targets the creation of an
integrated behavior tree (IBT), giving a holistic view of the
system’s intended behavior. For that, two steps are to be
carried out subsequently.
The first one aims at integrating the RBTs gradually until
they form the IBT. The identification of integration points
of a single RBT is based on two foundational axioms, the
precondition and interaction axiom [11]. The precondition
axiom states that each “constructive, implementable,
individual functional requirement of a system, […], has
associated with it a precondition that needs to be satisfied
[…]”. The interaction axiom extends the first one by saying
that such a precondition “[…] must be established by the
behavior tree of at least one other functional requirement
that belongs to the set of functional requirements of the
system.” In short, each RBT interacts somehow with at least
one other requirement, either by using it as precondition or
by defining the precondition for it. In fact, there is exactly

504

one RBT that does not have a precondition to satisfy,
namely the root node of the IBT2. An insight into the IBT
for of the GIP is given in Figure 8, showing the integrated
requirements F-1.2 and F-1.3
If an RBT cannot be integrated with any other (maybe
already integrated) RBT, it is an indicator of missing or
misunderstood behavior within the set of RBTs. In that case,
a second step is required to clarify and correct either the
requirement, defining the precondition, or the requirement,
trying to integrate into the precondition. Changes have to be
affected in a way, allowing the dangling RBT being
integrated into the IBT.

D. Specification
The specification phase serves for the definition of
executable requirements specifications. A behavior tree
resulting from the specification phase is called modeling
behavior tree (MBT). Although this phase is also interesting
for testing purposes, it will not be discussed in greater detail
in this paper due to page restrictions. Please refer to [15]
and [12] for further details.

IV. PREPARING BEHAVIOR TREES FOR TESTING

The IBT presents an overview of the system’s intended
behavior, originated from its informal requirements. Often,
those requirements merely specify the normal situation 3 ,
neglecting exceptional situations. Those are necessary to
cover in order to create reliable and stable software systems.
One could argue, if something is not specified to be
explicitly forbidden, it is by default allowed. However, this
is not a satisfying way to deal with insufficiently specified
software requirements. From a tester’s point of view, the
determination of how the system shall react in exceptional
situations is one of the key activities a test analyst has to
perform at a very early stage of a test process. Therefore,
this information must be obtainable from the SRS. Among
others, IEEE 830 standard requires a requirement, captured
in a SRS, to be complete and verifiable. Those two features
can be summarized as follows:

Completeness. The SRS is considered to be complete, iff,
the definition of the response to all realizable classes of
input data in all realizable classes of situation for valid and
invalid values are given.
Verifiability. A software or a software requirement is
verifiable (or testable), iff a finite cost-effective process
exists with which a person or machine can check that the
software meets the requirement.

In conjunction, those two features are most relevant for
testing. Projected to behavior engineering, we propose a

2 If there are reversions within the requirement to the root
node, than those reversion nodes represent the precondition
for the root node.
3 Other terms are happy path or positive way.

new phase test augmentation, extending the already existing
methodology. This makes the final requirements model
containing all required information for both, system and test
specification, as depicted in Figure 3.

A. Test augmentation
Test augmentation comprises two related subtasks as
depicted in Figure 7, which are test requirement elicitation
and test requirement formalization. Before going into detail,
we discuss how to integrate test augmentation into the
behavior engineering methodology.
The popular V- and W-process models propose the test
activities taking place in parallel to system development and
as early as possible, right after the requirements
specification has been finalized. Sticking to this suggestion,
this would mean to weave test augmentation into the
formalization phase of RBTs. Though this represents the
earliest point in time in behavior engineering, it seems to be
inadequate as the content of a RBT is not consolidated yet.
As already discussed, the formalization phase aims at
translating the textual description into an RBT and at
finding implied and missing behaviors related to a
requirement. Even if all ambiguities in an RBT are resolved,
it is still possible, that the RBT will be adapted in the
fitness-for-purpose phase. Additionally, single requirements
are hardly isolated, but are interrelated to other requirements
in use cases. Having taken this into account, starting from a
consistent and stable IBT for the test augmentation phase
makes most sense: most of the ambiguities among RBTs
(ideally all) are resolved and use cases can be identified as a
basis for testing.

Figure 7. Behavior engineering methodology with testing

activities

Use cases comprise sets of requirements they realize, thus,
all information needed to identify. We propose a particular
way of how to gradually integrate RBTs and IBTs with each

505

Figure 8. Partial IBT covering requirements F-1.3 and F-1.2

Figure 9. Partial tIBT covering TR-2

other, to facilitate the identification use cases during this
stage. The term use case does not necessarily refer to UML
Use Case diagrams, but rather to the logical concept beyond.
Due to its scalable and repeatable methodology, RBTs may
firstly be combined to partial IBTs. Each partial IBT
represents a particular use case. Even if the usage of partial
IBTs for a stepwise integration is not new, to use it for
testing purposes by explicitly gathering requirements
realizing certain use cases under consideration was not
proposed yet.
After the use cases are consolidated, a test analyst can
review the tree regarding testing purposes and addressing
the IEEE 830 feature completeness. The question to be

answered is “Which aspects of this use case need to be
tested?” The answer is related to quality criteria of software
systems as standardized by ISO 9126 standard [16]. Use
cases can be examined from different quality criteria,
meaning that different quality criteria result in different test
related information, required to be attached to the IBT.
The most intuitive quality criterion is functionality,
specifying to what extent a system fulfills its intended
functionality. Since an IBT contains the required functional
behavior of a system, for each scenario of a use case under
consideration, at least one test requirement should be
defined. If we apply this to the scenario covering the
requirements F-1.2 and F-1.3, a corresponding test

506

requirement can be understood as a mirrored scenario. Let
us consider an example:
TR-1: Ensure that if a valid bolus range was programmed, the
infusion pump starts infusing the drugs to the patient.
In terms of robustness testing (being a sub-criterion of the
reliability quality characteristics), this use case lacks some
important information, that is, what should happen if the
programmed basal rate does not match the valid range (if
the assertion in Figure 8 is violated). This leads to a second,
important test requirement.
TR-2: If the programmed bolus rate is not valid, the infusion pump
shall be blocked and a warning shall be issued, indicating the
invalid bolus rate.
Of course, this information cannot be determined by the test
analyst alone, rather the system architect must be included
in the test requirement elicitation. By doing so, the IBT will
be enriched with test information by formalizing test
requirements as explicit parts of the IBT. In our simple
example, the way of deriving the tIBT out of the IBT
includes the resolution of the assertion node, introduced by
the original, natural language requirement F.1-2. The
assertion implies only ranges between 1ml and 9999ml are
allowed for the bolus rate. This is an important information
for testing, since it must be clarified how the system shall
react, if the assertion expression is violated. Therefore, we
suggest resolving the assertion into two selection nodes; one
for the intended bolus rate and one for the exceptional
situation (see Figure 9). The selection nodes refine the
assertion node, which will be replaced and marked as
deleted from the system (see the -- traceability status,
indicating this node is no longer part of the system
behavior).
Hence, test requirement formalization leads to an extended
system behavior, which we call the testable integrated
behavior tree (tIBT). Inserted behavior nodes are marked as
introduced for test augmentation. We propose an additional
traceability status to be included into the behavior
engineering methodology for testing support4.
By forming the tIBT, the SRS is completed with respect to
the IEEE 830 standard. It still contains events that need to
be refined for latter test specification, but it reveals all
important behavioral descriptions to measure the reliability
and quality of the targeted system.

B. Test specification
To clarify, test augmentation does not claim to produce an
already implementable test specification. The tIBT,
however, contains all information needed to be refined into

4 Traceability statuses describe how this particular behavior
was identified and created within the behavior tree. It has
nothing common with traceability of artifacts during a
model transformation. The traceability status ?! is reused
from input output labeled transition systems, where ? stands
for an input into an object and ! for the output from that
particular object.

a specification of test cases. To achieve this, we define an
additional phase: the test specification phase. During test
specification, the information added by test augmentation is
exploited to derive a test model, which we call testing
behavior tree (TBT).
As Figure 7 depicts, building the IBT is not the final stage
in behavior engineering. We already mentioned the
specification phase, with its most important step, the
resolution of remaining high level events and the
consolidation of relational behavior.
During test specification, the MBT, resulting from changing
the tIBT into an executable one, must be refined in order to
be usable for further test implementation and execution. As
mentioned, the MBT is already part of the behavior
engineering methodology. We claim the testing
methodology for behavior engineering to be minimal
invasive by just partially extending the methodology where
needed. Therefore, it would not bring any benefit to
introduce a new term testable MBT here. The specification
phase, leading to the MBT, can be always performed
whether the input is an IBT or a tIBT whereas both inputs
results in an executable specification. In the latter case the
MBT is expressive enough for further test specification, but
it still does not contain any dedicated testing activities
solely. If the foundational SRS would contain all needed
information for testing, IBT and tIBT are identic.
First step is to identify the SUT boundaries. Fortunately, for
system testing, this problem is easy to solve. Every
component, belonging to the software system, is part of the
SUT. Every external component represents test components,
stimulating the SUT and observing its reaction.
The second task is to include additional behavior, indicating
test case specific actions, which are not present in MBT yet.
A tIBT does not contain test specific actions, but enough
information to define test actions subsequently. We
differentiate stimulation actions, sending test data (or
stimuli) to the SUT and a validation action, checking the
outcome or state of the SUT for adequacy regarding its
specification.
The stimulation actions are already determined along the
identification of the SUTs boundary. Any message going
from environmental components to components, marked as
SUT, is a test action. In our example, sending anything to
the infusion pump will be considered as stimulation action.
Since validation actions have to be stated explicitly in order
to determine the test case being passed or failed, we suggest
reusing the assertion behavior nodes for this issue. Figure 10
depicts the partial TBT for TR-2. Adding assertion nodes to
locations of the MBT, new paths within the TBT are
created, each considered representing a test case. By
weaving that information into behavior tree, we also the
address the feature verifiability of IEEE 830, saying that as
long as we can somehow express validation checks as
assertions and can observe them at the SUT, the
requirements, for which this test case is being carried out, is
verifiable.

507

Figure 10. Partial TBT covering test actions for requirement TR-2

C. Test case realization
Once a TBT is specified, it can be exploited in several ways.
A tester can easily read, understand and implement the TBT
with an appropriate test implementation language (e.g.
TTCN-3 [17]). Even if the testing would be done manually,
the test process still benefits as tests are obtained along a
structured and well-defined methodology.
Another idea is to perform further transformations on the
TBT to go from the behavior tree notation into a more
commonly used modeling notation for testing like the UML
testing profile (UTP) [3]. Being a native UML profile, UTP
inherits all concepts of UML. By transforming the TBT into
UTP with a state machine describing the SUT’s intended
and complete abstract behavior, it is possible to perform
automated test case generation on it, by relying on both
structural and data coverage criteria. Since UTP can be
mapped to TTCN-3 natively, UTP test cases can be seen as
executable, too. Research is currently undertaken to specify
a transformation between behavior trees and UML state
machines, although it is not finished yet.

D. Benefits of test augmentation in behavior trees
An obvious benefit of test augmentation is the early
detection of missing (unspecified) behavior. The integration
phase merely cares for missing or ambiguous behavioral
parts of requirements preventing their RBTs from being

integrated with each other. In case the SRS lacks a complete
requirement, which does not negatively affect the
integration, such a behavioral leak might not be identified.
Such a not-affection appears if a requirement is completely
isolated from other requirements. More precisely, if that
requirement would result in a leaf node within the behavior
tree on which no other requirement is depending. Because
of the early involvement of a test analyst, being an expert in
finding such leaks, the whole behavior engineering
methodology may take advantages from it. In fact, checking
for completeness was already intended by [15] for the
specification phase, the earlier such detection takes place the
better for the entire succeeding process phases. In case that
creating an executable specification is not desired and
behavior engineering is stopped after the consolidation of
IBT, the missing behavior will be detected during test
augmentation phase anyhow. If the specification phase is
carried out nevertheless, most of the missing behavior
would hopefully be found during test augmentation, so that
the specification phase can focus on its other subtasks.

E. Implied activities in this example
As mentioned earlier, there is a rigorous methodology
defined to gradually come from high-level RBTs to the
executable MBT. This includes a number of refinement
steps to be performed. What we have not shown in this

508

example is the way how to get from the (commonly) non-
executable tIBT to the executable MBT, which is necessary
to derive the TBT subsequently. The specification phase
was implicitly carried out between Figure 9, showing a part
of the tIBT, and Figure 10, showing the same part of the
TBT. Since the focus of this article is not to explain or
discuss the specification phase of the behavior engineering
methodology, we neglected it due to page restrictions.
However, in order to comprehend the refinement between
Figure 9 and Figure 10, we give a short introduction to the
refinement steps composing the specification phase
following.
The most important step is to resolve the generic event
nodes (??) into a specific event. Event nodes are very often
used during formalization phase, since it is often not
possible to determine what concrete event will take place.
The integration phase, which is still not executable,
potentially introduces concurrency to the system behavior. It
is than possible to identify to what kind of concrete event
(guard, input, output) the generic event node must be refined
to. A guard node indicates the existence of a parallel
behavior, fulfilling at some point in time the condition of the
guard. Input and output nodes indicate the existence of the
particular counterparts somewhere else in the system. This
information is commonly absent within a single RBT. In
Figure 9 the user is supposed to start the infusion pump
somehow. After specification phase (Figure 10), the way
how the user starts the pump is stated more concrete by
saying that the user will send a message to the infusion
pump (the reception of the message is not relevant for this
overview and hidden from the figures).
Another important action is to resolve relational behavior.
Due to page restriction, we have neglected relations in this
paper. However, in the tIBT there is an event node defined
for the infusion pump, stating a warning will be issued. The
rectangle underneath this node is a relation, clarifying what
kind of warning will be issued (InvalidBolusRate). To create
an executable specification this must be resolved into a
concrete message (in this example). This is depicted in
Figure 10 where the infusion pump sends a concrete
message of type InvalidBolusRate to the environment,
expressed as an external output node. The reception of that
message is given with the following external input node,
defined for the component AlarmHandler.
There are of course other relevant steps needed for complete
the specification phase, which we did not mentioned here.
Please refer to the literature regarding specification phase
we mentioned earlier in this article (see section III.D).

V. RELATED WORK
To the knowledge of the authors, adding test information
and activities into behavior trees have not been addressed
yet. The methodology we propose fits very well into the
ISTQB fundamental test process, as explained in[22]:
Analysis refers to test augmentation (IBT to tIBT), design
refers to test specification (MBT to TBT), realization can be

done either in TBT or by going from TBT to UTP and
execution is a question of what test execution language will
be chosen. The other phases are rather analytical test
management steps which are not covered in the
methodology yet.
However, behavior engineering used for system design has
been discussed in several research and industrial projects, all
listed at [5]. Industry use cases has proven the behavior
engineering methodology to be extremely beneficial for
extracting system-behavior models directly from natural
language requirements ([23], [24], [25]). A similar case
study like GIP [14] was presented by [18]. The main
difference is that the authors did not focus testing activities
as we do and they re-engineered all security and safety
requirements from the pump’s user manual.
A comparison of behavior engineering to other popular
system design techniques is given in [26]. It reuses the case
study, provided by the Design-Methods Comparison
Project, extend it with the behavior engineering
methodology. It also includes a survey of how behavior
engineering and UML, respectively SysML, differ from
each other.
[1] provide a standardized set of characteristics a SRS shall
met. It also defines structural elements for an SRS document
should contain, going from of the intended use of the system
through its environmental interfaces to single requirements
descriptions. Additionally, templates of concrete SRS
structures are provided in the annexes. As often with
standards, it has to be tailored to meet specific demands.
The Object Management Group (OMG) adopted a new
specification for requirements specification, the
requirements interchange format (ReqIF) [19]. As the name
suggests, ReqIF is supposed to merely represent a formal
data model for requirement specifications with no
methodology defined, on how to come to those
requirements.
The sequence-based specification methodology ([20], [21])
represents the most similar approach to behavior
engineering with testing. It deals with the formalization of
safety-related requirements into Mealy machines. Those
machines contain the normal situation states plus added
erroneous states, obtained from the results of a Fault Tree
Analysis (FTA). Structural coverage algorithms are
performed on those machines. Although the idea of partially
creating test models for hazardous situations is similar to
our methodology, this approach does not deliberately focus
the integration questions of requirements. Ambiguities,
propagated in the normal situation machines are not
systematically identified and removed.

VI. CONCLUSION AND FURTHER WORK
In this paper, we briefly presented how testing information
and activities can be integrated into the behavior
engineering methodology. We proposed to add new phases,
the test augmentation and test specification to the initial
methodology. The first one results in a new kind of behavior

509

tree, we called testable Integrated Behavior Tree (tIBT). A
tIBT contains all information, considered to be necessary for
system tests. We also suggested a new sort of traceability
status for inserted behavior related to testing purposes
The second phase dealt with the creation of test
specifications. We added a second new tree, the testing
behavior tree (TBT). It results from identifying the system’s
boundaries and the definition of test actions. A TBT can be
exploited both manually and automatically to implement
and execute the test cases it specifies.
The most promising advantage of the approach is the
elicitation of test requirements by reviewing the IBT from a
tester’s viewpoint. By doing so, the step to test specification
gets simpler, because the information relevant for specifying
test cases is present and does not need to be gradually
determined somehow. The presented test augmentation
phase leads to a systematic formalization of test
requirements, which must be respected for designing and
testing a system.
Further work will address in particular the transformation
from behavior trees to state machines to benefit from
already existing tooling for the generation of executable test
cases from state machines. Another vital point is to analyze
in greater detail how concrete test cases can be specified
with TBT. It might also be the case that one MBT results in
several TBT, each defining a distinct constellation of SUT
boundaries. This comes along with thoughts whether
behavior engineering can be used for integration or
subsystem testing.
Finally, a broader case study will be performed in ROTESS
and tool support must be prototyped to proof the
methodology being applicable in real-world scenarios.

ACKNOWLEDGMENT
This work was partially supported by the projects ROTESS
[13] and BTTest.

REFERENCES
[1] IEEE Standards Association (IEEE): 830-1998 – IEEE

Recommended Practice for Software Requirements Specifications.
http://standards.ieee.org/findstds/standard/830-1998.html

[2] Object Management Group (OMG). Unified Modelling Language
(UML) Specification. Version 2.3, February 2009. Available at:
http://www.omg.org/spec/UML/2.3/

[3] Object Management Group (OMG). UML Testing Profile, Final
Adopted Specification. Version 1.0, July 2005. Available at:
http://www.omg.org/spec/UTP/1.0/

[4] Baker, P., Dai, Z.R., Grabowski, J., Haugen, Ø., Schieferdecker, I.
Williams, C.: Model-driven testing – using the UML testing profile.
Springer (2007)

[5] Behavior Engineering (BE). http://www.behaviorengineering.org
[6] Utting, M.; Pretschner, A., Legeard, B.: A Taxonomy of Model-

Based Testing. ISSN 1170-487X, 2006.
http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf.

[7] Utting, U., Legeard, B.: Practical Model-Based Testing – A Tools
Approach. Morgan Kaufmann Publ. (2007)

[8] Stefanescu, A.; Wendland, M.-F.; Wieczorek, S.: Using the UML
testing profile for enterprise service choreographies. In: Proc. of 36th
EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA'10), pp. 12-19. IEEE Computer Society, 2010.

[9] Alexander Pretschner, Jan Philipps: Methodological Issues in Model-
Based Testing. In: Model-Based Testing of Reactive Systems.
Springer, 281-291, (2004).

[10] Schieferdecker, Ina: Modellbasiertes Testen. ObjektSpektrum 3/07,
S39-45, 2007.

[11] Dromey, R. G. (2003), `From Requirements to Design: Formalising
the Key Steps', in IEEE International Conference on Software
Engineering and Formal Methods (SEFM'03), pp. 2-11, Brisbane,
Australia, (Invited Keynote Address).

[12] Myers, Toby: The Foundations for a Scaleable Methodology for
Systems Design , PhD Thesis, School of Computer and Information
Technology, Griffith University, Australia, 2010.

[13] ROTESS project: Risk-oriented testing of embedded, safety-critical
systems.
http://www.fokus.fraunhofer.de/de/motion/projekte/laufende_projekte
/ROTESS/index.html

[14] The Generic Infusion Pump (GIP) project:
http://rtg.cis.upenn.edu/gip.php3

[15] Zafar, S.: Integration of Access Control Requirements into System
Specications, Ph.D. thesis, Grith University, (2009).

[16] Internation al Organization of Standardization (ISO): ISO/IEC
9126:2001,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749.

[17] European Telecommunications Standards Institute (ETSI): The
Testing and Test Control Notation version 3 (TTCN-3). URL:
http://www.ttcn-3.org.

[18] Zafar, S. and Dromey, R. G., (2005), Integrating Safety and Security
Requirements into Design of an Embedded System. Asia-Pacific
Software Engineering Conference 2005, 15th-17th December, Taipei,
Taiwan. IEEE Computer Society Press

[19] Object Management Group (OMG). Requirements Interchange
Format (ReqIF) 1.0 – Beta2, 2010. http://www.omg.org/spec/ReqIF/

[20] Prowell, S.; Poore, J.: Foundations of Sequence-Based Software
Specification. In: IEEE Transactions on Software Engineering. IEEE
Computer Society, Volume 29, No.5, May 2003.

[21] Bauer, Thomas; Böhr, Frank; Landmann, Dennis; Beletski, Taras;
Eschbach, Robert; Poore, Jesse H.: "From Requirements to Statistical
Testing of Embedded Systems", In: Fourth International Workshop
on Software Engineering for Automotive Systems, SEAS 2007 -
Proceedings. Los Alamitos : IEEE Computer Society, 2007.

[22] Spillner, A; Linz, T: Basiswissen Softwaretest – Aus- und
Weiterbildung zum Certified Tester-Foundation Level nach ISTQB-
Standard, Dpunk Verlag, Heidelberg, 2010.

[23] Powell, D.: Behavior Engineering - A Scalable Modeling and
Analysis Method. In: Proc. of 8th IEEE International Conference on
Software Engineering and Formal Method (SEFM 2010), pp.31-40,
2010, IEEE Computer Society, 2010.

[24] Bosten, J.: Behavior trees – how they improve engineering behaviour.
In: 6th Annual Software & Systems Engineering Process Group
Conference (SEPG), Melbourne, Australia, August 2008.

[25] Powell, D.: Requirements evaluation using Behavior Trees – findings
from industry. In: Industry track of Australian Engineering
Conference (ASWEC) 2007.

[26] Lindsay, P.: Behavior Trees: from Systems Engineering to Software
Engineering. In: Proc. of 8th IEEE International Conference on
Software Engineering and Formal Method (SEFM 2010), pp.31-40,
2010, IEEE Computer Society, 2010.

510

