
Fokus!MBT – A Multi-Paradigmatic

Test Modeling Environment
Marc-Florian Wendland

Andreas Hoffmann

Fraunhofer Institut FOKUS
Kaiserin-Augusta-Alle 31

10589 Berlin

{marc-florian.wendland,
andreas.hoffmann,

ina.schieferdecker}@
fokus.fraunhofer.de

Ina Schieferdecker

ABSTRACT

UML modeling environments for doing model-based testing are

often not very comfortable to use and burden some knowledge

about the internals of UML to the users, respectively test

engineers. Test engineers, however, are seldom experts in UML,

thus, the gain of efficiency model-based testing approaches entail,

is reduced by a too generic tooling. The tool Fokus!MBT,

developed by the competence center MOTION of Fraunhofer

FOKUS, is a multi-paradigmatic test modeling environment based

on the UML Testing Profile, an OMG-adopted industry-driven

notation for model-based testing. Fokus!MBT simplifies the

creation and authoring of test models with methodology-specific

support. It is built on top of Eclipse Papyrus, a powerful open

source UML modeling environment, which, in turn, relies on the

Eclipse Modeling Framework and the Graphical Modeling

Framework. This paper provides deep insights into the basic

concepts and technical realization of Fokus!MBT as well as into

the lessons we have learned during development and application.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Software/Programm Verification

– validation, tracing, symbolic execution, testing tools.

General Terms

Design, Standardization, Languages, Theory, Verification.

Keywords

Fokus!MBT, UML Testing Profile (UTP), Unified Modeling

Language (UML), Model-Based Testing (MBT), test modeling

environment.

1. INTRODUCTION
Following most recent literature and surveys about model-based

testing (MBT) and its adoption by the industry ([1], [28]), one has

to conclude that MBT is still not widely spread used. One reason

might be the lack of commonly agreed standards and

methodologies, but also the lacking support of dedicated

modeling environments for actually doing MBT. This paper

discusses the development and concepts of Fokus!MBT, a test

modeling environment based on OMG’s Unified Modeling

Language (UML) [16] and UML Testing Profile (UTP) [17].

The paper is strictly dedicated to three aspects of Fokus!MBT,

i.e., a) its general idea, b) its technical and service-oriented

architecture, and c) its methodology-specific authoring support.

We are not going to discuss process-related or organizational

challenges MBT approaches have to overcome and supporting

tools need to address. We are aware of that tooling is just a single

component in an enterprise infrastructure, however, the existence

of supportive tooling is inevitable for any technical language,

standard and methodology.

The remainder of this article is structured as follows: Section II

distinguishes methodology-specific UML modeling environments

(such as Fokus!MBT) from general purpose UML modeling

environments in terms of complexity. Section III provides a rough

overview of Fokus!MBT, its key characteristics and its history.

Section IV, V, VI and VII discuss in greater detail the technical

and logical architecture of Fokus!MBT. These parts constitute the

main part of this paper. Section VIII describes the lessons we

have learned while both developing and applying Fokus!MBT.

Section IX discusses work related to ours. We concentrated on

Eclipse-based tools solely. Finally, section X concludes the paper

and discusses future work.

Throughout this paper, we write UML metaclasses with a starting

upper case, such as Message, MessageEnd etc.

2. DIMENSIONS OF COMPLEXITY
UML is by definition a general purpose modeling language

(GPML), thus, UML modeling environments can be seen as

general purpose modeling environments (GPME). Prominent

representatives of UML GPMEs are MagicDraw, Enterprise

Architect (EA), Rational Software Architect (RSA) or Eclipse

Papyrus. GPMEs, regardless which language they support, do not

impose a certain methodology on the user. They are considered as

methodology-independent, whereas they ensure technical

compliance to the specification of the GPML.

Fokus!MBT is based on UTP (thus, on UML), but in contrast to

the above mentioned GPMEs, it realizes a certain methodology

and offers dedicated services and tailored user interfaces (UI) to

the test engineers to adhere to that methodology. We call this kind

of tooling methodology-specific modeling environment (MSME).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permissions@acm.org.

ACME'13, July 01 2013, Montpellier, France

Copyright 2013 ACM 978-1-4503-2036-8/13/07…$15.00.

http://dx.doi.org/10.1145/2491279.2491282

In the context of modeling, the term methodology needs to be

further differentiated. We do see two dimensions for modeling

methodologies, i.e., syntactical and semantic methodology. The

first one deals with restricting the use of syntactical constructs of

a modeling language. In UML, an integer value might be

expressed as LiteralInteger, as LiteralString typed by or as

InstanceSpecification classified by Integer. Neither of these ways

is wrong or right per se. Correctness depends on approach-

specific guidelines the user has to stick with. In contrast, semantic

methodology specifies how domain-related concepts are

expressed with the language. In case of UTP the domain is testing,

without being more precise about the kind of systems that are

going to be tested. The semantic methodology of Fokus!MBT

prescribes how certain test-related targets have to be achieved by

using the language. As an example, Fokus!MBT prescribes that

each argument of a Message in a test case needs to be an

InstanceSpecification of a data partition. This restriction is simply

based on a specific testing practice, namely that each stimulus to

the system under test (SUT) can be classified into at least one

logical partition (i.e., equivalence class).

Both kinds of methodologies entail complexity, we refer to as

technical complexity (entailed by syntactical methodology) and

methodological complexity (entailed by semantic methodology).

Whereas the complexity of GPMEs is more or less determined by

the specification of their GPML (we call compliance complexity),

MSMEs have to master both technical and methodological

complexity, we refer to as combined complexity.

The definition of complexity is important to understand the needs

for dedicated MSMEs like Fokus!MBT. The main target of any

MSMEs is to hide combined complexity from the user while

authoring the model, by offering (syntactical and semantic)

methodology-specific support. How this is actually achieved

varies from tool to tool, of course.

3. Fokus!MBT AT A GLANCE
Fokus!MBT1 is an integrated test modeling environment that

supports test model authoring by guiding the user through

methodology-specific support. It utilizes UTP as language for

expressing test models. Fokus!MBT is built upon three premises:

1. Adherence to the single source of truth paradigm2 which

manifests in a single test model that encodes and

integrates all test-relevant information.

2. Hiding of combined complexity that UTP, UML and the

Fokus!MBT methodology impose on the test engineers,

so that they can concentrate on their mission-relevant

knowledge instead of wasting creativeness and

resources by taming test models.

3. Provision of a testing service-oriented architecture for

integrating different test service implementations such

test case generators etc.

Fokus!MBT’s main goal is to provide domain and testing experts

with an integrated modeling environment that helps them to

perform their work quickly, easily and free of errors. MBT

without adequate and decent authoring tool support bears the

danger of being rejected by the test engineers [9]. GPMEs like

1 http://www.fokusmbt.com

2 http://en.wikipedia.org/wiki/Single_Source_of_Truth

MagicDraw, RSA, EA or Eclipse Papyrus are by intention

independent to any methodology. The granted degree of freedom

to the user may easily lead to situations where non-UML, but

domain experts rapidly get frustrated by the fact that they have to

know UML by heart in order to reach their goals in reasonable

time. Fokus!MBT strives to offer the same convenience user are

used to by today’s development environments for Java.

Technically, Fokus!MBT is built on top of Eclipse, the Eclipse

Modeling Framework and the Graphical Modeling Framework

(GMF). From the very first beginning, it was incepted as an

Eclipse-based tool that could be integrated with several Eclipse-

based UML GPMEs like RSA or Papyrus. The current version of

Fokus!MBT is seamlessly integrated with Eclipse Papyrus,

though, due to its openness and accessibility.

3.1 Supported MBT Approach
In the literature, several approaches to MBT can be found.

Fokus!MBT supports the so called second generation of MBT

approaches [1], which manifests in using a separate test model

that is created and authored independently from the system

specification, no matter whether it is model-based or document-

based (see Figure 1). The advantages and disadvantages of the

different MBT approaches are well-described in greater detail by

Pretschner [20] and Schieferdecker [26].

Figure 1. Fokus!MBT overall approach

The separate test model approach allows test engineers doing

MBT, even though the development process is not performed in a

model-driven manner. If a system model is available and

accessible (some companies’ process policies rigorously prohibit

artifact reuse at testing side), however, Fokus!MBT allows

optionally reusing certain aspects of system, or other models. In

addition, the single source of truth principle, Fokus!MBT relies

on, is shown. The central test model is shared among and enriched

by testing services such as test case or test report generators.

3.2 Test Requirements-Driven Methodology
The semantic methodology of Fokus!MBT is highly based on the

idea of early testing, i.e., let the testing activities begin as early as

possible. Therefore, we employ the concept of test requirements

which are derived by the test engineers immediately after the

requirements specification has been released. A test requirement is

“an item or event of a component or system that could be verified

by one or more test cases, e.g. a function, transaction, feature,

quality attribute, or structural element.”[11] A test requirement

represents a very early, mostly textual specification of how an

aspect of a system requirement shall be verified. The relationship

Figure 2. Architecture and technology stack of Fokus!MBT

between system and test requirements is one-to-many, meaning,

that a single system requirement is verified by at least one, but

usually multiple test requirements. Each of those test requirements

specifies a certain condition that must hold true for the

corresponding system requirement and therefore serves as the

basis for later to be realized test cases.

The test cases, either generated or manually derived, establish

traces to the test requirements they realize, which in turn keep

traces to the system requirements they verify. After execution of

the test cases, which is out of scope of Fokus!MBT, the test

execution logs are re-imported into the test model as test logs and

eventually linked with the test cases. By doing so, a complete and

seamless traceability network is established that grants test

engineers and test managers a quick overview of the coverage

status of the system’s requirements (see Figure 3), the main goal

of validation techniques such as testing.

Figure 3. Fokus!MBT methodology

3.3 History
As far back as 2007, Fokus!MBT was originally incepted as part

of the work package Advanced Validation & Verification

Techniques within the EU FP6 research project Modeling solution

for complex software systems (MODELPLEX). It was based on a

metamodel for testing purposes (TestingMM) that was a

conceptual merge of well-known and established standards like

UML, UTP, MARTE [18], SysML [19] and TTCN-3 [4],

augmented with some proprietary concepts. A supportive UI was

missing, though. Due to the limited support for model authoring,

we used MagicDraw to design the test models, which were

exported to EMF and finally converted to TestingMM by using a

dedicated model transformation. The first generation of

Fokus!MBT and TestingMM were successfully applied to

industrial research case studies ([30], [23], [31], [24]).

The second generation of Fokus!MBT ([1], [34], [2], [36]) was

developed with the beginning of 2010. It was significantly

improved by features like GMF diagrams, form-based editors and

test log analysis capabilities. With that version, Fokus!MBT

started to feel like a real tool that could be used by external

domain experts and test engineers [35]. A still restricting

shortcoming of TestingMM was its lack of expressivity regarding

graph-based behavioral descriptions such as state machines in the

first place. As a consequence, the intended single source of truth

principle was not attainable, since TestingMM could only be used

for expressing the output of a test case generator. At this point in

time, we had to decide where to go with TestingMM: either to

incorporate graph-based concepts for describing test behavior, or

to replace TestingMM with UML and UTP and associated profiles

like SysML. The first option would have ended up in a nearly re-

implementation of UML with the significant shortcoming of still

being technically incompatible with UML tools. The latter one

would have had the impact of re-implementing each existing

service due to the data model change. Neither of these options

was appealing in those days.

At the same time Eclipse Papyrus became more and more stable

and accepted by the modeling community. After spending some

time on investigating the capabilities, architecture and features of

Papyrus, we eventually decided to abandon TestingMM for UTP.

This was the starting point for the third generation of Fokus!MBT.

Fokus!MBT has been contributed to and further developed in

various research and industrial projects. In the ITEA2 project

VERDE [33], Fokus!MBT was applied to two different case

studies provided by Alstom and THALES Alenia Space. In the

EU FP7 project ReMICS [22], Fokus!MBT is used for

safeguarding the modernization of a legacy system that is going to

be brought into the Cloud. In the EU FP7 projects MIDAS [14]

and RASEN [21], Fokus!MBT is employed for both classical

functional testing but also in the area of security testing, in

particular model-based fuzz testing.

4. Fokus!MBT ARCHITECTURE
Fokus!MBT is designed to be flexible enough for being integrated

into various testing tool and process landscapes, because in most

companies tool and process landscapes are already present and not

created from scratch [7]. It is, therefore, inevitably that new tools

offer generic interfaces for interoperating with other tools

employed in the overall process.

Fokus!MBT can be decomposed into a core component that is

framed by three logical layers (see Figure 2). The core component

relies on the key technologies mentioned in the grey-shaded

rectangles and provides fundamental capabilities for

implementing and registering test-related services, UI extension

services and integration with specific Eclipse-based modeling

environments (such as Papyrus). The core component is in charge

of guaranteeing that both the syntactical and semantic

methodology is respected, this means, it safeguards the overall

model integrity. The logical layers encapsulate technologies and

concepts specific to concrete services and modeling environments

implementations. They are integrated via Eclipse’s extension

point mechanism. The purpose of these layers is:

1. Testing Service Layer: Fokus!MBT exhibits semantic

service interfaces pertinent for doing testing-related

tasks such as test case generation.

2. UI Core Extension Layer: Fokus!MBT claims to be

highly configurable and adaptable to a test engineer’s

needs and skill level to overcome combined complexity

and foster acceptance. The core component defines

several service extension points which realize on the

one hand the idea of a multi-paradigmatic test modeling

environment, and on the other hand allow tailoring the

UI for different purposes and stakeholders.

3. Tool Integration Layer: The tool integration layer

encapsulates any modeling environment-specific

implementations from the core component. By doing so,

the core of Fokus!MBT might be reused across different

EMF-/ GMF-based modeling environments.

The details of the architectural layers are described in greater

detail in the following sections.

5. TESTING SERVICE ARCHITECTURE
A priori, Fokus!MBT does provides capabilities to author test

models, but it does not provide services for model-based test

automation like test case or script generation. This might sound

strange, since the most obvious and commercial merit of MBT is

test generation. The idea was from the very beginning to offer an

extensible yet integrated service architecture for testing services

that interoperate through the test model. We distinguish five kinds

of services relevant for test automation:

- Test case generation: Services for automatically

generating test cases. This may include the generation of

test data as well. The completeness of the generated test

cases depends, of course, on the capabilities of the

adopted test generator.

- Test data generation service: Services for generating test

data out of structural specifications and constraints.

- Test code generation: Services for generating

(executable) test scripts out of test cases.

- Test report generation: Services for generating test

reports and documentation out of the test model.

- Test log importer: Services for reintegrating the test

execution results that have been produced by a test

execution system (such as TTworkbench or JUnit)

externally to Fokus!MBT.

In the projects and case studies Fokus!MBT has been applied to,

we have developed a set of service implementations for actually

doing MBT. These implementations are integrated via the above

mentioned testing service layer. The subsequent sections tersely

describe these service implementations except the reporting

engines, for which we summarize our experiences in the lessons

learned section at the end.

5.1 Test Case Generator: Spec Explorer
Fokus!MBT comes along with a test generation service

implementation that utilizes Microsoft’s Spec Explorer generation

engine [12]. The Spec Explorer leverages Abstract State Machines

(ASM) and symbolic execution for generating both test cases and

test data. The generation process of Spec Explorer is guided by a

set of configurations represented in a proprietary notation called

cord. Fokus!MBT technically abstracts by providing an extension

to UTP for test generation configuration called test design

directives. Fokus!MBT’s Spec Explorer service implementation

provides a mapping from restricted UML state machines to ASMs

together with a supportive UI (in terms of perspective) for

developing Spec Explorer-compliant UML state machines.

The service is in charge of automatically carrying out the mapping

from the test model to Spec Explorer input files (see Figure 4).

Afterwards, the Spec Explorer engine operates on the input files

as defined by the test directives. The generated test cases in Spec

Explorer format are then translated into what we call Fokus!MBT

canonical test case format, an internal representation which is

transformed into Fokus!MBT test case diagrams eventually. The

entire process appears completely transparent to the test engineers

in a senseb that they do not have to know details of Spec Explorer

by heart. The generation process is started via a dedicated wizard.

Besides, Fokus!MBT offers diagrammatic support to manually

create test cases too, of course.

Figure 4. Overview of Spec Explorer test generation process

5.2 Test Code Generator: TTCN3pio
Test cases, either generated or manually derived, can be exported

to TTCN-3 test scripts via Fokus!MBT’s test code service

implementation TTCN3pio. It is able to map certain high-level

concepts of sequence diagrams deemed necessary for test case

specifications like DurationConstraints into their TTCN-3

counterpart, i.e., timer and related actions.

Additionally, TTCN3pio allows emulating the SUT by simply

mirroring its expected behavior. In particular when the actual

SUT (i.e., the actual implementation under test) is not available,

the executability of the test scripts can be proven and

demonstrated. We found this capability of TTCN3pio extremely

helpful in research projects with any implementation available.

5.3 Test Log Importer: TTCN-3 TCI:TL
After test case execution, which is outside of Fokus!MBT, the test

execution logs can be fed back into the test model via Fokus!MBT

test log importer service. In UTP, a test log is merely a behavior

with additional meta-information, in Fokus!MBT we restrict test

logs to be only represented as sequence diagrams.

In accordance with the provided test code generator, we have

implemented an importer for test logs in TTCN-3 TCI:TL format

[5]. Currently, only the meta-information of a test log, such as

starting timestamp, duration and verdict, are fed back. A complete

visualization of test logs is still ongoing work. A proof-of-concept

was developed in a bachelor thesis [32], though, but has to be

further stabilized.

Reintegrating test logs into the test model enables Fokus!MBT to

calculate test metrics on and test reports from the test model

solely. As a result, the single source of truth principle spans over

the entire test process.

6. UI CORE EXTENSION SERVICES
Although the testing services represent the main part for achieving

testing-related tasks, users are mainly confronted in their daily

work with the UI. Fokus!MBT’s UI services are responsible for

hiding combined complexity in the first place. This is achieved by

introducing a concept we call methodology-specific context

support, which is highly configurable in order to be aligned with

the expectations and skill level of the respective user. Such a UI

configuration is persisted in an additional model. The UI

configuration model allows different test engineer to create their

own UI configuration based on subjective preferences. The UI

configuration model contains information about diagrams, editors

and editor configuration and further Eclipse workbench-specific

things.

As shown in Figure 2, we distinguish several kinds of UI

extension services. The subsequent sections describe some of

them to a greater extend. Due to page limitations we will not go

into details for modeling composites and modeling constraints.

6.1 Multi-Paradigmatic Editor
UML is a graphical modeling notation with just a few textual

augmentations. Although diagram-based information visualization

is beneficial for some aspects of a test model, especially the

behavioral aspects, other aspects like type definitions or test data

values are quite cumbersome to be composed in a graphical way.

Therefore, Fokus!MBT integrates an multi-paradigmatic editor

framework. The editor framework organizes editor pages in

multiple editor configurations. An editor page allows textual or

form-based modeling in addition to diagram-based modeling

provided by the modeling environment per se.

For example, Fokus!MBT provides editor configurations for test

analysis, test design and test result analysis tasks by default. Each

page visualizes the information encoded in the test model by

using form-based widgets like trees, tables and lists. We call this

kind of model authoring form-based modeling.

Technically, the multi-paradigmatic editor is based on Eclipse’s

multi-page editor which is instantiated for a certain editor

configuration. Each editor instance dynamically creates the editor

pages specified by its editor configuration. Editor page

implementations are registered via a dedicated extension point

whose identifiers are used within the editor configuration

specification in the UI configuration model. This is sketched in

Figure 5. When a user changes the UI in terms of brining an editor

tab to top, the UI configuration layer gets triggered via Eclipse’s

internal IPartListener. Then, it retrieves which editor

configuration was requested to be opened and extracts this

configuration from the UI configuration model. The identifiers of

the contained editor pages are used for instantiating concrete

instances of the editor pages via Eclipse’s extension registry. The

UI configuration layer creates an instance of the multi-

paradigmatic editor and provides it with the retrieved editor

pages. Afterwards, the fully configured editor is brought to top as

ordinary multi-page editor where each instantiated editor page is

represented as section of the multi-page editor.

The multi-paradigmatic editor framework is as generic as

possible, since the user can create several editor configurations

dynamically by simply composing existing deployed editor pages

with each other in different editor configuration. This can be even

done while working with Fokus!MBT. The editor configuration

dialog allows editor configuration to be modified, created or

deleted at runtime.

Figure 5. Rendering of editor configurations

6.2 Diagram Views for GMF Diagrams
Fokus!MBT offers an extension point that allows the user to

register diagram views based on existing GMF diagram

implementations. In a GPML like UML (and, thus, GPME like

Papyrus), diagrams commonly offer a multitude of elements to the

user. The UML class diagram comprises various structural

elements, however, often in specific contexts (e.g., definition of

data partitions) only a subset of these elements is actually

required. Diagram views are means for reusing the very same

diagram (e.g., UML class diagram) in different contexts with

different palettes, notational elements and constraints.

Fokus!MBT offers certain test-specific diagram views that are

based on ordinary UML diagrams:

Test requirement diagram. A class diagram view to create and

visualize test requirements and to relate test requirements to

system requirements.

Test architecture diagram. A class diagram view dedicated to

the specification of parts of the test environment like the test

context and test components.

Test configuration diagram. A composite structure diagram view

that describes the communication channels among instances of the

test environment and the system under test.

Test data diagram. A class diagram view to specify data

partitions and representatives of those data partitions.

Test case diagram. A sequence diagram view to describe test

cases as Interactions between test components and the SUT.

Spec Explorer diagram. A state machine diagram view for

specifying input models for the Spec Explorer test generation

engine.

Since diagram views that are based on the same GMF diagram

implementation are technically indistinguishable from each other,

meta-information about every diagram is persisted in the UI

configuration model. The meta-information contains the id of the

corresponding diagram view for the available diagram as defined

in the extension registry and the number of active palette

configurations for the diagram view.

6.3 Modeling Command
To the best of our knowledge, every serious UML modeling

environment provides the user with a facility to create new model

elements through a context menu corresponding to the current

user context. We call this kind of support modeling commands. In

a GPME, modeling commands are independent to a certain

methodology, for they have to be applicable to the generality of

methodologies. As a consequence, every suitable metaclass of the

GPML according to the current selection is offered for creation

ensuring at least specification compliance.

In MSMEs both the syntactical and semantic methodology need to

be respected in a given user context. As such, Fokus!MBT comes

along with tailored, methodology-specific modeling commands.

These commands enable and show only those actions that lead to

syntactically and semantically correct models. Modeling

commands often consist of multiple tasks the user would have to

carry out gradually otherwise, like the application of stereotypes

or definition of initial values for mandatory properties.

An illustrative example is the definition of the deletion modeling

command. Every GPME allows the user to arbitrarily delete

model elements from the model. As said earlier, Fokus!MBT

prescribes and safeguards a certain model structure. As a result,

some semantically important elements must not be enabled for

deletion. Fokus!MBT provides a dedicated modeling command

for methodologically correct deletion request by the user. If an

element is selected which must not be deleted (such as the

outermost package for test requirements), the deletion command is

not visible at all.

6.4 Modeling Assistants
Modeling assistants offer a comprehensible and condensed view

on aspects of the model that require differentiated knowledge

about the underlying language concept. In contrast to modeling

commands, they are not bound to a single context, but usually

integrate a multitude of interrelated metaclasses for a certain goal

to be achieved by a set of user actions.

Fokus!MBT currently offers modeling assistants for the creation

of InstanceSpecifications and the configuration of Messages in

test case diagrams. Both concepts commonly affect a number of

interrelated UML metaclasses like InstanceSpecification, Class,

Slot and ValueSpecification or Message, MessagEnd, Lifeline,

Value Specification and MessageEvent. Figure 6 shows the

modeling assistant for Messages.

In manual test case specification, the user has to configure the

signature and arguments of a Message. Both are good examples of

combined complexity that needs to be hidden. Until UML 2.33,

the signature of a Message is derived from the corresponding

MessageEnd’s event. To manifest a certain signature, the user

would have to know about the exact UML specification on the

one hand and the actually allowed BehavioralFeatures (Operation

or Reception) to be invoked due to the methodology on the other

hand. Fokus!MBT’s methodology regarding invokable

BehavioralFeatures is based on Connectors that are established

between Ports (only binary Connectors, though) of different parts

within a test configuration and over which Messages have to be

sent. Taking this into account, it is only possible to establish a

Message between (transitively) connected Lifelines. Furthermore,

only BehavioralFeatures that are offered by the receiving Port’s,

identified by the Connector of the Message, provided interfaces

can be invoked via that Message. The Message modeling assistant

efficiently abstracts from the combined complexity by simply

opening a dialog that shows all possibly invokable

BehavioralFeatures to the user for selection.

Figure 6. Fokus!MBT Message modeling assistant

The specification of arguments for a Message is another task

where the modeling assistant has proven helpful. UML does not

prescribe the way arguments have to be specified. Given by the

language, any (potentially type compliant) ValueSpecification

might be suitable. In contrast, Fokus!MBT requires all arguments

to be expressed as InstanceValues referring to an

InstanceSpecification of an equivalence class (represented by the

UTP stereotype data partition). Again, the Message modeling

assistant preselects any possible InstanceSpecification and

provides them for user-defined selection.

Technically, the modeling assistants are realized as single-page

wizards. The difference between a modeling command and a

modeling assistant is that the former one commonly affects single

3 The current version of Fokus!MBT still relies on UML 2.2, but

will be migrated to 2.4.1 with Eclipse Kepler.

elements, whereas the latter one is rather a shell for multiple

modeling command which are executed in a single transaction.

6.5 Modeling Rules
We consider quality assurance measures like adherence to naming

conventions, mutual synchronization of interrelated elements,

automated preliminary configuration of elements or model

structure clean-ups and so forth as important features for a model-

driven engineering environment. We summarize these aspects into

the term automated modeling rules (modeling rules in short).

Modeling rules are instructions that are triggered once a model

element has been altered. They declare constraints for when they

need to be executed and only if these constraints are met after a

change has been noticed the corresponding rules will be executed.

Technically, the modeling rules are registered as listeners to the

EMF Notifications that are fired when the model was changed.

The modeling rules extension point also enables developer to

formulate logical expression similar to the Eclipse core

expression, but tailored to the conditions of EMF Notifications.

Thus, it is possible to specify a condition that evaluates to true if

the feature name of the notifier Lifeline (or of any metaclass that

has a meta-attribute name) was changed.

Fokus!MBT provides several of these modeling rules to ensure

methodological correctness. A simple naming convention of

Fokus!MBT that is guarded by such a modeling rule is that the

behavioral specification of a test case (which is an Operation with

the UTP stereotype test case applied) must strictly follow a certain

naming convention, which is the name of the test case followed by

the suffix _impl. This modeling rule will be activated when either

the name of the test case or the name of the behavioral

specification is changed. In the first case, the name of the

behavioral specification is altered accordingly, in the latter case

the entire manipulation is rolled back and the old name is re-

assigned to the behavioral specification, since the test case is

considered to be the master element in our syntactical

methodology.

7. TOOL INTEGRATION LAYER
The tool integration layer is in charge of abstracting from any

modeling environment-specific technical detail. Fokus!MBT was

from the very beginning designed as being able to be potentially

integrated in any EMF-based UML modeling environment such as

RSA or Papyrus. This gives rise to that any service provided by

the core component that operate not only on common parts (such

as the UTP test model), but on parts of a specific modeling

environment, would have to be kept independent from its

technical details. Otherwise Fokus!MBT would maintain hard

dependencies to the underlying modeling environment, hence,

reuse of the core component would no longer be possible.

Most of these specific technical details come along with the

technical architecture of the underlying modeling environment.

For one, Papyrus provides a proprietary multi-tabbed editor

implementation, whose state (i.e., number of open and available

tabs) is maintained in a dedicated model. Any change of the editor

(e.g., opening new or switching among tabs) is established via a

specific command that operates on the corresponding model.

RSA, in contrast, relies on the ordinary editor implementations of

Eclipse, thus handling of editors is technically different in both

modeling environments. The following example shows how the

very same core component functionality, i.e., opening a test case

diagram, varies between RSA and Papyrus.

Fokus!MBT allows navigating from an editor page that

summarizes all test cases directly to the corresponding test case

diagram. In case, the test case diagram has not been created yet,

the creation should be triggered automatically, hence transparent

to the user. This functionality is modeling environment-specific in

bifocal perspective: On the one hand, the GMF implementations

of sequence diagrams (as basis of test case diagram) are different

in Papyrus and RSA. On the other hand, actually opening a

diagram differs technically as well as already explained. However,

the editor page that offers the navigation facility is a functionality

of the core component and intended to be reused across modeling

environments without being recompiled. As a consequence, the

modeling environment-specific parts are implemented separately

from the core component that actually offers the functionality. To

overcome the technical gap, Fokus!MBT splits the (EMF

transactional) opening commands into two parts, an abstract part

that is implemented in the core component and a tool-specific part

that is implemented in the respective tool integration layer. The

concrete implementation is then registered against the abstract

part and stored declaratively in the OSGI service registry. When

the user executes a modeling environment-specific command, the

core parts accesses the service registry and requests the specific

implementation for the current modeling environment, which is

subsequently executed.

8. LESSONS LEARNED
In this chapter we are going to briefly summarize the lessons we

have learned while developing and using Fokus!MBT. Due to

page limitations, we can only recap the most significant lessons

we have learned. We distinguish between lessons we learned

while developing and applying Fokus!MBT.

8.1 Lessons Learned from Development

8.1.1 Managing combined complexity
In order to hide combined complexity from the users, both

dimensions of complexity need to be precisely identified,

analyzed and mitigated by Fokus!MBT. This means that the

development team must have a solid knowledge about the

underlying technology and methodology. In frequently changing

development teams or with a number of part time employees like

students (both is common in research institutes), it is a great

challenge to keep a solid knowledge about the combined

complexity. This holds also true for Fokus!MBT. Most recently, a

paper was written [15] that describes a new approach of coping

with technical complexity UML entails by masking UML-specific

details with a simpler metamodel facade. This is a move in the

right direction and we are enthusiastic to adopt this technique for

Fokus!MBT in future.

8.1.2 UI core extension layer
During the development of the UI core extension services, we

found out that most of these frameworks and concepts are not

restricted to Fokus!MBT. The UI core configuration model and

the services are actually not directly bound to UML or concrete

GMF implementations, but rather operates on EObjects regardless

to the surrounding methodology. This gave rise to the idea of

extracting the UI core extension services into an independent

component that can be reused for tailoring different Ecore-based

modeling environments and GMF diagram implementations for

being used as MSMEs. Modeling environments we are going to

develop in other projects (e.g., for a certain requirements

formalization methodology) do not have to start from scratch, but

are built upon the common parts of the UI core extension services.

This extraction is a currently ongoing task and might be offered

the Eclipse Papyrus project as contribution when it has been

finished and stabilized. The tentative name of the UI core

extension layer is Unicorn.

8.1.3 Complexity of the integration layer
The ability of remaining modeling environment-independent with

Fokus!MBT contributes his share to the already present combined

complexity of Fokus!MBT. Although the idea seemed wise at the

beginning of the development of Fokus!MBT when we were not

sure about the future direction of Papyrus. The more Papyrus

becomes stable the more we are wondering whether the intended

flexibility regarding the underlying modeling environment would

ever pay off. In fact, we never had a need so far to build second

version of Fokus!MBT for a different Eclipse-based GPML.

Doubtlessly, the integration layer implementation makes the

overall architecture more complex and we are not yet certain that

the complexity it entails will pay off in future.

8.1.4 Processes in a frequently changing team
Maintaining the knowledge about the syntactical and semantic

methodology is only one part of the story frequently changing

development teams. Clearly structured and well-documented

source code and process structures are another vital part in

research-oriented development (in commercial development

project as well). As often in research prototypes, Fokus!MBT

started being developed by as a single person. As the tool

constantly matured and was reused by across several testing

projects, the development team increased with both full-time

employees, part-time employees and students. It holds also true

for research projects (thus, also for Fokus!MBT) that the team

members are often reassigned other, temporarily more important

projects, students leave etc. To not lose control over, respectively

precious knowledge about the development, we set up and

documented clear process structures and a technical infrastructure

for internal team collaboration, including a ticketing system (trac),

a continuous integration server (Hudson and Maven), shared team

project sets and shared Eclipse run configurations together with

shared Eclipse development environments. The aim for doing so

was to minimize incidents resulting from varying developing

environments and to provide new members a ready-to-use

development environment. Especially the ticketing system helped

a lot in tracking tasks throughout long periods and the different

team members. The team project set was organized in working

sets, so that each developer worked on the same working set

structure which facilitated team communication. Another

important step was to prepare and contribute editor templates to

maintain the same coding guidelines within the team.

As helpful as these technical parts have been, as useless was the

creation of process documents such as a configuration

management documentation. When the team was increased during

the development of Fokus!MBT’s second generation, we wrote

such a document. It contained a variety of aspects such as

responsibilities within the team, naming conventions, a detailed

description about the plugins and their versions of the

development environment and so forth. This document was,

however, only valid for a short period, because two important

members had left the team, turning most of the documentation

obsolete. We decided to not maintain these process documents

any longer, though, but rather concentrate on concise technical

documentations.

8.1.1 Finding an adequate reporting engine
Generating reports out of models appears as a trivial task.

Depending on the completeness, respectively the look and feel of

the report, this statement might hold, however, certain

requirements on reports are rather challenging to realize. Our first

idea was to include the EMF-Adapter for the BIRT engine. This,

however, is actually not feasible for Fokus!MBT, since the

adapter operates solely on OCL statements for extracting

information from the model. These statements quickly became too

complex due to the combined complexity of Fokus!MBT models.

In addition, we are not aware of how to include GMF diagrams

into a BIRT report with the EMF adapter. After a few weeks of

investigation we abandoned the BIRT engine for GenDoc2 [29].

GenDoc2 seemed very appropriate, although working inside

ordinary Word documents with Acceleo snippets is not very

convenient and makes debugging almost impossible. Another

severe shortcoming of GenDoc2 is that it simply allows accessing

one metamodel per document. Access to any other metamodel

(e.g., the GMF Notation model) is established via decoupled

services (external functions). This, in turn, makes the

implementation of reports more complex. Finally, GenDoc2 was

not compatible with Eclipse’s UML 2.4.1 implementation. It

became so lately, but when we started considering about reporting

engines, we skipped GenDoc2 since we were not sure about its

further development. So we finally ended up (not yet finished)

though in the last possible solution, i.e., we are currently

implementing a report directly as M2T transformation for

generating HTML files. We had not expected that the generation

of decent and sophisticated technical reports would be so

challenging.

Once Fokus!MBT will be migrated to Eclipse Kepler and UML

2.4.1, we are confident to re-include GenDoc2 again, since some

progress has happened in the meantime around GenDoc2.

8.2 Lessons Learned from Application

8.2.1 UTP bridges the gap
In the VERDE project, we had applied Fokus!MBT to a case

study from the transportation domain. Based upon the existing

SysML-conform system specification, we built a test model with

Fokus!MBT and UTP. A subsequent review session with the use

case provider Alstom was very successful due to the fact that the

developers were able to easily and quickly comprehend what we

actually had specified in the test model. This is a good example of

bridging the gap between the development and testing side and of

the benefits of UML and its profiling mechanism in general.

8.2.2 Benefits of form-based modeling
The challenge of combined complexity holds true for the user

side, too. A still present phenomenon in the industry to our

experiences is that test engineers are afraid and skeptic of model-

based approaches for doing testing, especially of those that are

based on UML. Even within the MBT community, UML or UTP

are not widely accepted or trusted for several reasons. Within

discussions with the industry, we heard several times that a more

concise domain-specific language would be more appropriate than

UML. We do not agree with this statement in general. From our

point of view, it is necessary to tackle the reluctance to UML by

hiding combined complexity (and sometimes even the naming) of

UML behind a tailored UI that shows only aspects and names

known by the user. This was addressed by the multi-paradigmatic

editor framework.

The flexibility the multi-paradigmatic editor framework grants to

the user was highly appreciated by the users in past projects. We

had developed several of form-based editor pages according to

specific needs and wishes of the user. The benefits of form-based

modeling are twofold: at first, it abstracts efficiently from

combined complexity, and secondly, it allows a skill-oriented

presentation of the information encoded in the test model by using

well-known form-based widgets.

8.2.3 Flexibility in information visualization
We had once a discussion with a representative from industry

about a particular editor page for expressing the logical interface

of the SUT. We thought we had already sufficiently abstracted the

combined complexity, however, the expert said it would be still

too detailed. His argument was that a nurse which is in charge of

developing test cases for a new bed occupancy system has very

little knowledge about ports. We simply implemented a further

simplified editor page with less information and less

configurability, but hidden complexity in almost no time.

We share the assumption that the ability of being flexible with

respect to information visualization is considered most critical for

industrial acceptance and ultimately adoption [8].

8.2.4 Customization of Eclipse Papyrus
The internal architecture of Eclipse Papyrus is very well suited for

user-specific customization. We believe that Papyrus has the

potential to become the one Eclipse DSL modeling environment

in future. The UI of Papyrus, however, is not as flexible as it

should be for a GPME. For example, it is not possible to simply

switch off entries in the context menus event though they are

counteracting the idea of an MSME. For example, Papyrus will

always show the elements that can be created in a certain user

context. As a side effect, we have to continually explain to users

of Fokus!MBT that the predefined commands by Papyrus must

not be used in any case since the may corrupt the test model’s

integrity in terms of syntactical and semantic methodology. This is

annoying and prone to errors, because users might be tempted to

use the Papyrus commands instead. From a technical point of

view, the visibility of any command in a context menu could be

adequately managed with the UI configuration model of

Fokus!MBT.

8.2.5 Industrial perception of Eclipse Papyrus
We underestimated how the reputation of Papyrus would

influence the perception of Fokus!MBT. We encountered that the

industry is still skeptic about the robustness and stability of

Papyrus. When it came down to adoption of Fokus!MBT, we had

several times to argue why we had built that tool on top of

Papyrus, since it seemed far away from being a seriously

applicable tool. This, however, had significantly changed most

recently, since TOPCASED adopted Papyrus in a similar way to

Fokus!MBT, i.e., as underlying modeling environment.

TOPCASED, in contrast to Papyrus, is already and successfully

applied to mission-critical projects. Therefore, we expect Papyrus

to be further stabilized and to become a reliable and widely

applied UML modeling environment based on Eclipse in the

future. This is a confident finding and might lead to the decision

to abandon the tool integration layer in future.

9. RELATED WORK
Since the term MBT tool is not precisely defined, any tool that

supports the idea of MBT can be declared as MBT tool. This

holds, of course, true for Fokus!MBT as well. For this paper we

consider work as related to ours if they are dedicated to the

development of test modeling environments, excluding, for

example, work about test case or test data generators.

Representatives of commercial test modeling environments are

Conformiq [3], CertifyIT [27] and Automatic Test Generator [10].

All are based on Eclipse and offer methodology-specific support

to the user. Each of these tools comes along with a fix proprietary

test generator. Fokus!MBT, in contrast, is designed to work with

several test generators, if required. Besides ATG, none of these

tools commercial are based on UTP.

Related academic toolings are TellingTestStories (TTS) [6] and

MATERA [1]. TTS is a tool for a test-driven elicitation process of

requirements and provides a test modeling environment for

developing activity diagram-based test cases. The tool is also

capable of test execution, which is not in scope of Fokus!MBT.

TTS does not deal with test generation at all and was optimized

for testing service-oriented architectures solely. Fokus!MBT, in

contrast, does not restrict the domain it can be applied to per se.

An essential difference is that TTS always requires a system

model being present for test case generation.

MATERA was a research tool developed as plug-in for the

commercial UML GPME magic draw. MATERA is consequently

diagram-based, thus, it does not support multi-paradigmatic test

modeling as Fokus!MBT. MATERA uses for test case generation

the Conformiq engine, hence, it does not allow other test

generator being integrated.

Finally, MDTester [13] needs to be mentioned as another solution

developed by Fraunhofer FOKUS. This tool, however, was

superseded by Fokus!MBT, thus, it is not any more related to but

substantially integrated by Fokus!MBT. MDTester was based on a

proprietary testing metamodel called Unified Test Modeling

Language (UTML) and supported a pattern-based approach to test

modeling. Parts of the test patterns specified by MDTester have

been integrated into Fokus!MBT.

10. CONCLUSION AND FUTURE WORK
In this paper we have described our tool contribution to the MBT

community in form of the test modeling environment

Fokus!MBT. Due to page limitation we concentrated to the most

significant and illustrative parts of Fokus!MBT, thus, we have

emphasized its principles, its technical architectures and its way to

overcome combined complexity.

Future technical work will address the extraction of the UI core

extension service layer into an autarkic and reusable component

called Unicorn. Additionally, we strive to support the idea of

engineering viewpoints with Fokus!MBT to further align the UI

with the needs of the user. Future conceptual work will address

several topics such as application of Fokus!MBT in different

contexts like security testing or Cloud testing. We are looking for

more industrial case studies to further strengthen the capabilities

of Fokus!MBT and to get new requirements in order to address

relevant challenges of the industry as soon as possible.

The experiences we made during the development and application

of Fokus!MBT have motivated and guided or work on the UTP at

OMG. Fokus!MBT acted as kind of a proof-of-concept to prove

the feasibility of UTP in real world scenarios. Besides, our work

on providing a dedicated UTP modeling environment was an

important experience for initiating endeavors at OMG regarding a

successor specification. We contributed back to the Eclipse

modeling community about 30 to 40 issues to various modeling

projects. Besides, we initiated a new Eclipse modeling project

called UML Profile Repository (UPR) together with the Eclipse

Papyrus development team. This project strives to provide an

Eclipse-centralized repository of standardized UML profiles to

prevent uncontrolled growth of semantically equivalent but

technically incompatible implementations. We are certain that this

project will further foster interoperability of EMF-based UML

tools. Finally, we are keen to contribute some of the rather general

parts of Fokus!MBT (in particular the flexible UI configuration)

to the Papyrus project, because we are convinced that Papyrus

would benefit from a more configurable UI.

11. ACKNOWLEDGMENTS
The work on the first two generations of Fokus!MBT was partially

funded by the projects MODELPLEX (#IST-34081) and VERDE

(ITEA 2~08020). In REMICS (#257793), MIDAS (#318786) and

RASEN (#316853) the third generation is/was developed.

12. REFERENCES
[1] Backlund, A and Trusca, D, MATERA – An Integrated Framework

for Model-Based Testing, 17th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems ECBS
2010, Oxford, England, IEEE, 2010, pp. 329-334

[2] Bureck, M. et al., “Model-Based Test Automation with Fokus!MBT
and ModelBus,” in 1st ETSI Model-Based Testing User Conference
2011, Berlin, 2011. URL: http://www.model-based-
testing.de/mbtuc11. Last visit: 6th May, 2013.

[3] Conformiq, http://www.conformiq.com. Last visit: 6th May, 2013

[4] European Telecommunications Standards Institute (ETSI), “ES 201
873-1 V3.2.1 (2007-02): The Testing and Test Control Notation
version 3; Part 1: TTCN-3 Core Language,” 2007.

[5] European Telecommunications Standards Institute (ETSI), ES 201
873-6 V3.4.1 (2008-09) The Testing and Test Control Notation
version 3; Part 6: TTCN-3 Control Interface, 2007.

[6] Felderer, M. et al, Model-driven System Testing of Service-Oriented
Systems, in: Proceedings of the 9th International Conference on
Quality Software,

QSIC 2009, Jeju, Korea.

[7] Foster, M. and Graham, D., Software Test Automation. Addison-
Wesley Professionals, 1999. ISBN: 978-0201331400

[8] Grieskamp, W., Multi-paradigmatic Model-Based Testing, in:
Proceedings of First Combined Internation Workshops, FATES
2006 and RV 2006, Seattle, USA, 2006.

[9] Grieskamp, W., Model-Based Testing in the Field: Lessons Learned,
Lecture Notes in Informatics, Vol P-94 (2006), Pages 189- 196.

[10] IBM Rational Rhapsody Automatic Test Generation Add-on,
http://www.btc-ag.com/de/SID-B0230587-9D415B19/3006.htm,
last visit: 6th May, 2013

[11] International Software Testing Qualifications Board (ISTQB):
ISTQB/GTB standard glossary for testing terms.
http://www.software-tester.ch/PDF-
Files/CT_Glossar_DE_EN_V21.pdf. Last visit: 6th May, 2013

[12] Microsoft Spec Explorer: http://research.microsoft.com/en-
us/projects/specexplorer/. Last visit: 6th May, 2013.

[13] MDTester, http://www.fokus.fraunhofer.de/distrib/motion/utml/, last
visit: 6th May, 2013

[14] MIDAS project, http://www.midas-project.eu. Last visit: 6th May,
2013.

[15] Noyrit, F, Gérard, S., and Selic, B., “FacadeMetamodel: Masking
UML,” in proceeding of: ACM/IEEE 15th International Conference
on Model Driven Engineering Languages & Systems (MODELS
2012)ACM/IEEE 15th International Conference on Model Driven
Engineering Languages & Systems (MODELS 2012), Insbruck,
Austria, 2012.

[16] Object Management Group (OMG), “Unified Modeling Language
(UML),” http://www.omg.org/spec/UML/. Last visit: 6th May, 2013.

[17] Object Management Group (OMG), “UML Testing Profile,”
http://www.omg.org/spec/UTP/., Last visit: 6th May, 2013.

[18] Object Management Group (OMG), “UML Profile for Modeling and
Analysis of Real-time Embedded Systems (MARTE),” formal/2011-
06-02, http://www.omg.org/spec/MARTE/1.1/PDF/, 2011.

[19] Object Management Group (OMG), “Systems Engineering
Modeling Language (SysML),” http://www.omgsysml.org. Last
Visit: 6th May 2013.

[20] Pretschner, A. and Phillips, J., "Methodological Issues in Model-
based Testing. In: Model-based Testing of Reactive Systems," LNCS
3472, pp. 281 – 291, 2004. ISBN: 978-3-540-26278-7

[21] RASEN project, http://www.rasen-project.eu. Last visit: 6th May,
2013.

[22] ReMICS project, http://www.remics.eu. Last visit: 6th May, 2013.

[23] Sadovykh, A. et al, Architecture Driven Modernization in Practice –
Study Results: in 14th IEEE International Conference on
Engineering of Complex Computer Systems, Paris, France, 2009.

[24] Sadovykh, A. et al., “On Study Results: Round Trip Engineering of
Space Systems.” Fifth European European Conference on Model-
Driven Architecture Foundations and Applications (ECMDA) 2009,
Twente, Netherlands.

[25] Schieferdecker, I., "Model-Based Testing," IEEE Software, vol. 29,
no. 1, pp. 14-18, January/February, 2012

[26] Schieferdecker, I., "Modellbasiertes Testen, " OBJEKTSpektrum
3/07, S. 39-45, 2007 (in German).

[27] Smartesting CertifyIT, http://www.smartesting.com/index.php
/cms/en/product/certify-it . Last visit: 6th May, 2013

[28] Spillner, A. et al., "Wie wird in der Praxis getestet? Umfrage in
Deutschland, Schweiz und Österreich," ObjektSpektrum, May 2011
(in German); www.sigs-datacom.de/fileadmin/user_upload/
zeitschriften/os/2011/Testing/spillner_vosseberg_OS_testing_11.pdf
Last visit: 6th May, 2013.

[29] TOPCASED GenDoc: http://www.topcased.org/index.php?idd_
projet_pere=102. Last visit: 30th December, 2012.

[30] Wendland, M.-F., Großmann, J, and Hoffmann, A., "Establishing a
Service-Oriented Tool Chain for the Development of Domain-
Independent MBT Scenarios," 17th IEEE International Conference
and Workshops on Engineering of Computer-Based Systems ECBS
2010, Oxford, England, IEEE, 2010, pp. 329-334.

[31] Stefanescu, A., Wendland, M.-F. and Wieczorek, S., "Using the
UML testing profile for enterprise service choreographies." 36th
Euromicro Conference on Software Engineering and Advanced
Applications, (SEAA 2010), Lille, France, 2010.

[32] Ulrich, S., Formalisierung von Testausführungsergebnissen in
Konzepte des UML Testing Profils. Bachelor thesis at University of
Applied Sciences Berlin, 2012.

[33] VERDE project, http://www.itea-verde.org/. Last visit: 6th May,
2013.

[34] Wendland, M.-F., “Fokus!MBT - A flexible and extensible toolset
for Model-based testing approaches,” in 3rd Proceedings of Model-
based Testing in Practice Workshop (MoTIP) 2010, in Conjunction
with the 6th European Conference on Modelling Foundations and
Applications (ECMFA) 2010, Paris, 2010.

[35] Wendland, M.-F., Schieferdecker, I., and Hoffmann, A.,
“Modellbasiertes Testen mit Fokus!MBT“ OBJEKTSpektrum,
Online-Themenspecial, 2010. (in German)

[36] Wendland, M.-F., and Bureck, M., “Model-based Test Automation –
Fokus!MBT,” in 2nd Eclipse Integrated Development Day,
Fraunhofer FOKUS Berlin, 2011.
http://wiki.eclipse.org/Eclipse_IDD_Berlin2011. Last visit: 6th May,
2013.

